How Lipids Affect the Activities of Integral Membrane Proteins

Total Page:16

File Type:pdf, Size:1020Kb

How Lipids Affect the Activities of Integral Membrane Proteins Biochimica et Biophysica Acta 1666 (2004) 62–87 http://www.elsevier.com/locate/bba Review How lipids affect the activities of integral membrane proteins Anthony G. Lee* Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Southampton SO16 7PX, UK Received 27 February 2004; accepted 28 May 2004 Available online 20 July 2004 Abstract The activities of integral membrane proteins are often affected by the structures of the lipid molecules that surround them in the membrane. One important parameter is the hydrophobic thickness of the lipid bilayer, defined by the lengths of the lipid fatty acyl chains. Membrane proteins are not rigid entities, and deform to ensure good hydrophobic matching to the surrounding lipid bilayer. The structure of the lipid headgroup region is likely to be important in defining the structures of those parts of a membrane protein that are located in the lipid headgroup region. A number of examples are given where the conformation of the headgroup-embedded region of a membrane protein changes during the reaction cycle of the protein; activities of such proteins might be expected to be particularly sensitive to lipid headgroup structure. Differences in hydrogen bonding potential and hydration between the headgroups of phosphatidycholines and phosphatidylethanolamines could be important factors in determining the effects of these lipids on protein activities, as well as any effects related to the tendency of the phosphatidylethanolamines to form a curved, hexagonal HII phase. Effects of lipid structure on protein aggregation and helix–helix interactions are also discussed, as well as the effects of charged lipids on ion concentrations close to the surface of the bilayer. Interpretations of lipid effects in terms of changes in protein volume, lipid free volume, and curvature frustration are also described. Finally, the role of non-annular, or dco-factorT lipids, tightly bound to membrane proteins, is described. D 2004 Elsevier B.V. All rights reserved. Keywords: Lipid–protein interaction; Annular lipid; Hydrophobic mismatch; Membrane structure; Membrane thickness; Lipid headgroup; Non-annular lipid; Integral membrane protein Contents 1. Introduction ............................................................ 63 1.1. Lipids as solvent and lipids as co-factors: annular and non-annular lipid ......................... 64 2. Effects of annular lipids on membrane protein function ...................................... 65 2.1. The importance of the lipid headgroup region....................................... 65 2.2. Hydrophobic thickness .................................................. 69 2.3. Effects of lipid structure on protein aggregation and helix–helix interactions ....................... 72 2.4. Effects of the gel to liquid crystalline phase transition .................................. 72 Abbreviations: GPS, glycerophosphoserine; GPE, glycerophosphoethanolamine; di(C14:0)PC, dimyristoylphosphatidylcholine; di(C14:1)PC, dimyristo- leoylphosphatidylcholine; di(C16:0)PC, dipalmitoylphosphatidylcholine; di(C18:1)PC, dioleoylphosphatidylcholine; di(C22:1)PC, dierucoylphosphatidylcho- line; di(C22:6)PC, di(4,7,10,13,16,19 docosahexaenoyl)phosphatidylcholine; di(C12:0)PE, dilaurylphosphatidylethanolamine; (C16:0,C18:1)PE, 1-palmitoyl- 2-oleoylphosphatidylethanolamine; di(C18:1)PE, dioleoylphosphatidylethanolamine; di(C18:1)PG, dioleoylphosphatidylglycerol; di(C18:1)PS, dioleoylphos- phatidylserine; di(C18:1)PA, dioleoylphosphatidic acid; MscL, mechanosensitive ion channel of large conductance; EcMscL, MscL from E. coli * Tel.: +44 23 8059 4331; fax: +44 23 8059 4459. E-mail address: [email protected]. 0005-2736/$ - see front matter D 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.bbamem.2004.05.012 A.G. Lee / Biochimica et Biophysica Acta 1666 (2004) 62–87 63 2.5. Effects of membrane viscosity ............................................... 73 2.6. Effects of changes in membrane protein volume ..................................... 75 2.7. Effects of lipid free volume ................................................ 76 2.8. Effects of interfacial curvature and elastic strain...................................... 76 2.9. Effects of lateral pressure profile ............................................. 78 2.10. Effects of membrane tension: mechanosensitive ion channels and osmoregulated transporters .............. 