Performance Evaluation of Inter-Thread Communication Mechanisms on Multicore/Multithreaded Architectures

Total Page:16

File Type:pdf, Size:1020Kb

Performance Evaluation of Inter-Thread Communication Mechanisms on Multicore/Multithreaded Architectures Performance evaluation of inter-thread communication mechanisms on multicore/multithreaded architectures Massimiliano Meneghin Davide Pasetto Hubertus Franke IBM Research Lab IBM Research Lab IBM TJ Watson Dublin, Ireland Dublin, Ireland Yorktown Heights, NY [email protected] [email protected] [email protected] Fabrizio Petrini Jimi Xenidis IBM TJ Watson IBM Research Lab Yorktown Heights, NY Austin, TX [email protected] [email protected] ABSTRACT 1. INTRODUCTION The three major solutions for increasing the nominal per- In the past, advances in transistor count and fabrication formance of a CPU are: multiplying the number of cores technology have led to increased performance, typically pro- per socket, expanding the embedded cache memories and portional to improvements in clock rates. However, this use multi-threading to reduce the impact of the deep mem- trend has slowed due to limitations arising from power con- ory hierarchy. System with tens or hundreds of hardware sumption, design complexity, and wire delays. In response, threads, all sharing a cache coherent UMA or NUMA mem- designers have turned to multi-core and multi-thread confi- ory space, are today the de-facto standard. While these gurations that incorporate several cores on one or more dies. solutions can easily provide benefits in a multi-program en- While multiple cores can readily support throughput appli- vironment, they require recoding of applications to leverage cations, such as web servers or map-reduce searches that the available parallelism. Application threads must synchro- are embarrassingly parallel, threaded applications that op- nize and exchange data, and the overall performance is heav- erate on a shared address space to complete a unique task ily influenced by the overhead added by these mechanisms, demand efficient synchronization and communication mech- especially as developers try to exploit finer grain parallelism anisms. Efficient and low overhead core-to-core communi- to be able to use all available resources. cation is critical for many solution domains with countless examples in network computing, business analytics, financial This paper examines two fundamental synchronization mech- markets, biology, and high-performance computing in gen- anisms - locks and queues - in the context of multi and eral. As the number of cores increases, the desired grain of many cores systems with tens of hardware threads. Locks parallelism becomes smaller and understanding the overhead are typically used in non streaming environments to syn- and tradeoff of the core-to-core communication mechanism chronize access to shared data structures, while queues are is becoming increasingly important. mainly used as a support for streaming computational mod- els. The analysis examines how the algorithmic aspect of the Most threaded applications have concurrent needs to access implementation, the interaction with the operating system resources that can only be shared with a logical sequential and the availability of supporting machine language mecha- consistency model. The way these contentions are resolved nism contribute to the overall performance. Experiments are directly affects the system's timeliness properties. Several run on Intel X86TM and IBM PowerENTM , a novel highly mechanisms are available today, and they can broadly be multi-threaded user-space oriented solution, and focus on classified into: (1) lock-based schemes and (2) non-blocking fine grain parallelism - where the work performed on each schemes including wait-free protocols [16] and lock-free pro- data item requires only a handful of microseconds. The re- tocols [12] [2]. Lock-based protocols, typically used in multi- sults presented here constitute both a selection tool for soft- threaded applications that do not follow a stream computing ware developer and a datapoint for CPU architects. model, serialize accesses to shared objects by using mutual exclusion, resulting in reduced concurrency [4]. Many lock- General Terms based protocols typically incur additional run-time overhead Performance,Experimentation due to scheduler activations that occur when activities re- quest locked objects. Concurrent lock-free queues for inter-thread communication have been widely studied in literature since they are the basic building block of stream computing solutions. These algorithms are normally based on atomic operations and modern processors provide all the necessary hardware primi- tives such as atomic compare-and-set (CAS) and load-linked IBM Technical Report store-conditional (LL/SC). All these primitives implicitly in- troduce synchronization at the hardware level that are often characteristics are summarized in Table 1 and both systems an order of magnitude slower, even for uncontested cache run Linux Operating System. aligned and resident words, than primitive stores. With the exception of