Global Histone Acetylation Induces Functional Genomic Reorganization at Mammalian Nuclear Pore Complexes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cselp Functions As the Nuclear Export Receptor for Importin a in Yeast
FEBS 20654 FEBS Letters 433 (1998) 185 190 Cselp functions as the nuclear export receptor for importin a in yeast Markus Kfinzler, Eduard C. Hurt* Biochemie-Zentrum Heidelberg ( BZH), Ruprecht-Karls-Universitgit, lm Neuenheimer Feld 328, 4. OG, 69120 Heidelberg, Germany Received 14 May 1998; revised version' received 14 July 1998 review see [4,5]). The similarity is mainly found in a Ran-GTP Abstract CSEI is essential for yeast cell viability and has been implicated in chromosome segregation. Based on its sequence bindirfg domain at the N-terminus of these proteins [8,9]. similarity, Cselp has been grouped into the family of importin Binding of Ran-GTP has opposite effects on the binding of like nucleocytoplasmic transport receptors with highest homol- cargo by import and export receptors. Complexes between ogy to the recently identified human nuclear export receptor for import receptors and cargo are dissociated by Ran-GTP, importin ~, CAS. We demonstrate here that Cselp physically whereas binding of Ran-GTP and cargo to export receptors interacts with yeast Ran and yeast importin tx (Srplp) in the is cooperative. These properties of import and export recep- yeast two-hybrid system and that recombinant Cselp, Srplp and tors together with a high concentration of Ran-GTP in the Ran-GTP form a trimeric complex in vitro. Re-export of Srplp nucleus trigger release of cargo from import receptors and from the nucleus into the cytoplasm and nuclear uptake of a association of cargo with export receptors in the nucleus. Re- reporter protein containing a classical NLS are inhibited in a lease of export cargo and binding of import cargo in the csel mutant strain. -
WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US). -
Small Gtpase Ran and Ran-Binding Proteins
BioMol Concepts, Vol. 3 (2012), pp. 307–318 • Copyright © by Walter de Gruyter • Berlin • Boston. DOI 10.1515/bmc-2011-0068 Review Small GTPase Ran and Ran-binding proteins Masahiro Nagai 1 and Yoshihiro Yoneda 1 – 3, * highly abundant and strongly conserved GTPase encoding ∼ 1 Biomolecular Dynamics Laboratory , Department a 25 kDa protein primarily located in the nucleus (2) . On of Frontier Biosciences, Graduate School of Frontier the one hand, as revealed by a substantial body of work, Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Ran has been found to have widespread functions since Osaka 565-0871 , Japan its initial discovery. Like other small GTPases, Ran func- 2 Department of Biochemistry , Graduate School of Medicine, tions as a molecular switch by binding to either GTP or Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 , GDP. However, Ran possesses only weak GTPase activ- Japan ity, and several well-known ‘ Ran-binding proteins ’ aid in 3 Japan Science and Technology Agency , Core Research for the regulation of the GTPase cycle. Among such partner Evolutional Science and Technology, Osaka University, 1-3 molecules, RCC1 was originally identifi ed as a regulator of Yamada-oka, Suita, Osaka 565-0871 , Japan mitosis in tsBN2, a temperature-sensitive hamster cell line (3) ; RCC1 mediates the conversion of RanGDP to RanGTP * Corresponding author in the nucleus and is mainly associated with chromatin (4) e-mail: [email protected] through its interactions with histones H2A and H2B (5) . On the other hand, the GTP hydrolysis of Ran is stimulated by the Ran GTPase-activating protein (RanGAP) (6) , in con- Abstract junction with Ran-binding protein 1 (RanBP1) and/or the large nucleoporin Ran-binding protein 2 (RanBP2, also Like many other small GTPases, Ran functions in eukaryotic known as Nup358). -
Complex Genetics of Pulmonary Diseases: Lessons from Genome-Wide Association Studies and Next-Generation Sequencing
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Complex genetics of pulmonary diseases: lessons from genome-wide association studies and next-generation sequencing NIMA POULADI, CHRISTIAN BIME, JOE G. N. GARCIA, and YVES A. LUSSIER TUCSON, ARIZ AND CHICAGO, ILL The advent of high-throughput technologies has provided exceptional assistance for lung scientists to discover novel genetic variants underlying the development and progression of complex lung diseases. However, the discovered variants thus far do not explain much of the estimated heritability of complex lung diseases. Here, we review the literature of successfully used genome-wide association studies (GWASs) and identified the polymorphisms that reproducibly underpin the suscepti- bility to various noncancerous complex lung diseases or affect therapeutic responses. We also discuss the inherent limitations of GWAS approaches and how the use of next-generation sequencing technologies has furthered our understand- ing about the genetic determinants of these diseases. Next, we describe the contri- bution of the metagenomics to understand the interactions of the airways microbiome with lung diseases. We then highlight the urgent need for new integrative genomics-phenomics methods to more effectively interrogate and understand mul- tiple downstream ‘‘omics’’ (eg, chromatin modification patterns). Finally, we address the scarcity of genetic studies addressing under-represented populations such as African Americans -
