Planetary Perils in Prague Downloaded from by Guest on 30 September 2021

Total Page:16

File Type:pdf, Size:1020Kb

Planetary Perils in Prague Downloaded from by Guest on 30 September 2021 Annals by Owen Gingerich Planetary perils in Prague Downloaded from http://direct.mit.edu/daed/article-pdf/136/1/137/1829233/daed.2007.136.1.137.pdf by guest on 30 September 2021 For astronomers, Prague is a singular- years has increased by orders of magni- ly nostalgic city. It was here, in February tude, an immense expansion factor that of 1600, that the young, starry-eyed Jo- only the observations of Tycho Brahe hannes Kepler met the imperious, eccen- rival in their comparative impact. Tele- tric Tycho Brahe. Brahe brought a price- scopes in mountain observatories, plus less trove of precise observations of the spacecraft above the atmosphere com- planets and stars, the likes of which the bined with modern electronics, have world had never seen–singlehandedly reaped a bounteous harvest of exciting he raised the astronomical data bank a new results. hundredfold. As Kepler would later re- But as seen from the Prague press of- flect, Brahe had the building materials ½ce of the International Astronomical for cosmology, but he lacked an archi- Union (iau), the world was ½xated on tect. Kepler became that architect. It was two far more mundane questions: would a conjunction fated to alter the course of little Pluto, in the frigid realm beyond astronomy. Neptune, still be considered a planet; Last August, Prague was teeming with and if so, would some of his icy play- astronomers, roughly two thousand of mates in that remote zone also be ush- them. They came to evaluate an astro- ered into the exclusive planetary club? nomical data bank that in the past few The iau had gotten itself into this feeding frenzy by a procedural question Owen Gingerich, a Fellow of the American Acad- of nomenclature that only indirectly in- emy since 1976, is Professor Emeritus of Astrono- volved Pluto’s status. For this is one my and History of Science at Harvard University of the things international unions do. and a senior astronomer emeritus at the Smith- They follow in Adam’s footsteps by cre- sonian Astrophysical Observatory. Among his nu- dentialing names. The International merous publications are “The Great Copernicus Union of Biological Sciences, for exam- Chase and Other Adventures in Astronomical ple, oversees a committee that establish- History” (1992), “The Eye of Heaven: Ptolemy, es the rules for the naming of birds and Copernicus, Kepler” (1993), and “The Book No- shells and other animals. And the Inter- body Read” (2004). Most recently, he published national Astronomical Union, in its very “God’s Universe” (2006). ½rst General Assembly, in Rome in 1922, established the list of eighty-eight con- © 2007 by the American Academy of Arts stellations accepted today. Committees & Sciences Dædalus Winter 2007 137 Annals by under its aegis assign names to comets, would not have been so fraught, except Owen Gingerich to minor planets, to planetary satellites, that in 1999 my colleague Brian Mars- and to features on these moons or plane- den, who was directing the iau’s Mi- tary bodies. nor Planet Center, had reached a nice But as for planets, the iau has never round number in tabulating the aster- had an opportunity to name one. In 1930 oids, 10,000, and he suggested it might the Lowell Observatory announced the be reserved for Pluto. Unexpectedly, discovery of a planetary body beyond his rational, practical suggestion creat- Neptune, and they were delighted when ed a ½restorm, and the iau of½cers were an eleven-year-old schoolgirl in Oxford bombarded with protests at the appar- Downloaded from http://direct.mit.edu/daed/article-pdf/136/1/137/1829233/daed.2007.136.1.137.pdf by guest on 30 September 2021 suggested the name Pluto, because its ent threat of Pluto’s demotion. Hence, ½rst two letters were the initials of the they were understandably nervous. Af- observatory’s founder, Percival Lowell. ter a large committee from their Plane- The iau held General Assemblies only tary Systems Sciences Division not only every three or four years and didn’t have failed after many months to ½nd a solid one until 1932, so by then the name was consensus, but also seemingly had not a fait accompli. considered the public-relations aspects In 1930 Pluto was assumed to be at in their debates, the Executive Commit- least as large as Earth, and maybe a few tee decided to appoint a broader-based times larger, for Percival Lowell had ‘Planet De½nition Committee.’ Since I presumably predicted its approximate had credentials in both astrophysics and position by its gravitational perturba- the history of astronomy, I was tapped to tions on the giant planets Neptune and lead the way across the mine½eld. Uranus. In the decades that followed, Many suggestions poured in via the however, observations showed that not Internet about how to de½ne the word only was Pluto much smaller–indeed, planet. Someone suggested it was already smaller than our moon–but also the de½ned by its Greek origins: wanderer. If apparent perturbations stemmed large- it moves against the starry background, ly from the use of an erroneous mass let it be a planet. Considering that orbits for Neptune in the celestial mechanical are already known for approximately computations. Thus, Pluto’s planetary three hundred thousand asteroids, not status was in some jeopardy. In 2000, to mention comets, the suggestion was when the planet walk was constructed straightaway tossed into the obsolete for the new Rose Center and Hayden ideas bin. Others appealed to history: Planetarium in New York, Pluto was freeze the status quo with its nine plan- conspicuous by its absence. ets. But history is a ½ckle guide, for Matters came to a head in 2005 when throughout the ages the number of plan- an icy ball discovered far beyond Nep- ets has varied both with cosmology and tune proved to be as large as or slightly with discovery. larger than Pluto. Was it, or was it not, a Meanwhile, the committee had con- planet? Which committee had the nam- ferred for two days in Paris to craft a ing rights? Meanwhile, it suffered under scienti½c, but culturally sensitive, de½- ub a technical designation, 2003 313, or nition. There were two ways, not com- the nickname Xena from a popular fan- pletely independent, to de½ne a planet tasy television show. scienti½cally: either by what it is, or by As far as the Executive Committee of where it is, that is, by its relationship to the iau was concerned, the situation its neighbors. Planetary scientists and 138 Dædalus Winter 2007 geologists are keen on studying planets trans-Neptunian objects, with a name Planetary as physical bodies. Some of them would such as ‘plutons’ to recognize the his- perils in Prague even cheerfully think of the giant satel- torical role of Pluto. In this way, Pluto lites–Jupiter’s Ganymede and Callisto, would be promoted while being demot- and Saturn’s Titan, objects that rival or ed, which, as some analysts smugly not- exceed Mercury in size–as planetary ed, was worthy of political solutions in- bodies. They are de½nitely in the what side the Beltway. camp. The dynamicists, on the other The frenzy of the iau press room hand, ½nd the dominating relationship in Prague was at ½rst exhilarating, but of a planet on its neighbors particular- in retrospect I realize it was a prime Downloaded from http://direct.mit.edu/daed/article-pdf/136/1/137/1829233/daed.2007.136.1.137.pdf by guest on 30 September 2021 ly fascinating, and for them, where is of source of strategic error. The chief press prime signi½cance. of½cer was convinced that reporters While these alternative approaches to would want to know two things: Is Plu- de½ning a planet had rami½cations for to a planet? And how many planets are the status of Pluto, its standing was not there? The committee had never count- a major consideration in the negotia- ed because we all knew that the num- tions, and we never inquired where the ber in August would not be the same as seven members of the committee stood the count in December. I tried in vain on that issue. So while Pluto remained to convince him that the press release the elephant in the parlor, the members should say, ‘eight classical planets and a pretty much stayed in the kitchen. For growing number of plutons.’ The press, my committee, de½ning a planet as an which feeds on controversy, easily found object seemed simplest and more open- critics who declared the number of ended, especially considering the cur- twelve planets ridiculously complicated rent discoveries of large numbers of exo- because it included the round asteroid planets, that is, planetary bodies orbit- Ceres as well as Charon, a satellite of ing distant suns. Furthermore, rather Pluto that had snuck in through a foot- than establishing an arbitrary cut-off in note that wasn’t part of our proposed size, we chose the most obvious physi- resolution. cal characteristic as the dividing line. If Our recommendations met with en- a body had enough mass and therefore thusiastic approval from the Division enough gravity to pull itself into a ball, for Planetary Sciences of the American let it be a planet. Naturally, there would Astronomical Society, the largest inter- be an ambiguous boundary zone, but national group of planetary scientists. science and scienti½c taxonomy are full Where our proposed resolution ran in- of such debatable cases. to vehement and raucous opposition We immediately understood that a was from the dynamicists, who believed what de½nition would open the gates they hadn’t been consulted and who felt to a dozen more solar-system planets, stabbed in their psyches because we had and maybe as many as thirty or even not given primacy to their favored where forty, and that these would primarily de½nition.