Lamport's queue [13], the focus of prior art The Intel XeonTM 5570 (Nehalem-EP) is a 45nm quad core has been on multiple producer and/or multiple-consumer processor whose high level overview is shown in figure 1. De- (MP/MC) queue variants. These general purpose queues signed for general purpose processing, each core has a pri- to date have been limited in performance due to high over- vate L1 and L2 cache, while the L3 cache is shared across the heads of their implementations. Additionally, general pur- cores on a socket. Each core supports Simultaneous Multi pose MP/MC variants often use linked lists which require in- Threading (SMT), allowing two threads to share processing direction, exhibit poor cache-locality, and require additional resources in parallel on a single core. Nehalem EP has a synchronization under weak consistency models [15]. 32KB L1, 256KB L2 and a 8MB L3 cache. As opposed to older processor configurations, this architecture implements While an extensive amount of work has been performed on an inclusive last level cache. Each cache line contains `core locks and queues, being these fundamental building blocks valid bits' that specify the state of the cache line across the for threaded applications, a comprehensive comparison of processor. A set bit corresponding to a core indicates that their runtime performance characteristics and scalability on the core may contain a copy of this line. When a core re- modern architectures is still missing. This paper wants to quests for a cache line that is contained in the L3 cache, address the following open questions: the bits specify which cores to snoop for the latest copy of this line, thus reducing the snoop traffic. The MESIF [10] cache-coherence protocol extends the native MESI [7] proto- • Can modern CPU architectures effectively execute fine col to include `forwarding'. This feature enables forwarding grain parallel programs that utilize all available hard- of unmodified data that is shared by two cores to a third ware resources in a coordinated way? one. • What is the overhead and the scalability of the sup- porting synchronization mechanisms? Core 0 Core 1 Core 2 Core 0 Core 1 Core 2 • Which synchronization algorithm and Instruction Set 32 KB 32 KB 32 KB 32 KB 32 KB 32 KB L1D Cache L1D Cache L1D Cache L1D Cache L1D Cache L1D Cache Architecture level support is the best for fine grain 256 KB 256 KB 256 KB 256 KB 256 KB 256 KB parallel programs? L2 Cache L2 Cache L2 Cache L2 Cache L2 Cache L2 Cache 8 MB L3 Cache 8 MB L3 Cache The paper contains an evaluation of different types of locks DDR3 Memory Quick Path Quick Path DDR3 Memory Controller Interconnect Interconnect Controller and queues on large multi-core multi-threaded systems and focuses on fine grain parallelism, where the amount of work performed on each \data item" is in the order of microsec- IO Hub DDR 3 A DDR 3 B DDR 3 C onds. The implementations cover a range of different solu- DDR 3 A DDR 3 B DDR 3 C tions, from Operating System to full user-space based, and look at their behaviour as the load increases. Moreover a new Instruction Set Architecture solution for low over- Figure 1: High-Level Overview of Intel NehalemTM . head user-space memory waiting is presented and its usage is evaluated both from a performance and overhead reduc- tion point of view. The next section describes the two test Atomic operations on the Intel architecture are implemented systems and briefly details the hardware synchronization using a LOCK prefix: the lock instruction can be prefixed mechanisms available in their CPU cores. Section 3 briefly to a number of operations and has the effect to lock the sys- describes the locking algorithms considered while section 4 tem bus (sometimes only the local cache in recent architec- examines their runtime behavior; the following section 5 de- tures) to ensure exclusive access to the shared resource. In tails the queueing strategies implemented; these are then 2003, Intel first introduced, as part of the SSE3 instruction evaluated in section 6. Section 7 contains some concluding set extension, the MONITOR and MWAIT instructions. remarks. The MONITOR operation sets up an address range that is monitored by the hardware for special events to occur, and System Nehalem PowerEN MWAIT waits for that event or for a general interrupt to Sockets 2 1 happen. One possible use is the monitoring of store events: Cores 6 16 a spin lock's wait operation can be implement by arming the Threads per core 2 4 MONITOR facility and executing the MWAIT instruction, Total threads 24 64 which puts the hardware thread into an\implementation op- timized state", which generally implies this hardware thread Table 1: Systems under test. does not dispatch further instructions. When the thread holding the critical section stores to the lock variable re- leasing the lock, the waiting hardware thread will be woken up. The drawback of the MONITOR/MWAIT instructions 2. TARGET PLATFORMS is that they are privileged in the X86 Instruction Set Archi- This paper examines the performance of synchronization tecture and thus cannot be executed by application software.
