Archive-Physical-Media-Audio
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How to Tape-Record Primate Vocalisations Version June 2001
How To Tape-Record Primate Vocalisations Version June 2001 Thomas Geissmann Institute of Zoology, Tierärztliche Hochschule Hannover, D-30559 Hannover, Germany E-mail: [email protected] Key Words: Sound, vocalisation, song, call, tape-recorder, microphone Clarence R. Carpenter at Doi Dao (north of Chiengmai, Thailand) in 1937, with the parabolic reflector which was used for making the first sound- recordings of wild gibbons (from Carpenter, 1940, p. 26). Introduction Ornithologists have been exploring the possibilities and the methodology of tape- recording and archiving animal sounds for many decades. Primatologists, however, have only recently become aware that tape-recordings of primate sound may be just as valuable as traditional scientific specimens such as skins or skeletons, and should be preserved for posterity. Audio recordings should be fully documented, archived and curated to ensure proper care and accessibility. As natural populations disappear, sound archives will become increasingly important. This is an introductory text on how to tape-record primate vocalisations. It provides some information on the advantages and disadvantages of various types of equipment, and gives some tips for better recordings of primate vocalizations, both in the field and in the zoo. Ornithologists studying bird sound have to deal with very similar problems, and their introductory texts are recommended for further study (e.g. Budney & Grotke 1997; © Thomas Geissmann Geissmann: How to Tape-Record Primate Vocalisations 2 Kroodsman et al. 1996). For further information see also the websites listed at the end of this article. As a rule, prices for sound equipment go up over the years. Prices for equipment discussed below are in US$ and should only be used as very rough estimates. -
Digital Radio and CD-Quality Audio
Technological University Dublin ARROW@TU Dublin Books/Book chapters School of Media 2010-01-01 Sounding the Future: Digital Radio and CD-Quality Audio Brian O'Neill Technological University Dublin, [email protected] Follow this and additional works at: https://arrow.tudublin.ie/aaschmedbk Part of the Broadcast and Video Studies Commons, Communication Technology and New Media Commons, and the Film and Media Studies Commons Recommended Citation B. O'Neill, ‘Sounding the future': digital radio and CD-quality audio. In O'Neill, B., M. Ala-Fossi, et al., Eds. (2010). Digital Radio in Europe: Technologies, Industries and Cultures. Bristol, Intellect Books, pp.85-98. This Book Chapter is brought to you for free and open access by the School of Media at ARROW@TU Dublin. It has been accepted for inclusion in Books/Book chapters by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License [1] Chapter Four ‘Sounding the future': digital radio and CD-quality audio Brian O’Neill Central to the early effort to win acceptance for DAB in the early 1990s was an extensive process of promotion of the many claimed advantages of the new broadcasting technology. Digital radio broadcasting under the Eureka 147 DAB project offered many technical enhancements – more efficient use of the spectrum, improved transmission methods, and lower running costs – features that were attractive to industry professionals, broadcasting organisations, regulators and spectrum planners. But digital radio was also designed as a consumer proposition offering audiences a new and improved listening experience with ease of tuning, reliable reception, text and data services, interactive features, and significantly, ‘CD- quality’ audio. -
Physical Object Collection
122• A GUIDE TO THE PHYSICAL OBJECT COLLECTION All object photographs & notes by John Kannenberg. Items in the Physical Object Collection are available for view by our visitors. Please request any physical objects you would like to inspect when arranging your visit. DONATIONS ARE WELCOME. OBJECT INFORMATION •123 Sony Walkman model WM-11D. The First Compact Disc. OBJECT 1 OBJECT 2 Sony Walkman WM-11D The First Compact Disc: Japan, 1985 Philips Classics, Japan, 1980 Four years after Sony released the original The first commercially available Compact Walkman portable cassette player, they Disc was released by Philips Classics in released the WM-11D, a fairly standard 1980. The original recording for the model whose only standout feature was its album was made in 1979. In a ceremony ability to ‘auto-stop’ playing a tape when to launch the beginning of the manufacture it was finished. It originally retailed for of the disc, musician Claudio Arrau was US$35. invited to the factory to press the ‘start’ button on the machinery. Please note: The Museum’s copy of this object is broken and does not function. Please be aware of this if you request to examine this object in person. We apologise for any inconvenience caused. 124• PHYSICAL OBJECT COLLECTION Sharp MiniDisc recorder, User’s Manual, and unopened MiniDisc, donated to the collection by Lydie Valentin. OBJECT 3 Sharp Minidisc Recorder France, 1990 As the Compact Disc format became the standard for music distribution, usage of other formats such as the LP record and the audio cassette rapidly – but as we have seen recently, temporarily – faded away. -