79 3. Effects of non-annular lipids on membrane protein function .................................... 80 4. Conclusions. ............................................................ 83 References ................................................................ 83 1. Introduction Crystal structures have been obtained for rat annexin V in the presence of glycerophosphoserine (GPS) and glycer- Integral membrane proteins operate in an environment ophosphoethanolamine (GPE) [1]. The phosphoglycerol made up, in part, by the surrounding lipid bilayer; the backbones of GPS and GPE bind in a similar fashion, but composition of the lipid bilayer must therefore be such as to with significant differences (Fig. 1). The phosphoryl support at least close to optimal functioning for the proteins oxygen coordinates a bound Ca2+ ion, capping the Ca2+ in the membrane. Effects of lipid structure on membrane binding site [1]. In both complexes Ca2+ binding leads to protein function can be described in molecular terms, that is, extrusion of Trp-185 from the core of the protein; insertion in terms of molecular interactions between the lipid and of Trp-185 into the hydrophobic core of the lipid bilayer protein molecules such as hydrophobic effects, hydrogen adds a hydrophobic component to the binding energy. Gly- bonding or charge interactions, or in physical terms, that is, 186 bridges the Ca2+ ion to the phospholipid; its carbonyl in terms of physical properties of the lipid bilayer such as oxygen coordinates the Ca2+ ion and its amide group lipid fluidity, membrane tension, and so on. Although in interacts with the glycerol backbone of the phospholipid some cases it is obvious that a description in molecular analogues. Thr-187 also interacts with the bound Ca2+ ion, terms is required, in others it is not obvious whether a but, whereas in the GPS complex, its –OH group forms a molecular or a physical explanation is most appropriate. hydrogen bond with the serine amino group in GPS, in the Where both molecular and physical explanations are GPE complex the –OH group of Thr-187 is hydrogen available, it is often not clear whether these are actually bonded to a water molecule that, in turn, hydrogen bonds different explanations or just two different ways of saying to a phosphoryl oxygen. A further difference between the the same thing. two complexes is that the GPE headgroup extends along An example where a molecular description is clearly the the molecular surface in the opposite direction to GPS, in a most appropriate is provided by studies of the effect of shallower binding site (Fig. 1). The more extensive lipid structure on the binding of annexins to the surface of interactions observed in the crystal structure with GPS a lipid bilayer. Binding involves Ca2+ ions bridging than with GPE suggests that binding to phosphatidylserine between the protein and the phospholipid headgroups. will be stronger than to phosphatidylethanolamine. This is Fig. 1. Binding of GPS and GPE to annexin V. The binding sites for GPS (A) and GPE (B) are shown. The filled sphere is Ca2+. Some of the residues important for binding are shown in ball-and-stick mode (PDB files 1A8A and 1A8B). 64 A.G. Lee / Biochimica et Biophysica Acta 1666 (2004) 62–87 indeed what is observed. Although annexin V binds to annular lipid could only affect the function of a membrane bilayers of phosphatidylethanolamine [2,3] it binds more protein if the lifetime of a lipid molecule in the annular shell strongly to bilayers containing anionic phospholipids, the around the protein were long compared to the turnover strength of binding decreasing in the order phosphatidic number of the protein. However, this is not so, it does not acidNphosphatidylserineNphosphatidylinositol [2,4–6].In matter which particular lipid molecule is in the annular contrast, annexin V hardly binds to bilayers of phospha- shell; it is only significant that the lipid molecules that are in tidylcholine or sphingomyelin [2,3]. In this case, therefore, the annular shell are in a particular physical state and have a effects of lipid headgroup structure on protein binding can particular effect on the protein. Rapid exchange of the lipids be understood in molecular terms. Although insertion of can average the environment sensed by the lipid but will not annexin V into the lipid headgroup region of the bilayer average the environment sensed by the protein; the environ- must be affected by physical properties of the lipid ment sensed by the protein (the annular lipid) is the same headgroup region such as the lateral pressure, an explan- however fast the lipids exchange. The rate of exchange of ation in such terms would miss the heart of the problem. non-annular lipid with bulk lipid has not yet been For example, binding to bilayers of phosphatidylethanol- determined, but could be relatively slow given the high amine is stronger than to bilayers of phosphatidylcholine specificity of the interaction between non-annular lipid and not because of differences in the physical properties of the the protein. two bilayers but because the phosphatidylcholine