The Megalocytivirus RBIV Induces Apoptosis and MHC Class I Presentation in Rock Bream (Oplegnathus Fasciatus) Red Blood Cells
ORIGINAL RESEARCH published: 04 March 2019 doi: 10.3389/fimmu.2019.00160 The Megalocytivirus RBIV Induces Apoptosis and MHC Class I Presentation in Rock Bream (Oplegnathus fasciatus) Red Blood Cells Myung-Hwa Jung 1, Verónica Chico 2, Sergio Ciordia 3, Maria Carmen Mena 3, Sung-Ju Jung 1 and Maria Del Mar Ortega-Villaizan 2* 1 Department of Aqualife Medicine, Chonnam National University, Gwangju, South Korea, 2 IBMC-IDiBE, Universidad Miguel Hernandez, Elche, Spain, 3 Unidad de Proteómica, Centro Nacional de Biotecnología (CSIC), Madrid, Spain Rock bream iridovirus (RBIV) causes severe mass mortality in Korean rock bream (Oplegnathus fasciatus) populations. To date, immune defense mechanisms of rock bream against RBIV are unclear. While red blood cells (RBCs) are known to be involved in the immune response against viral infections, the participation of rock bream RBCs in the immune response against RBIV has not been studied yet. In this study, we examined induction of the immune response in rock bream RBCs Edited by: Brian Dixon, after RBIV infection. Each fish was injected with RBIV, and virus copy number in University of Waterloo, Canada RBCs gradually increased from 4 days post-infection (dpi), peaking at 10 dpi. A total Reviewed by: of 318 proteins were significantly regulated in RBCs from RBIV-infected individuals, Stephanie DeWitte-Orr, 183 proteins were upregulated and 135 proteins were downregulated. Differentially Wilfrid Laurier University, Canada Magdalena Chadzinska, upregulated proteins included those involved in cellular amino acid metabolic processes, Jagiellonian University, Poland cellular detoxification, snRNP assembly, and the spliceosome. Remarkably, the MHC *Correspondence: class I-related protein pathway was upregulated during RBIV infection. -
Snp Associations with Tuberculosis Susceptibility in a Ugandan
SNP ASSOCIATIONS WITH TUBERCULOSIS SUSCEPTIBILITY IN A UGANDAN HOUSEHOLD CONTACT STUDY by ALLISON REES BAKER Submitted in partial fulfillment of the requirements For the degree of Master of Science Thesis Advisor: Dr. Catherine M. Stein Department of Epidemiology and Biostatistics CASE WESTERN RESERVE UNIVERSITY August, 2010 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of ______________________________________________________ candidate for the ________________________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents Table of Contents...............................................................................................................iii List of Tables ..................................................................................................................... iv Acknowledgements............................................................................................................. v List of Commonly Used Abbreviations ............................................................................. vi Chapter 1: Literature -
Caspases Mediate Nucleoporin Cleavage, but Not Early Redistribution of Nuclear Transport Factors and Modulation of Nuclear Permeability in Apoptosis
Cell Death and Differentiation (2001) 8, 495 ± 505 ã 2001 Nature Publishing Group All rights reserved 1350-9047/01 $15.00 www.nature.com/cdd Caspases mediate nucleoporin cleavage, but not early redistribution of nuclear transport factors and modulation of nuclear permeability in apoptosis E Ferrando-May1, V Cordes2,3, I Biller-Ckovric1, J Mirkovic1, Val-Ala-aspartyl-¯uoromethylketone; DEVD-CHO, N-acetyl-Asp- DGoÈ rlich4 and P Nicotera*,5 Glu-Val-Asp-aldehyde 1 Chair of Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany Introduction 2 Karolinska Institutet, Medical Nobel Institute, Department of Cellular and Molecular Biology, S-17177 Stockholm, Sweden The most evident morphological feature of apoptosis is the 3 Division of Cell Biology, Germany Cancer Research Center, D-69120, disassembly of the nucleus, which involves the condensation