Recommended publications
  • Synchronization Spinlocks - Semaphores
    CS 4410 Operating Systems Synchronization Spinlocks - Semaphores Summer 2013 Cornell University 1 Today ● How can I synchronize the execution of multiple threads of the same process? ● Example ● Race condition ● Critical-Section Problem ● Spinlocks ● Semaphors ● Usage 2 Problem Context ● Multiple threads of the same process have: ● Private registers and stack memory ● Shared access to the remainder of the process “state” ● Preemptive CPU Scheduling: ● The execution of a thread is interrupted unexpectedly. ● Multiple cores executing multiple threads of the same process. 3 Share Counting ● Mr Skroutz wants to count his $1-bills. ● Initially, he uses one thread that increases a variable bills_counter for every $1-bill. ● Then he thought to accelerate the counting by using two threads and keeping the variable bills_counter shared. 4 Share Counting bills_counter = 0 ● Thread A ● Thread B while (machine_A_has_bills) while (machine_B_has_bills) bills_counter++ bills_counter++ print bills_counter ● What it might go wrong? 5 Share Counting ● Thread A ● Thread B r1 = bills_counter r2 = bills_counter r1 = r1 +1 r2 = r2 +1 bills_counter = r1 bills_counter = r2 ● If bills_counter = 42, what are its possible values after the execution of one A/B loop ? 6 Shared counters ● One possible result: everything works! ● Another possible result: lost update! ● Called a “race condition”. 7 Race conditions ● Def: a timing dependent error involving shared state ● It depends on how threads are scheduled. ● Hard to detect 8 Critical-Section Problem bills_counter = 0 ● Thread A ● Thread B while (my_machine_has_bills) while (my_machine_has_bills) – enter critical section – enter critical section bills_counter++ bills_counter++ – exit critical section – exit critical section print bills_counter 9 Critical-Section Problem ● The solution should ● enter section satisfy: ● critical section ● Mutual exclusion ● exit section ● Progress ● remainder section ● Bounded waiting 10 General Solution ● LOCK ● A process must acquire a lock to enter a critical section.
    [Show full text]
  • Chapter 1. Origins of Mac OS X
    1 Chapter 1. Origins of Mac OS X "Most ideas come from previous ideas." Alan Curtis Kay The Mac OS X operating system represents a rather successful coming together of paradigms, ideologies, and technologies that have often resisted each other in the past. A good example is the cordial relationship that exists between the command-line and graphical interfaces in Mac OS X. The system is a result of the trials and tribulations of Apple and NeXT, as well as their user and developer communities. Mac OS X exemplifies how a capable system can result from the direct or indirect efforts of corporations, academic and research communities, the Open Source and Free Software movements, and, of course, individuals. Apple has been around since 1976, and many accounts of its history have been told. If the story of Apple as a company is fascinating, so is the technical history of Apple's operating systems. In this chapter,[1] we will trace the history of Mac OS X, discussing several technologies whose confluence eventually led to the modern-day Apple operating system. [1] This book's accompanying web site (www.osxbook.com) provides a more detailed technical history of all of Apple's operating systems. 1 2 2 1 1.1. Apple's Quest for the[2] Operating System [2] Whereas the word "the" is used here to designate prominence and desirability, it is an interesting coincidence that "THE" was the name of a multiprogramming system described by Edsger W. Dijkstra in a 1968 paper. It was March 1988. The Macintosh had been around for four years.
