The Study of History of Mathematics in the Czech Republic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Calendar of Mathematical Dates January
A CALENDAR OF MATHEMATICAL DATES V. Frederick Rickey Department of Mathematical Sciences United States Military Academy West Point, NY 10996-1786 USA Email: fred-rickey @ usma.edu JANUARY 1 January 4713 B.C. This is Julian day 1 and begins at noon Greenwich or Universal Time (U.T.). It provides a convenient way to keep track of the number of days between events. Noon, January 1, 1984, begins Julian Day 2,445,336. For the use of the Chinese remainder theorem in determining this date, see American Journal of Physics, 49(1981), 658{661. 46 B.C. The first day of the first year of the Julian calendar. It remained in effect until October 4, 1582. The previous year, \the last year of confusion," was the longest year on record|it contained 445 days. [Encyclopedia Brittanica, 13th edition, vol. 4, p. 990] 1618 La Salle's expedition reached the present site of Peoria, Illinois, birthplace of the author of this calendar. 1800 Cauchy's father was elected Secretary of the Senate in France. The young Cauchy used a corner of his father's office in Luxembourg Palace for his own desk. LaGrange and Laplace frequently stopped in on business and so took an interest in the boys mathematical talent. One day, in the presence of numerous dignitaries, Lagrange pointed to the young Cauchy and said \You see that little young man? Well! He will supplant all of us in so far as we are mathematicians." [E. T. Bell, Men of Mathematics, p. 274] 1801 Giuseppe Piazzi (1746{1826) discovered the first asteroid, Ceres, but lost it in the sun 41 days later, after only a few observations. -
Jarník's Note of the Lecture Course Punktmengen Und Reelle
Jarník’s note of the lecture course Punktmengen und reelle Funktionen by P. S. Aleksandrov (Göttingen 1928) Jarník’s notebooks from Göttingen In: Martina Bečvářová (author); Ivan Netuka (author): Jarník’s note of the lecture course Punktmengen und reelle Funktionen by P. S. Aleksandrov (Göttingen 1928). (English). Praha: Matfyzpress, 2010. pp. 47–49. Persistent URL: http://dml.cz/dmlcz/401005 Terms of use: © Bečvářová, Martina © Netuka, Ivan Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz 47 JARNÍK’S NOTEBOOKS FROM GOTTINGEN¨ From the 1870’s onwards, the most talented and outstanding mathematicians and physicists from the Czech lands went abroad, enabled by government scholarships and funding, in order to extend and deepen their mathematical knowledge and skills. Among these were Ludvík Kraus, František Machovec, Jan Vilém Pexider, Antonín Sucharda, Josef Sylvester Vaněček, Eduard Weyr, Emil Weyr, August Leo Otto Biermann, Karl Bobek, Seligman Kantor, František Nachtikal, August Seydler, Vincenc Strouhal. Others went to comple- te their doctoral degrees or to publish their books or papers. They travelled mainly to Germany, France or Italy and studied in the most prestigious mathematical centers of the period, at -
From the Algorithm Fang Cheng to the Matrix Theory M
WDS'10 Proceedings of Contributed Papers, Part I, 127–132, 2010. ISBN 978-80-7378-139-2 © MATFYZPRESS From the Algorithm Fang Cheng to the Matrix Theory M. Stˇ ˇep´anov´a Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic. Abstract. The aim of the contribution is to trace the origin and development of the matrix theory, which took a long time to become a fully accepted theory and which is closely connected to the study of systems of linear equations, to the theory of determinants and to the theory of bilinear and quadratic forms. We shall list the most important dates in which basic notions of the matrix theory were introduced and of course we shall mention famous mathematicians and their works on this part of linear algebra. Systems of linear equations It is not surprising that the beginning of the matrix theory is connected with the systems of linear equations. Problems which led to easy systems of linear equations were solved in ancient Egypt and Mesopotamia four thousand years ago. A big progress in solution of the system of linear equations occurred two thousand years ago in China. Algorithm fang cheng Chinese mathematicians used an efficient method to solve systems of linear equations. It was called fang cheng and it was written during Han Dynasty in the text Nine Chapters on the Mathematical Art (Jiu zhang suan shu). We will explain the principle of the fang cheng on the next example: There are three types of corn, of which three bundles of the first, two of the second, and one of the third make 39 measures. -
Matyá' Lerch (1860 1922)
iauliai Math. Semin., 8 (16), 2013, 197222 MATYÁ LERCH (18601922) tefan PORUBSKÝ Institute of Computer Science of the Academy of Sciences of the Czech Republic, Pod Vodárenskou v¥ºí 2, 182 07 Praha 8 Libe¬, Czech Republic; e-mail: [email protected] To Antanas at the occasion of his 65th birthday in admiration for his contribution in expanding Lerch's heritage Abstract. We describe the life and career of MatyಠLerch, one of the most prominent Czech mathematician on the turn of 19th and 20th cen- tury. We give a short family background, proceeding to his studies at the Prague Polytechnic, his assistantship years there, forced departure to Swiss Fribourg, and return back to Bohemia. Key words and phrases: Gabriel Blaºek, Charles Hermite, MatyಠLerch, Prague Polytechnic, Franti²ek Josef Studni£ka, Eduard Weyr, Emil Weyr, University of Brno, University of Fribourg. 2010 Mathematics Subject Classication: 01A55, 01A60. Mathematicians are born, not made. H. Poincaré Mathias Lerch (in Czech Matyá²1 Lerch) is a well-known Czech mathe- matician. Lerch is one of two Czech mathematicians which name appears in Mathematics Subject Classication, namely in the form of the Lerch zeta function. Lerch published 238 papers, predominatingly on mathematical 1According to his birth certicate, his rst name was Mat¥j (=Matthew), a fact which is often a surprise, because he used the form Matyá² from the very beginning also in his papers in Czech. This name is also used on his headstone. 198 t. Porubský analysis and number theory. From these he wrote 110 within 10 years at the beginning of his carrier. -