Heidelberg, Germany 4 of chromatin and its segregation into membrane-enclosed Zentrum fuÈr Molekulare Biologie der UniversitaÈt Heidelberg, D-69120, 1 Heidelberg, Germany particles. Biochemical hallmarks of apoptotic nuclear 5 MRC Toxicology Unit, Hodgkin Building, University of Leicester, Lancaster execution are DNA cleavage in large and small (oligonu- Road, Leicester LE1 9HN, UK cleosomal-sized) fragments, as well as the specific proteo- * Corresponding author: P Nicotera, MRC Toxicology Unit, Hodgkin Building, lysis of several nuclear substrates. Major effectors of University of Leicester, Lancaster Road, Leicester LE1 9HN, UK. apoptotic nuclear changes are members of the cysteine Tel +44-116-2525611; Fax: +44-116-2525616; E-mail: [email protected] protease family of caspases. Nuclear substrates for caspases 2,3 Received 23.11.00; revised 22.12.00; accepted 29.12.00 include nucleoskeletal elements like lamins, and proteins Edited by M Piacentini involved in the organisation and replication of DNA, like SAF- A, MCM3 and RCF140.4±6 Cleavage of nuclear proteins may have important Abstract implications for the apoptotic process. -
Supplementary Information 1
Supplementary Information 1 SUPPLEMENTARY INFORMATION Supplementary Information 2 Supplementary Figure 1 Supplementary Figure 1 (a) Sequence electropherograms show the EBF3 c.625C>T mutation in DNA isolated from leukocytes and fibroblasts of the two affected siblings (subjects 1 and 2) in the heterozygous state (top rows). Sanger sequencing demonstrated mosaicism of the c.625C>T mutation in leukocyte-derived DNA of the mother. The mutation was not visible in the sequence derived from her buccal cell-derived DNA (third row). The healthy family members showed wild-type sequence in leukocyte- derived DNA. Sanger traces show the c.1101+1G>T, c.530C>T and c.469_477dup mutations in leukocyte-derived DNA of subjects 5, 6, and 10 (left bottom row), respectively, and wild-type sequence in their parents (right bottom rows). Arrows point to the position of the mutations. (b) Cloning of exon 7-containing amplicons, followed by colony PCR and sequencing revealed that ~18% of leukocytes and ~4% of buccal cells of the mother contain the heterozygous EBF3 mutation (9% and 2% of clones with the mutated allele). (c) Sequence electropherograms show heterozygosity of the c.625C>T mutation in fibroblast-derived cDNA of subjects 1 and 2. Supplementary Information 3 Supplementary Figure 2 66 EBF3_human 50 ARAHFEKQPPSNLRKSNFFHFVLALYDRQGQPVEIERTAFVDFVEKEKEPNNEKTNNGIHYKLQLLYSN EBF3_chimpanzee 50 ARAHFEKQPPSNLRKSNFFHFVLALYDRQGQPVEIERTAFVDFVEKEKEPNNEKTNNGIHYKLQLLYSN EBF3_macaque 50 ARAHFEKQPPSNLRKSNFFHFVLALYDRQGQPVEIERTAFVDFVEKEKEPNNEKTNNGIHYKLQLLYSN EBF3_mouse -
9-Marie-Francoise Ritz MS
Send Orders for Reprints to [email protected] 478 Current Neurovascular Research, 2019, 16, 478-490 RESEARCH ARTICLE Combined Transcriptomic and Proteomic Analyses of Cerebral Frontal Lobe Tissue Identified RNA Metabolism Dysregulation as One Potential Pathogenic Mechanism in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) Marie-Françoise Ritz1,*, Paul Jenoe2, Leo Bonati3, Stefan Engelter3,4, Philippe Lyrer3 and Nils Peters3,4 1Department of Biomedicine, Brain Tumor Biology Laboratory, University of Basel, and University Hospital of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; 2Proteomics Core Facility, Biocenter, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland; 3Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland; 4Neurorehabilitation Unit, University of Basel and University Center for Medicine of Aging, Felix Platter Hospital, Burgfelderstrasse 101, 4055 Basel, Switzerland Abstract: Background: Cerebral small vessel disease (SVD) is an important cause of stroke and vascular cognitive impairment (VCI), leading to subcortical ischemic vascular dementia. As a he- reditary form of SVD with early onset, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) represents a pure form of SVD and may thus serve as a model disease for SVD. To date, underlying molecular mechanisms linking vascular pathol- ogy and subsequent neuronal damage in SVD are incompletely understood. A R T I C L E H I S T O R Y Objective: We performed comparative transcriptional profiling microarray and proteomic analyses Received: October 01, 2019 on post-mortem frontal lobe specimen from 2 CADASIL patients and 5 non neurologically dis- Revised: October 11, 2019 Accepted: October 15, 2019 eased controls in order to identify dysregulated pathways potentially involved in the development DOI: of tissue damage in CADASIL. -
Transdifferentiation of Human Mesenchymal Stem Cells