Recommended publications
  • Copernicus and the University of Cracow
    Appendix D Copernicus and the University of Cracow No one who was associated with the university in the fifteenth century is more widely known today than Copernicus. As “Nicholas, the son of Nicholas of Toruń” he matricu- lated there in the winter (i.e., the fall) semester of 1491 during the ninth rectorship of Master Matthew of Kobylin, Professor of Theology.1 His later fame as canon of Warmia, economist, physician, humanist and—above all—astronomer and creator of what has traditionally been called “the Copernican Revolution,” has understandably raised many questions about what was responsible for his accomplishments.2 It has been 1 Metryka, 1, 498. The editors note that the manuscript page on which his registration is found has been badly damaged and is difficult to read. Due to Copernicus’ later fame, it has been opened, examined, and displayed many times. 2 There is an enormous bibliography on Copernicus. The most reliable English treatment of his biography is still, I believe, that by Edward Rosen in his Three Copernican Treatises, 3rd ed., (New York: Octogan Books, 1973), 313–408 (see also 197–312 for an excellent bibliogra- phy covering material to the early 1970s). More recent bibliography is cited in subsequent notes. In Polish, a short, authoritative biography is provided by Jerzy Dobrzycki and Leszek Hajdukiewicz in PSB, 14, 3–16. For additional materials, published during or in associa- tion with the “Rok Kopernika” of 1973 (i.e., the 500th anniversary of his birth), see Nicholas Steneck, ed., Science and Society, Past, Present, and Future (Ann Arbor, MI: University of Michigan Press, 1973); Robert S.
    [Show full text]
  • The Copernican Revolution Setting Both the Earth and Society in Motion
    4/21/2014 The Copernican Revolution Setting both the Earth and Society in Motion David Linton EIU Physics Department November 5, 2013 Drawing an ellipse The Modern Picture of the Solar System . A planet moves in an ellipse with the Sun at one focus. A planet moves fastest when closest to the Sun, slowest when furthest. A planet would travel in a straight line were there not a force to hold it to the Sun – this force is supplied by “Gravity” – an attraction Focus Focus between masses, and weakens with increasing distance. A planet’s axis is “fixed’ in space. (Orbital Period)2 = (Semimajor Axis)3 (This derives from the Law of Gravitation and Newton’s 3 Laws of Motion) 1 4/21/2014 Drawing an ellipse Drawing an ellipse Focus Focus Sun For a planetary orbit, one focus is unoccupied. For a planetary orbit, one focus is unoccupied. 2 4/21/2014 Some Other Things We Now Know . Every planet beyond Earth has more than one moon. Both planets closer to the Sun than Earth have no moons. Comets orbit the Sun also. They are dirty icebergs (or icy dirtballs) orbiting along extremely stretched-out (meaning, highly eccentric) ellipses. Many of the comets we see as they pass near the Sun take many thousands of years to orbit one time. Retrograde Motion – the Heliocentric View Astronomy at Copernicus Birth (1473) . Ancient Greek Philosophers held that Earth was the center of Creation, that everything in the sky must wheel in circles about us. Circles were considered the perfect geometric form, and the Greeks had felt the Heavens to be perfect.