Digital Devices in Sociolinguistic Fieldworks
Digital Devices in Sociolinguistic Fieldworks* [NOTE: This is a largely modified version of Matsuda (2000) and was presented at METHODS (International Conference on Methods in Dialectology) IX Meeting at University of Joensuu on August 5, 2002. In addition to the people I mentioned in Matsuda (2000), I would like to send my cordial thanks to Paul Kerswill, Renée Fürst, T. de Graaf, John Nerbonne, for their comments and discussions at the conference. Renée deserves special thanks here, for providing me with additional references after the conference. It should be stressed, however, that all remaining errors are mine only. This research is partly supported by Grant-in-Aid for Scientific Research #13410139 from Japan Society for the Promotion of Science.] Kenjiro Matsuda Kobe Shoin Women''s University [email protected] 0. Introduction 1. Recyclability of Sociolinguistic Fieldwork Data With the beginning of Variationist paradigm in 1960s, sociolinguists began tape-recording and analyzing the daily speeches in the speech community. The search for the vernacular (in the sense of Labov 1972) was a clear departure from the traditional dialectological fieldwork that elicits a speaker’s response using a questionnaire. The interview may involve one or multiple speakers (group session), but in either case, there is no pre-set time length and the interview may go on as long as the speaker wants to talk. The interviewer may have a course of questions (module) to facilitate the naturalistic interview, so that s/he can obtain a wide range of speech style from the speaker, but the basic principle here is to follow the flow of the talk. -
ARSC Guide to Audio Preservation
ARSC Guide to Audio Preservation Sam Brylawski, Maya Lerman, Robin Pike, Kathlin Smith, editors from last round: National Recording Preservation Board OF THE LIBRARY OF CONGRESS ASSOCIATION FOR RECORDED SOUND COLLECTIONS Council on Library and Information Resources revised: National Recording Preservation Board OF THE LIBRARY OF CONGRESS National Recording Registry OF THE LIBRARY OF CONGRESS ISBN 978-1-932326-50-5 CLIR Publication No. 164 Copublished by: Association for Recorded Council on Library and The Library of Congress Sound Collections Information Resources 101 Independence Avenue, SE c/o Nathan Georgitis, Knight Library 1707 L Street NW, Suite 650 Washington, DC 20540 1299 University of Oregon Washington, DC 20036 Website at http://www.loc.gov Eugene, OR 97403 Website at http://www.clir.org Website at http://arsc-audio.org Commissioned for and sponsored by the National Recording Preservation Board of the Library of Congress. Publication inquiries should be directed to Kathlin Smith at the Council on Library and Information Resources (CLIR). Additional copies are available for $30 each. Orders may be placed through CLIR’s website at http://www.clir.org/pubs/reports/pub164. The paper in this publication meets the minimum requirements of the American National Standard 8 for Information Sciences—Permanence of Paper for Printed Library Materials ANSI Z39.48-1984. The ARSC Guide to Audio Preservation is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Photos with credits are excluded from -
History of the Early Days of Ampex Corporation
PAPER History of The Early Days of Ampex Corporation As recalled by JOHN LESLIE and ROSS SNYDER Alexander M. Poniatoff founded Ampex in 1944, primarily to manufacture small motors and generators for military applications. When WWII ended, the military contracts dropped off, and Alex had to search for a new line of business to continue his company’s existence. He and his small group of engineers heard a demonstration of a Magnetophon, a German magnetic tape recorder used by Hitler during WWII. The demonstration quickly convinced Alex to redirect his company and soon it was designing and manufacturing professional-quality magnetic tape recorders. Bing Crosby was a great help in Ampex’s early years. The company grew quickly and, within a short time, dominated the magnetic tape recorder market in radio, television, the record industry, and industrial and military markets for instrumentation recorders . Alex was born in Russia in 1892. His father was well-to- 0 INTRODUCTION do, and sent Alex to Germany for an education in engineering. After college, he returned to Russia only to see his country It has been amazing how many people today are asking become engaged in a civil war. Alex escaped to China, where questions about Ampex and the Company’s contribution to the he went to work for the Shanghai Power Company. He music recording industry, the radio and television broadcast immigrated to the United States in 1927 where he worked for industry and the stereophonic home entertainment field. There General Electric, Pacific Gas & Electric, and the Dalmo Victor is no question that Ampex was a major factor in each of these Corporation in San Carlos, California. -
FATSO EL7X Manual