Transdifferentiation of Human Mesenchymal Stem Cells Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Tatjana Schilling aus San Miguel de Tucuman, Argentinien Würzburg, 2007 Eingereicht am: Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Martin J. Müller Gutachter: PD Dr. Norbert Schütze Gutachter: Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am: Hiermit erkläre ich ehrenwörtlich, dass ich die vorliegende Dissertation selbstständig angefertigt und keine anderen als die von mir angegebenen Hilfsmittel und Quellen verwendet habe. Des Weiteren erkläre ich, dass diese Arbeit weder in gleicher noch in ähnlicher Form in einem Prüfungsverfahren vorgelegen hat und ich noch keinen Promotionsversuch unternommen habe. Gerbrunn, 4. Mai 2007 Tatjana Schilling Table of contents i Table of contents 1 Summary ........................................................................................................................ 1 1.1 Summary.................................................................................................................... 1 1.2 Zusammenfassung..................................................................................................... 2 2 Introduction.................................................................................................................... 4 2.1 Osteoporosis and the fatty degeneration of the bone marrow..................................... 4 2.2 Adipose and bone -
C9orf72-Associated SMCR8 Protein Binds in the Ubiquitin Pathway and with Proteins Linked with Neurological Disease John L
Goodier et al. Acta Neuropathologica Communications (2020) 8:110 https://doi.org/10.1186/s40478-020-00982-x RESEARCH Open Access C9orf72-associated SMCR8 protein binds in the ubiquitin pathway and with proteins linked with neurological disease John L. Goodier1*, Alisha O. Soares1, Gavin C. Pereira1, Lauren R. DeVine2, Laura Sanchez3, Robert N. Cole2 and Jose Luis García-Pérez3,4 Abstract A pathogenic GGGCCC hexanucleotide expansion in the first intron/promoter region of the C9orf72 gene is the most common mutation associated with amyotrophic lateral sclerosis (ALS). The C9orf72 gene product forms a complex with SMCR8 (Smith-Magenis Syndrome Chromosome Region, Candidate 8) and WDR41 (WD Repeat domain 41) proteins. Recent studies have indicated roles for the complex in autophagy regulation, vesicle trafficking, and immune response in transgenic mice, however a direct connection with ALS etiology remains unclear. With the aim of increasing understanding of the multi-functional C9orf72-SMCR8-WDR41 complex, we determined by mass spectrometry analysis the proteins that directly associate with SMCR8. SMCR8 protein binds many components of the ubiquitin-proteasome system, and we demonstrate its poly-ubiquitination without obvious degradation. Evidence is also presented for localization of endogenous SMCR8 protein to cytoplasmic stress granules. However, in several cell lines we failed to reproduce previous observations that C9orf72 protein enters these granules. SMCR8 protein associates with many products of genes associated with various Mendelian neurological disorders in addition to ALS, implicating SMCR8-containing complexes in a range of neuropathologies. We reinforce previous observations that SMCR8 and C9orf72 protein levels are positively linked, and now show in vivo that SMCR8 protein levels are greatly reduced in brain tissues of C9orf72 gene expansion carrier individuals. -
Genomewide Association Between GLCCI1 and Response to Glucocorticoid Therapy in Asthma
Genomewide association between GLCCI1 and response to glucocorticoid therapy in asthma The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Tantisira, Kelan G., Jessica Lasky-Su, Michishige Harada, Amy Murphy, Augusto A. Litonjua, Blanca E. Himes, Christoph Lange, et al. 2011. Genomewide association between GLCCI1 and response to glucocorticoid therapy in asthma. New England Journal of Medicine 365, no. 13: 1173–1183. doi:10.1056/nejmoa0911353. Published Version doi:10.1056/NEJMoa0911353 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:27003502 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The new england journal of medicine established in 1812 september 29, 2011 vol. 365 no. 13 Genomewide Association between GLCCI1 and Response to Glucocorticoid Therapy in Asthma Kelan G. Tantisira, M.D., Jessica Lasky-Su, Sc.D., Michishige Harada, Ph.D., Amy Murphy, Ph.D., Augusto A. Litonjua, M.D., Blanca E. Himes, Ph.D., Christoph Lange, Ph.D., Ross Lazarus, M.B., B.S., Jody Sylvia, B.S., Barbara Klanderman, Ph.D., Qing Ling Duan, Ph.D., Weiliang Qiu, Ph.D., Tomomitsu Hirota, Ph.D., Fernando D. Martinez, M.D., David Mauger, Ph.D., Christine Sorkness, Pharm.D., Stanley Szefler, M.D., Stephen C. Lazarus, M.D., Robert F. Lemanske, Jr., M.D., Stephen P. Peters, M.D., Ph.D., John J.