    [Show full text]
  • The Birth of Mathematical Physics - Kepler’S Proof of the Planets’ Elliptical Orbits from Causal Hypotheses
    FACULTY OF HUMANITIES, SOCIAL SCIENCES AND EDUCATION DEPARTMENT OF PHILOSOPHY The birth of mathematical physics - Kepler’s proof of the planets’ elliptical orbits from causal hypotheses Sigurd Tønnessen A dissertation for the degree of Philosophiae Doctor Spring 2012 “If you want to know something about scientists and their methods you should stick to one principle: don’t listen to what they say, but look to what they are doing.” Albert Einstein The birth of mathematical physics – Kepler’s proof of the planets’ elliptical orbits from causal hypotheses Sigurd Tønnessen A dissertation for the degree of Philosophiae Doctor University of Tromsø Faculty of Humanities, Social Sciences and Education Department of Philosophy Spring 2012 2 Contents Summary…………………………………………………………………………….. 4 Acknowledgements…………………………………………….................................. 5 List of original papers…………………………………………………………….... 8 1! Introduction ........................................................................................................... 9! !"!! #$%&'()'&$()')&*+,'%-.*&/'"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""'0! !"1! 2%3456.*7+'8.6'&$9')&*+,':'&$9';%)9'<&*+,'=9&$.+'"""""""""""""""""""""""""""""""""""""""""""'!>! !"?! #$,'*)9'@.$%779)'A9BC96'%)'%'3%)9')&*+,/'"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""'!D! 2! Kepler’s theory of science and its influence on his new astronomy ................ 17! 1"!! E$9')39B&(3F)'G(9H'.7'%)&6.7.I(3%C'&$9.6(9)'"""""""""""""""""""""""""""""""""""""""""""""""""""""""'!0!
    [Show full text]
  • Owen Gingerich “On the Nature of Science” October 8–10, 2013 “On the Nature of Science”
    Owen Gingerich “On the Nature of Science” October 8–10, 2013 “On the Nature of Science” October 8 Was Copernicus Right? October 9 Was Darwin Right? October 10 Was Hoyle Right? October 8–10, 2013 Ken Olsen Science Center 4 P.M. Reception, Loggia 4:30 P.M. Lecture, MacDonald Auditorium Gordon College is partnering with the John Templeton Foundation to honor the pioneering work of Dr. Robert Herrmann, who throughout his distinguished career addressed the “Big Questions” surrounding science and religion. The unique three-part format enables a world-class thinker to develop an in-depth, original perspective on a topic on the threshold of science and religion. These lectures are free and open to the public. FOR UPDATES PLEASE FOLLOW: @HerrmannLecture Owen Gingerich Professor Emeritus of Astronomy and History of Science at Harvard University and a senior astronomer emeritus at the Smithsonian Astrophysical Observatory Owen Gingerich’s research interests have ranged from the recomputation of an ancient Babylonian mathematical table to the interpretation of stellar spectra. He is co-author of two successive standard models for the solar atmosphere, the first to take into account rocket and satellite observations of the sun; the second of these papers has received over 700 literature citations. In recent decades Professor Gingerich has become a leading authority on the 17th-century German astronomer Johannes Kepler and on Nicholas Copernicus, the 16th- century cosmologist who proposed the heliocentric system. The Harvard-Smithsonian astronomer undertook a three-decade-long personal survey of Copernicus’ great book De revolutionibus, examining over 580 16th-century copies in libraries scattered throughout Europe and North America, as well as in China, Japan and Australia.
    [Show full text]
  • 3A. to Be Or Not to Be
    To be or not to be . a planet that is. Pluto is a planet. No, it's not a planet. It depends what you mean by "planet." In 2014, the Harvard-Smithsonian Center for Astrophysics revisited the repeated debate over how to define a planet—and whether icy little Pluto qualifies. Three accomplished experts weighed in at the event: two were pro-planet and one was anti-planet. After those arguments, the audience in Cambridge, Massachusetts that consisted of a mix of scientists, teachers, and the public—voted on their favorite definition of a planet, and whether Pluto is in or out. Planet Pluto won. It always seems to win the popular vote, except for that one time in 2006 when the International Astronomical Union (known as the IAU), redefined "planet" and stripped Pluto of its planethood. This is similar to an election where a presidential candidate wins the popular vote but looses the presidential election. Like in 2000 when Al Gore won the popular vote but George Bush won the electoral vote. The committee based the decision to remove Pluto on the following: A number of other worlds had been discovered at the margins of the observable solar system, and Pluto might not even be the largest of these frosted runts. Astronomers suspect there are hundreds more of these icy worlds waiting to be discovered. How, then, could Pluto alone be called a planet? The IAU needed to figure out how to classify Pluto and its friends, and to describe what made them different from the classical eight planets.