    [Show full text]
  • CS350 – Operating Systems
    Outline 1 Processes and Threads 2 Synchronization 3 Memory Management 1 / 45 Processes • A process is an instance of a program running • Modern OSes run multiple processes simultaneously • Very early OSes only ran one process at a time • Examples (can all run simultaneously): - emacs – text editor - firefox – web browser • Non-examples (implemented as one process): - Multiple firefox windows or emacs frames (still one process) • Why processes? - Simplicity of programming - Speed: Higher throughput, lower latency 2 / 45 A process’s view of the world • Each process has own view of machine - Its own address space - Its own open files - Its own virtual CPU (through preemptive multitasking) • *(char *)0xc000 dierent in P1 & P2 3 / 45 System Calls • Systems calls are the interface between processes and the kernel • A process invokes a system call to request operating system services • fork(), waitpid(), open(), close() • Note: Signals are another common mechanism to allow the kernel to notify the application of an important event (e.g., Ctrl-C) - Signals are like interrupts/exceptions for application code 4 / 45 System Call Soware Stack Application 1 5 Syscall Library unprivileged code 4 2 privileged 3 code Kernel 5 / 45 Kernel Privilege • Hardware provides two or more privilege levels (or protection rings) • Kernel code runs at a higher privilege level than applications • Typically called Kernel Mode vs. User Mode • Code running in kernel mode gains access to certain CPU features - Accessing restricted features (e.g. Co-processor 0) - Disabling interrupts, setup interrupt handlers - Modifying the TLB (for virtual memory management) • Allows the kernel to isolate processes from one another and from the kernel - Processes cannot read/write kernel memory - Processes cannot directly call kernel functions 6 / 45 How System Calls Work • The kernel only runs through well defined entry points • Interrupts - Interrupts are generated by devices to signal needing attention - E.g.
    [Show full text]
  • 4. Process Synchronization
    Lecture Notes for CS347: Operating Systems Mythili Vutukuru, Department of Computer Science and Engineering, IIT Bombay 4. Process Synchronization 4.1 Race conditions and Locks • Multiprogramming and concurrency bring in the problem of race conditions, where multiple processes executing concurrently on shared data may leave the shared data in an undesirable, inconsistent state due to concurrent execution. Note that race conditions can happen even on a single processor system, if processes are context switched out by the scheduler, or are inter- rupted otherwise, while updating shared data structures. • Consider a simple example of two threads of a process incrementing a shared variable. Now, if the increments happen in parallel, it is possible that the threads will overwrite each other’s result, and the counter will not be incremented twice as expected. That is, a line of code that increments a variable is not atomic, and can be executed concurrently by different threads. • Pieces of code that must be accessed in a mutually exclusive atomic manner by the contending threads are referred to as critical sections. Critical sections must be protected with locks to guarantee the property of mutual exclusion. The code to update a shared counter is a simple example of a critical section. Code that adds a new node to a linked list is another example. A critical section performs a certain operation on a shared data structure, that may temporar- ily leave the data structure in an inconsistent state in the middle of the operation. Therefore, in order to maintain consistency and preserve the invariants of shared data structures, critical sections must always execute in a mutually exclusive fashion.
    [Show full text]
  • Lock (TCB) Block (TCB)
    Concurrency and Synchronizaon Mo0vaon • Operang systems (and applicaon programs) o<en need to be able to handle mul0ple things happening at the same 0me – Process execu0on, interrupts, background tasks, system maintenance • Humans are not very good at keeping track of mul0ple things happening simultaneously • Threads and synchronizaon are an abstrac0on to help bridge this gap Why Concurrency? • Servers – Mul0ple connec0ons handled simultaneously • Parallel programs – To achieve beGer performance • Programs with user interfaces – To achieve user responsiveness while doing computaon • Network and disk bound programs – To hide network/disk latency Definions • A thread is a single execu0on sequence that represents a separately schedulable task – Single execu0on sequence: familiar programming model – Separately schedulable: OS can run or suspend a thread at any 0me • Protec0on is an orthogonal concept – Can have one or many threads per protec0on domain Threads in the Kernel and at User-Level • Mul0-process kernel – Mul0ple single-threaded processes – System calls access shared kernel data structures • Mul0-threaded kernel – mul0ple threads, sharing kernel data structures, capable of using privileged instruc0ons – UNIX daemon processes -> mul0-threaded kernel • Mul0ple mul0-threaded user processes – Each with mul0ple threads, sharing same data structures, isolated from other user processes – Plus a mul0-threaded kernel Thread Abstrac0on • Infinite number of processors • Threads execute with variable speed – Programs must be designed to work with any schedule Programmer Abstraction Physical Reality Threads Processors 1 2 3 4 5 1 2 Running Ready Threads Threads Queson Why do threads execute at variable speed? Programmer vs. Processor View Programmers Possible Possible Possible View Execution Execution Execution #1 #2 #3 .