Recommended publications
  • A Network of Molecular Switches Controls the Activation of the Two-Component Response Regulator Ntrc
    ARTICLE Received 8 Aug 2014 | Accepted 26 Apr 2015 | Published 15 Jun 2015 DOI: 10.1038/ncomms8283 A network of molecular switches controls the activation of the two-component response regulator NtrC Dan K. Vanatta1, Diwakar Shukla1,2,3, Morgan Lawrenz1 & Vijay S. Pande1,2 Recent successes in simulating protein structure and folding dynamics have demonstrated the power of molecular dynamics to predict the long timescale behaviour of proteins. Here, we extend and improve these methods to predict molecular switches that characterize conformational change pathways between the active and inactive state of nitrogen regulatory protein C (NtrC). By employing unbiased Markov state model-based molecular dynamics simulations, we construct a dynamic picture of the activation pathways of this key bacterial signalling protein that is consistent with experimental observations and predicts new mutants that could be used for validation of the mechanism. Moreover, these results suggest a novel mechanistic paradigm for conformational switching. 1 Department of Chemistry, Stanford University, Stanford, California 94305, USA. 2 SIMBIOS NIH Center for Biomedical Computation, Stanford University, Stanford, California 94305,USA. 3 Department of Chemical and Bimolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illionios 61801, USA. Correspondence and requests for materials should be addressed to V.S.P. (email: [email protected]). NATURE COMMUNICATIONS | 6:7283 | DOI: 10.1038/ncomms8283 | www.nature.com/naturecommunications 1 & 2015 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8283 roteins involved in cellular signalling change their con- Results formation in response to changes in environment (input Simulations reveal molecular switches for NtrC activation. Psignal), such as ligand binding or chemical modification, MSMs for NtrC were built using snapshots along the simulated to control downstream cellular processes (output signal)1.
    [Show full text]
  • Spring 2013 Lecture 23
    CHM333 LECTURES 23: 3/25/13 SPRING 2013 Professor Christine Hrycyna LIPIDS III EFFECT OF CHOLESTEROL ON MEMBRANES: - Bulky rigid molecule - Moderates fluidity of membranes – both increases and decreases o Cholesterol in membranes DECREASES fluidity because it is rigid o Prevents crystallization (making solid) of fatty acyl side chains by fitting between them. Disrupts close packing of fatty acyl chains. Therefore, INCREASED fluidity BIOLOGICAL MEMBRANES CONTAIN PROTEINS AS WELL AS LIPIDS: - Proteins are 20-80% of cell membrane - Rest is lipid or carbohydrate; supramolecular assembly of lipid, protein and carbohydrate - Proteins are also distributed asymmetrically - TWO classes of Membrane Proteins: o Integral Membrane Proteins o Peripheral Membrane Proteins 178 CHM333 LECTURES 23: 3/25/13 SPRING 2013 Professor Christine Hrycyna - INTEGRAL MEMBRANE PROTEINS o Located WITHIN the lipid bilayer o Usually span the bilayer one or more times – called transmembrane (TM) proteins o Hydrophobic amino acids interact with fatty acid chains in the hydrophobic core of the membrane o Can be removed from the membrane with detergents like SDS – need to disrupt the hydrophobic interactions § Membrane Disruption Animation: o http://www.youtube.com/watch?v=AHT37pvcjc0 o Function: § Transporters – moving molecules into or out of cells or cell membranes § Receptors – transmitting signals from outside of the cell to the inside - β Barrel Integral Membrane Proteins § Barrel-shaped membrane protein that is made up of antiparallel β-strands with hydrophilic (interior) and hydrophobic (facing lipid tails). § So far found only in outer membranes of Gram-negative bacteria, cell wall of Gram-positive bacteria, and outer membranes of mitochondria and chloroplasts. 179 CHM333 LECTURES 23: 3/25/13 SPRING 2013 Professor Christine Hrycyna - α-Helical Membrane Proteins - Can cross the membrane once or many times and have multiple transmembrane segments.