    [Show full text]
  • 31.8 News 965-967 MH
    NATURE|Vol 442|31 August 2006 NEWS NATURE’S PODCAST Download Nature’s free audio news show. www.nature.com/ nature/podcast M. CIZEK/AFP/GETTY M. The ayes have it: astronomers have criticized the vote to define a planet. Pluto: the backlash begins The future of the Solar System — or at least investigator for NASA’s New Horizons mis- resolution, thinks the IAU had no choice but to that of some of its nomenclature — may be sion to Pluto, he has a particular interest in its bend to the dynamicists’ demands. “They may thrown into turmoil by scientists who are status. But he says the issue is not really Pluto’s not have had a majority for anything positive, calling for a boycott of a new definition of status so much as the idea of putting objects in but they could rouse a strong negative major- a planet. orbital contexts. “We do not classify objects in ity simply because there are so many little On 24 August, delegates at the general astronomy by what they are near,” he says. “We fiefdoms,” he explains. assembly of the International Astronomical classify them by their properties.” “The dynamics part of the definition is a Union (IAU) in Prague voted to define the The day after the new definition was rather complex one,” says Ron Ekers, past IAU planets of the Solar System by three criteria. unveiled, Stern was among a dozen scientists president. Couching the idea in terms of a To deserve planet status, the who launched a petition to con- planet ‘clearing its orbit’ was intended to make assembly agreed, a chunk of “We do not classify test it.
    [Show full text]
  • Islamic Astronomy by Owen Gingerich
    Islamic astronomy by Owen Gingerich http://faculty.kfupm.edu.sa/phys/alshukri/PHYS215/Islamic%20ast... Islamic astronomy by Owen Gingerich. Scientific American, April 1986 v254 p74(10) COPYRIGHT Scientific American Inc. Historians who track the development of astronomy from antiquity to the Renaissance sometimes refer to the time from the eighth through the 14th centuries as the Islamic period. During that interval most astronomical activity took place in the Middle East, North Africa and Moorish Spain. While Europe languished in the Dark Ages, the torch of ancient scholarship had passed into Muslim hands. Islamic scholars kept it alight, and from them it passed to Renaissance Europe. Two circumstances fostered the growth of astronomy in Islamic lands. One was geographic proximity to the world of ancient learning, coupled with a tolerance for scholars of other creeds. In the ninth century most of the Greek scientific texts were translated into Arabic, including Ptolemy's Syntaxis, the apex of ancient astronomy. It was through these translations that the Greek works later became known in medieval Europe. (Indeed, the Syntaxis is still known primarily by its Arabic name, Almagest, meaning "the greatest.") The second impetus came from Islamic religious observances, which presented a host of problems in mathematical astronomy, mostly related to timekeeping. In solving these problems the Islamic scholars went far beyond the Greek mathematical methods. These developments, notably in the field of trigonometry, provided the essential tools for the creation of Western Renaissance astronomy. The traces of medieval Islamic astronomy are conspicuous even today. When an astronomer refers to the zenith, to azimuth or to algebra, or when he mentions the stars in the Summer Triangle--Vega, Altair, Deneb--he is using words of Arabic origin.