FATSO EL7x USERS MANUAL FULL ANALOG TAPE SIMULATOR & OPTIMIZER WITH KNEE COMPRESSOR Technology for the Artist empiricallabs.com 1 WARRANTY AND FACTORY SERVICE This Empirical Labs Inc. product is covered by a limited warranty covering full parts and labor for 3 years from the purchase date. The warranty is only effective if the owner has returned his or her warranty card. See warranty card for further details. TABLE OF CONTENTS Should problems arise, contact the factory at [email protected] or use the “Contact “ button on our website. If it becomes necessary, pack the unit up well*, enclose a note explaining the problem and return to Warranty and Factory Service 2 Empirical Labs for repair. Include your name, address, phone, and the date of purchase. Send the unit with freight prepaid to the address below. Table of Contents 3 Empirical Labs Inc. (Attn Service) Features & Specs 4 41 N. Beverwyck Rd. Lake Hiawatha, NJ 07034 What is the FATSO? 5 *Please pack the unit in original carton if possible. Otherwise, pack with bubble pack and/or foam in a thick corrugated box. Shipping people are absolutely brutal to large packages and you must take every precaution to prevent damage to the edges of the front panel. We are not liable for products damaged during shipping. Using for the First Time 5 www.EmpiricalLabs.com Example Settings 6-7, 10 OTHER EMPIRICAL LABS PRODUCTS Recall Sheet 8-9 • Distressor EL8 - Classic Knee Compressor. Used on thousands of major records! Section Details 11 • Distressor EL8X - The original Distressor on Steroids. Image Link and Brit Mod • Lil FrEQ – An EQ with 8 Sections of unparalleled tonal contouring & De-essing. -
The Rewritable Minidisc System
The Rewritable MiniDisc System Tadao Yoshida Advanced Development Laboratories Sony Corporation, Tokyo, Japan Reprinted from the Proceedings of the IEEE,USA vol. 82 no. 10 pp. 1492-1500, OCT 1994. Invited Paper The MiniDisc system was designed with the obvious objective of replacing the conventional Compact Cassette tape recorder system. The MiniDisc format defines two types of optical discs. One is a recordable magneto-optical disc for user recording and another is a conventional read-only disc for music-software publishing. Audio data compression is used to achieve 74 min of playing time on a 64-mm disc. By means of a built-in buffer memory called Shock Resistant Memory, MiniDisc can be used for outdoor portable applications with great ease. Furthermore, MiniDisc was evolved into the MD Data system and with a data capacity of 140 Mbytes and a very compact size, the MD Data system is expected to become one of the standards for removable data storage systems. I. Introduction In 1992 the MiniDisc system was introduced in the consumer audio market as a new digital audio playback and recording system (Fig. 1). The introduction time was just ten years after the introduction of the Compact Disc (CD). As is known, CD has effectively replaced the vinyl LP records in the audio disc market. CD technology is based on 16-bit quantization and 44.1-kHz sampled digital audio recording. The CD sound quality was fairly improved compared to any consumer analog recording equipment. Before starting the CD business, many engineers engaged in the development of the CD solely for its improvement in sound quality, but after the introduction of the CD player into the market, we found out that the consumer became aware of the quick random-access characteristic of Fig. -
Magneto-Optical Recording Systems
10.3 MiniDisc 10.3.1 Introduction and Features of the MiniDisc System The MiniDisc (MD) system, developed by Sony, offers both digital sound and random access features. In addition to these features, the following three types of MiniDiscs have been developed for various applications: Section 10.3 MiniDisc 401 Figure 10.19 Probability of each error length. i Error length (byte) 1. Playback-only MiniDisc for prerecorded music; 2. Recordable MiniDisc allowing up to 74 minutes of recording time; and 3. Hybrid MiniDisc, a combination with premastered and recordable areas. The intrinsic recording technology supporting the recordable MiniDisc is the magnetic field direct overwrite method, applied to a consumer product for the first time in the world. The distinctive features of the MiniDisc are 1. Overwrite function: 2. Maximum 74 min. recording time on a disk only 64mm in diameter, achieved using data compression and high-density recording; 3. Quick random access supported by address information in the wobbled groove; and 4. Disk protection with the cartridge and shutter. Read process Verify process Write process Media production Figure 10.20 Defect management strategies. 402 Chapter 10 Magneto-Optical Recording Systems Moreover, durability and reliability for the recordable MiniDisc have already been proven with data storage media for computer peripherals, such as the magneto optical disk. Figure 10.21 shows the various MD systems. 10.3.2 System Concept and Specifications The specifications of the compact disc (CD) were first proposed in 1982, and are described in the so-called “Red Book.” Since then, the technological developments for both data and recording applications have been specified in the “Yellow Book” and “Orange Book,” respectively. -
Historical Development of Magnetic Recording and Tape Recorder 3 Masanori Kimizuka