Lerch, Matyáš: About Matyáš Lerch
Lerch, Matyáš: About Matyáš Lerch Štefan Porubský Matyáš Lerch (1860-1922) Šiauliai Math. Semin. 8 (16), 2013, 197–222 Persistent URL: http://dml.cz/dmlcz/501896 Terms of use: © Šiauliai University Publishing House, 2013 Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz SlAULIAI Šiauliai Math. Semin., MATHEMATICAL 8 (16), 2013, 197-222 SEMINAR. http://siauliaims.su.lt MATYÁŠ LERCH (1860-1922) Štefan PORUBSKÝ Institute of Computer Science of the Academy of Sciences of the Czech Republic, Pod Vodárenskou věží 2, 182 07 Praha 8 - Libeň, Czech Republic; e-mail: [email protected] To Antanas at the occasion of his 65th birthday in admiration for his contribution in expanding Lerch's heritage Abstract. We describe the life and career of Matyáš Lerch, one of the most prominent Czech mathematician on the turn of 19th and 20th cen- tury. We give a short family background, proceeding to his studies at the Prague Polytechnic, his assistantship years there, forced departure to Swiss Fribourg, and return back to Bohemia. Key words and phrases: Gabriel Blažek, Charles Hermite, Matyàs Lerch, Prague Polytechnic, František Josef Studnička, Eduard Weyr, Emil Weyr, University of Brno, University of Fribourg. 2010 Mathematics Subject Classification: 01A55, 01A60. Mathematicians are born, not made. H. Poincaré Mathias Lerch (in Czech Matyáš1 Lerch) is a well-known Czech mathe- matician. -
Product Integration, Its History and Applications, 2007 (Engl.) Antonín Slavík
NEČAS CENTER FOR MATHEMATICAL MODELING, Volume 1 HISTORY OF MATHEMATICS, Volume 29 PRODUCT INTEGRATION, ITS HISTORY AND APPLICATIONS Antonín Slavík b b b x2 (I + A(x) dx)= I + A(x) dx + A(x2)A(x1) dx1 dx2 + · · · Ya Za Za Za MATFYZPRESS NEČAS CENTER FOR MATHEMATICAL MODELING, Volume 1 HISTORY OF MATHEMATICS, Volume 29 PRODUCT INTEGRATION, ITS HISTORY AND APPLICATIONS Antonín Slavík PRAGUE 2007 NEČAS CENTER FOR MATHEMATICAL MODELING Editorial board Michal Beneš, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University Eduard Feireisl, Institute of Mathematics, Academy of Sciences of the Czech Republic Miloslav Feistauer, Faculty of Mathematics and Physics, Charles University Josef Málek, Faculty of Mathematics and Physics, Charles University Jan Malý, Faculty of Mathematics and Physics, Charles University Šárka Nečasová, Institute of Mathematics, Academy of Sciences of the Czech Republic Jiří Neustupa, Institute of Mathematics, Academy of Sciences of the Czech Republic Tomáš Roubíček, Faculty of Mathematics and Physics, Charles University HISTORY OF MATHEMATICS Editorial board Jindřich Bečvář, Faculty of Mathematics and Physics, Charles University Eduard Fuchs, Faculty of Science, Masaryk University Ivan Kolář, Faculty of Science, Masaryk University Karel Mačák, Faculty of Education, Technical University Liberec Ivan Netuka, Faculty of Mathematics and Physics, Charles University Štefan Schwabik, Institute of Mathematics, Academy of Sciences of the Czech Republic Emilie Těšínská, Institute of Contemporary History, Academy of Sciences of the Czech Republic The publication was supported by Nečas Center for Mathematical Modeling and by grant MSM 0021620839 of the Czech Ministery of Education. Všechna práva vyhrazena. Tato publikace ani žádná její část nesmí být repro- dukována nebo šířena v žádné formě, elektronické nebo mechanické, včetně fo- tokopií, bez písemného souhlasu vydavatele. -
Luigi Cremona and His Transformations
WDS'08 Proceedings of Contributed Papers, Part I, 32–37, 2008. ISBN 978-80-7378-065-4 © MATFYZPRESS Luigi Cremona and his Transformations D. Trkovsk´a Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic. Abstract. The present paper is dedicated to Luigi Cremona (1830–1903), one of the leading Italian mathematicians of the second half of the 19th century. At first, it gives a brief account of his professional life. In the following text, we describe fundamental results of the theory of birational transformations, later known as Cremona transformations. At the end, we discuss Cremona’s influence on the Czech geometrical school, with main attention to Emil Weyr (1848–1894) who spent some time in Italy attending Cremona’s lectures. References to selected papers relevant to this theme are attached. Introduction Luigi Cremona had a great influence on Italian geometry, he was one of the founders of the new Italian mathematical school. He was mainly interested in projective and algebraic geometry and discovered graphical methods for solving problems in statics as well. Many propositions on synthetic geometry were revised and improved by him. Birational transformations of a projective plane or space named after Cremona play an important role in algebraic geometry. Professional Life of Luigi Cremona Luigi Cremona was born on December 7, 1830 in Pavia, Lombardy (today Italy). Having finished his study at the grammar school in Pavia, he was made by political events of the revolution of 1848 to interrupt his further studies. As an Italian nationalist he joined the Free Italy battalion and took part in the defence of Venice against the Austrian army.