    [Show full text]
  • International Astronomical Union Union Astronomique Internationale
    INTERNATIONAL ASTRONOMICAL UNION UNION ASTRONOMIQUE INTERNATIONALE ************ IAU0603: FOR IMMEDIATE RELEASE ************ http://www.iau2006.org/mirror/www.iau.org/iau0603/index.html IAU 2006 General Assembly: Result of the IAU Resolution votes 24-August-2006, Prague: The first half of the Closing Ceremony of the 2006 International Astronomical Union (IAU) General Assembly has just concluded. The results of the Resolution votes are outlined here. It is official: The 26th General Assembly for the International Astronomical Union was an astounding success! More than 2500 astronomers participated in six Symposia, 17 Joint Discussions, seven Special Sessions and four Special Sessions. New science results were vigorously discussed, new international collaborations were initiated, plans for future facilities put forward and much more. In addition to all the exciting astronomy discussed at the General Assembly, six IAU Resolutions were also passed at the Closing Ceremony of the General Assembly: 1. Resolution 1 for GA-XXVI : “Precession Theory and Definition of the Ecliptic” 2. Resolution 2 for GA-XXVI: “Supplement to the IAU 2000 Resolutions on reference systems” 3. Resolution 3 for GA-XXVI: “Re-definition of Barycentric Dynamical Time, TDB” 4. Resolution 4 for GA-XXVI: “Endorsement of the Washington Charter for Communicating Astronomy with the Public” 5. Resolution 5A: “Definition of ‘planet’ ” 6. Resolution 6A: “Definition of Pluto-class objects” The IAU members gathered at the 2006 General Assembly agreed that a “planet” is defined as a celestial body that (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (c) has cleared the neighbourhood around its orbit.
    [Show full text]
  • Proof, Persuasion, and the Galileo Affair
    Plenary Presenters Truth in Science: Proof, Persuasion, and the Galileo Affair Truth in Science: Proof, Persuasion, and the Galileo Affair Owen Gingerich In 1616 in a letter destined for Galileo, Cardinal Roberto Bellarmine (the leading Catholic theologian of his day) expressed his doubts about finding evidence for a moving earth. Would the annual stellar parallax or the Foucault pendulum have convinced him? The historical setting explored in this essay suggests that the cardinal would not have been swayed by these modern “proofs” of the heliocentric cosmology, even though they are convincing to us today because in the meantime, we have the advantage of a Newtonian framework. What passes today for truth in science is a comprehensive system of coherencies supported more by persuasion than “proofs.” What kind of n April 12, 1615, Cardinal Roberto in the absence of an apodictic proof when OBellarmine, the leading Catholic he added: evidence theologian, wrote an often-quoted If there were a true demonstration, convinced letter to Paolo Antonio Foscarini, a Carmelite then it would be necessary to be very monk from Naples who had published careful in explaining Scriptures that Galileo and a tract defending the Copernican system. seemed contrary, but I do not think Bellarmine’s letter, which was obviously Kepler that the there is any such demonstration, since intended as much for Galileo as for none has been shown to me. To demon- Copernican Foscarini, opened on a conciliatory note: strate that the appearances are saved For to say that assuming the earth by assuming that the sun is at the system was moves and the sun stands still saves all center is not the same thing as to dem- the correct, the appearances better than eccentrics onstrate that in fact the sun is in the and epicycles is to speak well.
    [Show full text]
  • Is Pluto a Planet? By: National Geographic Kids (Adapted by Have Fun Teaching) Many People Are Saying That Pluto Is No Longer a Planet
    Skill – Reading Comprehension Name: _________________________ Is Pluto a Planet? By: National Geographic Kids (Adapted by Have Fun Teaching) Many people are saying that Pluto is no longer a planet. Are they right? Is Pluto no longer a planet? There's debate in the scientific world about this issue. National Geographic News says that, according to the International Astronomical Union, a full-fledged planet is an object that orbits the sun and is large enough to have become round due to the force of its own gravity. Because Pluto doesn't meet these standards, the IAU classifies Pluto as a dwarf planet. Not everyone agrees that this is a good way to decide, though. Andy Cheng, a planetary scientist at Johns Hopkins University, says that the new rules aren't clear enough and asks the question "how round is round? ...I'll still continue to maintain that Pluto is a planet," he said. Owen Gingerich is an astronomer and historian at Harvard University in Cambridge, Massachusetts, and head of the IAU committee proposing the definition. He favored a special distinction for Pluto. Gingerich supported a proposal to call the big eight planets classical planets—as opposed to just plain "planets"—and Pluto and the others dwarf planets, so there would be two classes of planets. He believes that reclassifying Pluto as a dwarf planet is not "sensitive to the historical and cultural role that Pluto has played." The argument continues. In the meantime, however, many people are correct—new textbooks will list Pluto as being a dwarf planet. What do you think it is? ©www.HaveFunTeaching.com Text By: http://kids.nationalgeographic.com Skill – Reading Comprehension Name: _________________________ Is Pluto a Planet? By: National Geographic Kids (Adapted by Have Fun Teaching) Read the story.