    [Show full text]
  • Kernel and Locking
    Kernel and Locking Luca Abeni [email protected] Monolithic Kernels • Traditional Unix-like structure • Protection: distinction between Kernel (running in KS) and User Applications (running in US) • The kernel behaves as a single-threaded program • One single execution flow in KS at each time • Simplify consistency of internal kernel structures • Execution enters the kernel in two ways: • Coming from upside (system calls) • Coming from below (hardware interrupts) Kernel Programming Kernel Locking Single-Threaded Kernels • Only one single execution flow (thread) can execute in the kernel • It is not possible to execute more than 1 system call at time • Non-preemptable system calls • In SMP systems, syscalls are critical sections (execute in mutual exclusion) • Interrupt handlers execute in the context of the interrupted task Kernel Programming Kernel Locking Bottom Halves • Interrupt handlers split in two parts • Short and fast ISR • “Soft IRQ handler” • Soft IRQ hanlder: deferred handler • Traditionally known ass Bottom Half (BH) • AKA Deferred Procedure Call - DPC - in Windows • Linux: distinction between “traditional” BHs and Soft IRQ handlers Kernel Programming Kernel Locking Synchronizing System Calls and BHs • Synchronization with ISRs by disabling interrupts • Synchronization with BHs: is almost automatic • BHs execute atomically (a BH cannot interrupt another BH) • BHs execute at the end of the system call, before invoking the scheduler for returning to US • Easy synchronization, but large non-preemptable sections! • Achieved
    [Show full text]
  • In the Beginning... Example Critical Sections / Mutual Exclusion Critical
    Temporal relations • Instructions executed by a single thread are totally CSE 451: Operating Systems ordered Spring 2013 – A < B < C < … • Absent synchronization, instructions executed by distinct threads must be considered unordered / Module 7 simultaneous Synchronization – Not X < X’, and not X’ < X Ed Lazowska [email protected] Allen Center 570 © 2013 Gribble, Lazowska, Levy, Zahorjan © 2013 Gribble, Lazowska, Levy, Zahorjan 2 Critical Sections / Mutual Exclusion Example: ExampleIn the beginning... • Sequences of instructions that may get incorrect main() Y-axis is “time.” results if executed simultaneously are called critical A sections Could be one CPU, could pthread_create() • (We also use the term race condition to refer to a be multiple CPUs (cores). situation in which the results depend on timing) B foo() A' • Mutual exclusion means “not simultaneous” – A < B or B < A • A < B < C – We don’t care which B' • A' < B' • Forcing mutual exclusion between two critical section C • A < A' executions is sufficient to ensure correct execution – • C == A' guarantees ordering • C == B' • One way to guarantee mutually exclusive execution is using locks © 2013 Gribble, Lazowska, Levy, Zahorjan 3 © 2013 Gribble, Lazowska, Levy, Zahorjan 4 CriticalCritical sections When do critical sections arise? is the “happens-before” relation • One common pattern: T1 T2 T1 T2 T1 T2 – read-modify-write of – a shared value (variable) – in code that can be executed concurrently (Note: There may be only one copy of the code (e.g., a procedure), but it
    [Show full text]
  • Energy Efficient Spin-Locking in Multi-Core Machines
