Tina-Titmによるオペアンプ回路設計入門 (第1回) 序章 Icオペアンプの誕生まで
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2020 VC Program
#ASEEVC PRESENTED BY UNIVERSITY OF MARYLAND ASEE’S VIRTUAL CONFERENCE Board of Directors TRANSFORMING HIGHER EDUCATION THROUGH PROJECT-BASED LEARNING WPI, a purpose-driven community of educators and researchers, has been the global leader in project-based learning for 50 years. Learn more at wpi.edu/+asee. ASEE’S VIRTUAL CONFERENCE President’s Welcome #ASEEVC Novel Format, Same Creative Energy and Engagement! Welcome to ASEE’s 127th Annual Conference and Exposition— community buzzing with creative ideas. Some of the sessions are up “At Home with Engineering Education.” It’s our first annual meeting to the minute, like Monday’s panel discussion among engineering and conducted entirely online. Like many of you, I looked forward to a fes- engineering technology deans on how their campuses have responded tive gathering in Montréal, but that will have to wait. Given the risk to to COVID-19. Other sessions fuse cutting-edge technical research and the health of our members, the uncertainty of travel, and the likelihood pedagogy. One panel explores smart and renewable energy systems that no city could host a crowd of thousands during a global pandemic, and accompanying teaching innovations. Another looks at new forms cancellation of the meeting became inevitable. The question then was, of micro-mobility and their impact on engineering education. You can do we reschedule for later in the year or try something else? also join several 30-minute virtual tours of energy facilities. ASEE’s Board of Directors gambled that an all-virtual confer- Times of economic uncertainty—like the present—prompt us all ence, held at the same time in June, would work. -
Integrated Circuit Chip Kim Ho Yeap, Muammar Mohamad Isa and Siu Hong Loh
Chapter Introductory Chapter: Integrated Circuit Chip Kim Ho Yeap, Muammar Mohamad Isa and Siu Hong Loh 1. Introduction The technological advancement of integrated circuit chips (or colloquially referred to as an IC, a chip, or a microchip) has progressed in leaps and bounds. In the span of less than half a century, the number of transistors that can be fabricated in a chip and the speed of which have increased close to 500 and 5000 times, respectively. Back in the old days, about five decades ago, the number of transistors found in a chip was, even at its highest count, less than 5000. Take, for example, the first and second commercial microprocessors developed in 1971 and 1972. Fabricated in the large- scale integration (LSI) era, the Intel 4004 4-bit microprocessor comprised merely 2300 transistors and operated with a maximum clock rate of 740 kHz. Similarly, the Intel 8008 8-bit microprocessor released immediately a year later after its 4-bit counterpart comprised merely 3500 transistors in it and operated with a 800 kHz maximum clock rate. Both these two microprocessors were developed using transis- tors with 10 μm feature size. Today, the number of transistors in a very large-scale integration (VLSI) (or some prefer to call it the giant large-scale integration [GLSI]) chip can possibly reach 10 billion, with a feature size less than 10 nm and a clock rate of about 5 GHz. In April 2019, two of the world’s largest semiconductor foundries— Taiwan Semiconductor Manufacturing Company Limited (TSMC) and Samsung Foundry—announced their success in reaching the 5 nm technology node, propelling the miniaturization of transistors one step further to an all new bleeding edge [1]. -
2014 Honor Roll of Donors
2014 Honor roll of Donors | 1 When we encourage a promising young person with a bright future, invest in a teacher or a technologist with a solution to a well-defined problem, or support a team that is prepared to tackle a significant challenge with energy, optimism and talent — a world of possibility unfolds. There is nothing more rewarding than turning ideas into action and making a difference in the world; and there is no organization more capable of delivering tangible, impactful results than IEEE. As the philanthropic arm of IEEE, the IEEE foundation inspires the generosity of donors to energize IEEE programs that improve access to technology, enhance technological literacy, and support technical education and the IEEE professional community. The IEEE foundation, a tax-exempt 501(c)(3) organization in the United states, fulfills its purpose by • soliciting and managing donations • recognizing the generosity of our donors • awarding grants to IEEE grassroots projects of strategic importance • supporting high impact signature Programs • serving as a steward of donations that empower bright minds, recognize innovation, preserve the history of technology, and improve the human condition. With your support, and the support of donors worldwide, the IEEE foundation strives to be a leader in transforming lives through the power of technology and education. Table of Contents Donor Profiles 1 Leadership Perspective 19 Students and Young Professionals 21 Nokia Bell Labs 2 Year in Review 20 IEEE Circle of Honor 29 Roberto Padovani 4 Grants Program 22 IEEE Goldsmith Legacy League 31 Thomas E. McDermott 6 IEEE PES Scholarship Plus Initiative 24 IEEE Heritage Circle 33 Gary Hoffman 8 IEEE Smart Village 26 Leadership Donors 35 Francis J. -