    [Show full text]
  • Nicolaus Copernicus, De Revolutionibus,1566 Special Collections Featured Item for June 2005 by Carol Speirs, Rare Book Cataloguer
    Carol Speirs Section name Librar y Nicolaus Copernicus, De revolutionibus,1566 Special Collections featured item for June 2005 by Carol Speirs, Rare Book Cataloguer Nicolaus Copernicus, De revolutionibus orbium coelestium (2nd edition, Basel: Ex Officina Henricpetrina, 1566) Item held in the Henley Parish Collection , University of Reading Library Special Collections Owen Gingerich, a Harvard professor, was inspired by Arthur Koestler’s claim in his book The sleepwalkers (a best selling history of early astronomy published in 1959) that nobody had read Copernicus’s book De revolutionibus orbium coelestium when it was first published in 1543. The book nobody read : chasing the revolutions of Nicholas Copernicus by Owen Gingerich, published in 2004, is the story of Gingerich’s quest to prove Koestler wrong by locating all remaining copies of the first and second editions of Copernicus’s book, which Gingerich published as An annotated census of Copernicus’s De revolutionibus, a 400 page reference work. In this survey the provenance, annotations, marginal notes and condition of all known surviving copies were detailed. In order to do this Gingerich travelled the world to see every copy he could of the first and second editions of De revolutionibus. ©University of Reading 2007 Page 1 Title page of the copy of the second edition of De Revolutionibus by Copernicus in University of Reading Library. We now know that the history of the making and publishing of De revolutionibus in 1543 is a story of Papal intrigue, drama, politics and a deathbed scene. Nicolaus Copernicus was a Polish astronomer (1473-1543). Born in Torun, he began his university studies in Krakow in 1491, where he studied canon law and Latin and Greek classics.
    [Show full text]
  • Owen Gingerich the Book Nobody Read
    Quicklinks - Select a Link - MC Square | Search Current Events The Book Nobody Read: A Closer Look at the Book that Moved the World Past Events A free lecture sponsored by The Central Pennsylvania Forum for Religion and Science and the Center for Public Related Links: Humanities - Select a Link - Featured speaker: Dr. Owen Gingerich, Professor Emeritus of Astronomy and of the History of Science at Harvard University and a senior astronomer emeritus at the Smithsonian Astrophysical Observatory Nicholas Copernicus’ famous book, On the Revolutions of the Heavenly Spheres (1543), stopped the sun and threw the earth into motion, leading to one of the great revolutions in scientific thought. Yet it has been called “the book that nobody read,” because of its very challenging technical content. Owen Gingerich, a leading historian of astronomy, has discovered through meticulous research that this assumption is badly mistaken. A bibliographic detective, Prof. Gingerich tells how he searched worldwide for copies of the book, in order to examine the notes written into copies by its many early readers. Involved are the FBI, the KGB, a hapless Marxist, the English art squad, and the Italian Carabinieri. Also involved are the history of the pretzel, the center of the universe, the Church’s censorship of Copernicus’ words, “the divine handiwork,” and how the Spanish Inquisition allowed books that had been banned by Rome. Friday, 24 February 2012, at 7:00 pm. Location: Boyer Hall 131, Messiah College, Grantham, PA. Directions and a campus map are at http://www.messiah.edu/visitors/direction.html. Owen Gingerich is Professor Emeritus of Astronomy and of the History of Science at Harvard University and a senior astronomer emeritus at the Smithsonian Astrophysical Observatory.
    [Show full text]