    Energy efficient spin-locking in multi-core machines Facoltà di INGEGNERIA DELL'INFORMAZIONE, INFORMATICA E STATISTICA Corso di laurea in INGEGNERIA INFORMATICA - ENGINEERING IN COMPUTER SCIENCE - LM Cattedra di Advanced Operating Systems and Virtualization Candidato Salvatore Rivieccio 1405255 Relatore Correlatore Francesco Quaglia Pierangelo Di Sanzo A/A 2015/2016 !1 0 - Abstract In this thesis I will show an implementation of spin-locks that works in an energy efficient fashion, exploiting the capability of last generation hardware and new software components in order to rise or reduce the CPU frequency when running spinlock operation. In particular this work consists in a linux kernel module and a user-space program that make possible to run with the lowest frequency admissible when a thread is spin-locking, waiting to enter a critical section. These changes are thread-grain, which means that only interested threads are affected whereas the system keeps running as usual. Standard libraries’ spinlocks do not provide energy efficiency support, those kind of optimizations are related to the application behaviors or to kernel-level solutions, like governors. !2 Table of Contents List of Figures pag List of Tables pag 0 - Abstract pag 3 1 - Energy-efficient Computing pag 4 1.1 - TDP and Turbo Mode pag 4 1.2 - RAPL pag 6 1.3 - Combined Components 2 - The Linux Architectures pag 7 2.1 - The Kernel 2.3 - System Libraries pag 8 2.3 - System Tools pag 9 3 - Into the Core 3.1 - The Ring Model 3.2 - Devices 4 - Low Frequency Spin-lock 4.1 - Spin-lock vs.
    [Show full text]
  • Spinlock Vs. Sleeping Lock Spinlock Implementation(1)
    Semaphores EECS 3221.3 • Problems with the software solutions. Operating System Fundamentals – Complicated programming, not flexible to use. – Not easy to generalize to more complex synchronization problems. No.6 • Semaphore (a.k.a. lock): an easy-to-use synchronization tool – An integer variable S Process Synchronization(2) – wait(S) { while (S<=0) ; S-- ; Prof. Hui Jiang } Dept of Electrical Engineering and Computer – signal(S) { Science, York University S++ ; } Semaphore usage (1): Semaphore usage (2): the n-process critical-section problem as a General Synchronization Tool • The n processes share a semaphore, Semaphore mutex ; // mutex is initialized to 1. • Execute B in Pj only after A executed in Pi • Use semaphore flag initialized to 0 Process Pi do { " wait(mutex);! Pi Pj " critical section of Pi! ! … … signal(mutex);" A wait (flag) ; signal (flag) ; B remainder section of Pi ! … … ! } while (1);" " " Spinlock vs. Sleeping Lock Spinlock Implementation(1) • In uni-processor machine, disabling interrupt before modifying • Previous definition of semaphore requires busy waiting. semaphore. – It is called spinlock. – spinlock does not need context switch, but waste CPU cycles wait(S) { in a continuous loop. do { – spinlock is OK only for lock waiting is very short. Disable_Interrupt; signal(S) { • Semaphore without busy-waiting, called sleeping lock: if(S>0) { S-- ; Disable_Interrupt ; – In defining wait(), rather than busy-waiting, the process makes Enable_Interrupt ; S++ ; system calls to block itself and switch to waiting state, and return ; Enable_Interrupt ; put the process to a waiting queue associated with the } return ; semaphore. The control is transferred to CPU scheduler. Enable_Interrupt ; } – In defining signal(), the process makes system calls to pick a } while(1) ; process in the waiting queue of the semaphore, wake it up by } moving it to the ready queue to wait for CPU scheduling.