Historical Development of Magnetic Recording and Tape Recorder 3 Masanori Kimizuka ■ Abstract The history of sound recording started with the "Phonograph," the machine invented by Thomas Edison in the USA in 1877. Following that invention, Oberlin Smith, an American engineer, announced his idea for magnetic recording in 1888. Ten years later, Valdemar Poulsen, a Danish telephone engineer, invented the world's frst magnetic recorder, called the "Telegraphone," in 1898. The Telegraphone used thin metal wire as the recording material. Though wire recorders like the Telegraphone did not become popular, research on magnetic recording continued all over the world, and a new type of recorder that used tape coated with magnetic powder instead of metal wire as the recording material was invented in the 1920's. The real archetype of the modern tape recorder, the "Magnetophone," which was developed in Germany in the mid-1930's, was based on this recorder.After World War II, the USA conducted extensive research on the technology of the requisitioned Magnetophone and subsequently developed a modern professional tape recorder. Since the functionality of this tape recorder was superior to that of the conventional disc recorder, several broadcast stations immediately introduced new machines to their radio broadcasting operations. The tape recorder was soon introduced to the consumer market also, which led to a very rapid increase in the number of machines produced. In Japan, Tokyo Tsushin Kogyo, which eventually changed its name to Sony, started investigating magnetic recording technology after the end of the war and soon developed their original magnetic tape and recorder. In 1950 they released the frst Japanese tape recorder. -
Digital Audio Tapes: Their Preservation and Conversion 1 Smithsonian Institution Archives Summer 2010
Digital Audio Tapes: Their Preservation and Conversion 1 Smithsonian Institution Archives Summer 2010 Digital Audio Tapes: Their Preservation and Conversion Susan Eldridge, Digital Services Intern Overview Digital Audio Tapes (DATs) are 4mm (or 3.81mm) magnetic tape cassettes that store audio information in a digital manner. DATS are visually similar to compact audio cassettes, though approximately half the size, use thinner tapes, and can only be recorded on one side. Developed by Sony in 1987, DATs were quite popular in recording studios and were one of the first digital recording systems to become employed in archives in the late 1980s and 1990s due to their lossless encoding. Commercial use of DATs, on the other hand, never achieved the same success as the machines were expensive and commercial recordings were not available on DAT. Depending on the tape and machine used, DATs allow four different sampling modes: 32 kHz at 12 bits quantization, and 32 kHz, 44.1 kHz, and 48 kHz at 16 bits.1 All support two-channel stereo recording. Some of the later DATs (before being discontinued) could extend the bit-depth to 24 and up to 98 kHz, however, these tapes were likely rarely playable on other models.2 DATs can run between 15 and 180 minutes in length, one again depending on the tape and quality of the sampling. Unlike some other digital media, DATs do not use lossy data compression, which is important in the lossless transferring of a digital source to a DAT. Sony ultimately discontinued the production of DAT machines in 2005.3 Composition A digital magnetic tape is composed of two primary layers: the base film and magnetic layer. -
Magnetic Recording: Analog Tape
Magnetic Recording: Analog Tape Until recently, there was one dominant way of recording sounds so that they could be reproduced at a later time or in a different location: analog magnetic recording (of course, there were mechanical methods like phonograph records, but they could not be recorded easily). In fact, magnetic recording techniques are still the most common way of recording signals, but the encoding method is digital. Magnetic recording relies on the imposition of a magnetic field, derived from an electrical signal, on a magnetically susceptible medium that becomes magnetized. The magnetic medium employed in analog recording is magnetic tape: a thin plastic ribbon with randomly oriented microscopic magnetic particles glued to the surface. The record head magnetic field alters the magnetic polarization (not the physical orientation) of the tiny particles so that they align their magnetic domains with the imposed field: the stronger the imposed field, the more particles align their orientations with the field, until all of the particles are magnetized. The retained pattern of magnetization stores the representation of the signal. When the magnetized medium is moved past a read head, an electrical signal is produced by induction. Unfortunately, the process is inherently very non-linear, so the resulting playback signal is different from the original signal. Much of the circuitry employed in an analog tape recorder is necessary to undo the distortion introduced by the non-linear physics of the system. Figure 1: In a record head, magnetic flux flows through low-reluctance pathway in the tape’s magnetic coating layer. Magnetic tape Magnetic tape used for audio recording consists of a plastic ribbon onto which a layer of magnetic material is glued.