Oscilador Controlado Por Tensão Com Estrutura Em Anel, Com Critérios De Confiabilidade Aos Efeitos Da Radiação
UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia Elétrica e de Computação Agord de Matos Pinto Junior Oscilador Controlado por Tensão com Estrutura em Anel, com Critérios de Confiabilidade aos Efeitos da Radiação. Campinas-SP 2017 UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia Elétrica e de Computação Agord de Matos Pinto Junior Oscilador Controlado por Tensão com Estrutura em Anel, com Critérios de Confiabilidade aos Efeitos da Radiação. Dissertação apresentada à Faculdade de Engenharia Elétrica e de Computação da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obten- ção do título de Mestre em Engenharia Elé- trica, na Área de Telecomunicações e Tele- mática. Orientador: Prof. Dr. Yuzo Iano Este exemplar corresponde à versão final da tese defendida pelo aluno Agord de Matos Pinto Junior, e orientada pelo Prof. Dr. Yuzo Iano Campinas-SP 2017 Agência(s) de fomento e nº(s) de processo(s): Não se aplica. ORCID: http://orcid.org/http://orcid.org/ht Ficha catalográfica Universidade Estadual de Campinas Biblioteca da Área de Engenharia e Arquitetura Luciana Pietrosanto Milla - CRB 8/8129 Pinto Junior, Agord de Matos, 1984- P658o PinOscilador controlado Por tensão com estrutura em anel, com critérios de confiabilidade aos efeitos da radiação / Agord de Matos Pinto Junior. – Campinas, SP : [s.n.], 2017. PinOrientador: Yuzo Iano. PinDissertação (mestrado) – Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação. Pin1. Osciladores. 2. Efeitos da radiação. 3. Confiabilidade. 4. Aparelhos e materiais eletrônicos - Efeito da radiação. 5. Osciladores não-lineares. I. Iano, Yuzo,1950-. II. Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica e de Computação. -
El Siglo XX En La Física
El siglo XX en la Física MATERIAL DIDÁCTICO RECOPILADO Y ELABORADO POR: DULCE MARÍA DE ANDRÉS CABRERIZO ÍNDICE Numeración Epígrafe Página 1 La crisis de la Física al llegar el siglo XX. 3 2 La obra relativista de Einstein. 8 3 Los primeros modelos atómicos. 11 4 Etapas de la Teoría Cuántica. 14 5 El inicio de la Física Nuclear. 25 6 El Universo en el siglo XX. 29 7 El desarrollo de la Física Experimental. 34 8 En busca de la elementalidad. 42 9 Actividades. 46 2 1. La crisis de la Física al llegar el siglo XX. La Física como Ciencia Moderna surge en el siglo XVII dentro de Tener en cuenta la Revolución Científica gracias a Galileo y Newton, que estudian A finales del siglo XIX, el desa- la naturaleza desde una nueva perspectiva, que busca la existen- rrollo del Electromagnetismo, o cia de una serie de leyes físicas, que expliquen los fenómenos na- mejor las dificultades que sur- gen para la interpretación de turales que son objeto de observación y experimentación. Los si- diferentes fenómenos de dicha glos siguientes completan este campo de trabajo de forma que, al disciplina producen un estado finalizar el siglo XIX, el desarrollo es tan grande, que la mayoría extraño en la Física, lo que de los físicos llegan a pensar que se podía llegar, en breve, a conduce a una situación de crisis de teoría, pues los he- completar el campo de conocimientos de la Física. chos no se explican con la teo- Este período entre los siglos XVII y XIX se encuadra en la Moder- ría admitida y no concuerdan nidad, que posee el método científico como instrumento de cono- con los resultados de las de- ducciones matemáticas. -
Vývoj Počítačov II
editor – Otto Bisák Vývoj počítačov II Do tejto skupiny počítačov patria počítače vyrobené z tranzistorov a diód. Tieto súčiastky sú vyrobené z polovodičov najmä germánia a kremíka. Cesta k výrobe tranzistorov bola ale náročnejšia ako by sa na prvý pohľad zdalo. Začalo sa to rokom 1821, keď Thomas Johann Seebeck objavil polovodičové vlastnosti síranu olovnatého PbSO4. V roku 1833 referoval Michael Faraday o teplotnej závislosti polovodičov a v roku 1873 objavil citlivosť polovodiča Selénu ba svetlo, čo využil Werner von Siemens pri vynáleze selénového fotometra. Nemecký fyzik Ferdinand Braun v roku 1874 objavil, že kryštály Galenia by mohli fungovať ako dióda, ktoré umožňujú prechod prúdu iba jedným smerom. Zo selénu bol už v roku 1886 vyrobený usmerňovač elektrického prúdu. Selén sa vyskytuje v prírode ako amorfný selén a kryštalický selén, ale používal sa iba selén kryštalický s odporom 105 na cm. Thomas Johann Seebeck (9. 4. 1770 – 10. 12. 1831) bol fyzikom, ktorý v roku 1821 objavil termoelektrické účinky. Narodil sa v Reval, dnešný Tallinn v Estónsku v bohatej nemeckej rodine. Lekársky diplom získal v roku 1802 na univerzite v Göttingene, ale radšej študoval fyziku. V roku 1821 objavil termoelektrický jav, keď spojením dvoch rôznych kovov sa produkuje elektrický prúd, keď sú vystavené vyššej teplote. Dnes to poznáme ako Peltier – Seebeckov efekt a je základom termočlánkov. Thomas zistil, že okruh dvoch kovov spojených pri rôznych teplotách odklonili ručičku kompasu. Spočiatku si myslel, že je to kvôli magnetizmu vyvolaného teplotným rozdielom, ale rýchlo si uvedomil, že je to elektrický prúd, ktorý ho vyvoláva podľa Ampérového zákona vychyľuje magnetku a konkrétne teplotný rozdiel vytvára elektrický potenciál (napätie), ktoré môže riadiť elektrický prúd v uzatvorenom okruhu.