    [Show full text]
  • Synchronization Tools
    CHAPTER Synchronization 6 Tools Exercises 6.12 The pseudocode of Figure 6.15 illustrates the basic push() and pop() operations of an array-based stack. Assuming that this algorithm could be used in a concurrent environment, answer the following questions: a. What data have a race condition? b. How could the race condition be xed? 6.13 Race conditions are possible in many computer systems. Consider an online auction system where the current highest bid for each item must be maintained. A person who wishes to bid on an item calls the bid(amount) function, which compares the amount being bid to the current highest bid. If the amount exceeds the current highest bid, the highest bid is set to the new amount. This is illustrated below: void bid(double amount) { if (amount > highestBid) highestBid = amount; } Describe how a race condition is possible in this situation and what might be done to prevent the race condition from occurring. 6.14 The following program example can be used to sum the array values of size N elements in parallel on a system containing N computing cores (there is a separate processor for each array element): for j = 1 to log 2(N) { for k = 1 to N { if ((k + 1) % pow(2,j) == 0) { values[k] += values[k - pow(2,(j-1))] } } } 33 34 Chapter 6 Synchronization Tools This has the effect of summing the elements in the array as a series of partial sums, as shown in Figure 6.16. After the code has executed, the sum of all elements in the array is stored in the last array location.
    [Show full text]
  • Enhancing Std::Atomic Flag for Waiting
    Doc number: P0514R0 Revises: None. Date: 2016-11-15 Project: Programming Language C++, Concurrency Working Group Reply-to: Olivier Giroux <[email protected]> Enhancing std::atomic_flag for waiting. TL;DR summary of the goals: 1 The atomic_flag type provides combines the classic test-and-set functionality with the ability to block until the object is in a specified state. It has two states, set and clear. We propose to make atomic_flag more useful and efficient, without loss of compatibility. The current atomic objects make it easy to implement inefficient blocking synchronization in C++, due to lack of support for waiting in a more efficient way than polling. One problem that results, is poor system performance under oversubscription and/or contention. Another is high energy consumption under contention, regardless of oversubscription. The current atomic_flag object does nothing to help with this problem, despite its name that suggests it is suitable for this use. Its interface is tightly-fitted to the demands of the simplest spinlocks without contention or energy mitigation beyond what timed backoff can achieve. Presenting a simple abstraction for scalable waiting. Our proposed enhancements for atomic_flag objects make it easier to implement scalable and efficient synchronization using atomic objects. For example: struct atomic_flag_lock { void lock() { while (f.test_and_set()) f.wait(false); } void unlock() { f.clear(); } private: std::experimental::atomic_flag f = ATOMIC_FLAG_INIT; }; A reference implementation is provided for your
    [Show full text]
  • 9 Mutual Exclusion
    System Architecture 9 Mutual Exclusion Critical Section & Critical Region Busy-Waiting versus Blocking Lock, Semaphore, Monitor November 24 2008 Winter Term 2008/09 Gerd Liefländer © 2008 Universität Karlsruhe (TH), System Architecture Group 1 Overview Agenda HW Precondition Mutual Exclusion Problem Critical Regions Critical Sections Requirements for valid solutions Implementation levels User-level approaches HW support Kernel support Semaphores Monitors © 2008 Universität Karlsruhe (TH), System Architecture Group 2 Overview Literature Bacon, J.: Operating Systems (9, 10, 11) Nehmer,J.: Grundlagen moderner BS (6, 7, 8) Silberschatz, A.: Operating System Concepts (4, 6, 7) Stallings, W.: Operating Systems (5, 6) Tanenbaum, A.: Modern Operating Systems (2) Research papers on various locks © 2008 Universität Karlsruhe (TH), System Architecture Group 3 Atomic Instructions To understand concurrency, we need to know what the underlying indivisible HW instructions are Atomic instructions run to completion or not at all It is indivisible: it cannot be stopped in the middle and its state cannot be modified by someone else in the middle Fundamental building block: without atomic instructions we have no way for threads to work together properly load, store of words are usually atomic However, some instructions are not atomic VAX and IBM 360 had an instruction to copy a whole array © 2008 Universität Karlsruhe (TH), System Architecture Group 4 Mutual Exclusion © 2008 Universität Karlsruhe (TH), System Architecture Group 5 Mutual Exclusion Problem Assume at least two concurrent activities 1. Access to a physical or to a logical resource or to shared data has to be done exclusively 2. A program section of an activity, that has to be executed indivisibly and exclusively is called critical section CS1 3.
    [Show full text]