    [Show full text]
  • Phase Behavior and Aggregate Structure in Mixtures of Dioleoylphosphatidylethanolamine and Poly(Ethylene Glycol)-Lipids
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biophysical Journal Volume 80 January 2001 313–323 313 Phase Behavior and Aggregate Structure in Mixtures of Dioleoylphosphatidylethanolamine and Poly(Ethylene Glycol)-Lipids Markus Johnsson and Katarina Edwards Department of Physical Chemistry, Uppsala University, S-751 21 Uppsala, Sweden ABSTRACT Cryo-transmission electron microscopy has been used to investigate the phase behavior and aggregate structure in dilute aqueous mixtures of dioleoylphosphatidylethanolamine (DOPE) and poly(ethylene glycol)-phospholipids (PEG-lipids). It is shown that PEG-lipids (micelle-forming lipids) induce a lamellar phase in mixtures with DOPE (inverted hexagonal forming lipid). The amount of PEG-lipid that is needed to induce a pure dispersed lamellar phase, at physiological conditions, depends on the size of the PEG headgroup. In the transition region between the inverted hexagonal phase and the lamellar phase, particles with dense inner textures are formed. It is proposed that these aggregates constitute dispersed cubic phase particles. Above bilayer saturating concentration of PEG-lipid, small disks and spherical micelles are formed. The stability of DOPE/PEG-lipid liposomes, prepared at high pH, against a rapid drop of the pH was also investigated. It is shown that the density of PEG-lipid in the membrane, sufficient to prevent liposome aggregation and subsequent phase transition, depends on the size of the PEG headgroup. Below a certain density of PEG-lipid, aggregation and phase transition occurs, but the processes involved proceed relatively slow, over the time scale of weeks. This allows detailed studies of the aggregate structure during membrane fusion.
    [Show full text]
  • Site-Specific Tryptophan Labels Reveal Local Microsecond
    molecules Article Site-Specific Tryptophan Labels Reveal Local Microsecond–Millisecond Motions of Dihydrofolate Reductase Morgan B. Vaughn 1,*, Chloe Biren 2, Qun Li 2, Ashwin Ragupathi 2 and R. Brian Dyer 2,* 1 Division of Natural Sciences, Oglethorpe University, Atlanta, GA 30319, USA 2 Department of Chemistry, Emory University, Atlanta, GA 30322, USA; [email protected] (C.B.); [email protected] (Q.L.); [email protected] (A.R.) * Correspondence: [email protected] (M.B.V.); [email protected] (R.B.D.); Tel.: +1-404-504-1214 (M.B.V.); +1-404-727-6637 (R.B.D.) Academic Editor: Rafik Karaman Received: 24 July 2020; Accepted: 21 August 2020; Published: 22 August 2020 Abstract: Many enzymes are known to change conformations during their catalytic cycle, but the role of these protein motions is not well understood. Escherichia coli dihydrofolate reductase (DHFR) is a small, flexible enzyme that is often used as a model system for understanding enzyme dynamics. Recently, native tryptophan fluorescence was used as a probe to study micro- to millisecond dynamics of DHFR. Yet, because DHFR has five native tryptophans, the origin of the observed conformational changes could not be assigned to a specific region within the enzyme. Here, we use DHFR mutants, each with a single tryptophan as a probe for temperature jump fluorescence spectroscopy, to further inform our understanding of DHFR dynamics. The equilibrium tryptophan fluorescence of the mutants shows that each tryptophan is in a different environment and that wild-type DHFR fluorescence is not a simple summation of all the individual tryptophan fluorescence signatures due to tryptophan–tryptophan interactions.
    [Show full text]
  • Predicting Protein-Membrane Interfaces of Peripheral Membrane
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.28.450157; this version posted June 29, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Predicting protein-membrane interfaces of pe- ripheral membrane proteins using ensemble machine learning Alexios Chatzigoulas1,2,* and Zoe Cournia1,* 1Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece, 2Depart- ment of Informatics and Telecommunications, National and Kapodistrian University of Athens, 15784 Athens, Greece *To whom correspondence should be addressed. Abstract Motivation: Abnormal protein-membrane attachment is involved in deregulated cellular pathways and in disease. Therefore, the possibility to modulate protein-membrane interactions represents a new promising therapeutic strategy for peripheral membrane proteins that have been considered so far undruggable. A major obstacle in this drug design strategy is that the membrane binding domains of peripheral membrane proteins are usually not known. The development of fast and efficient algorithms predicting the protein-membrane interface would shed light into the accessibility of membrane-protein interfaces by drug-like molecules. Results: Herein, we describe an ensemble machine learning methodology and algorithm for predicting membrane-penetrating residues. We utilize available experimental data in the literature for training 21 machine learning classifiers and a voting classifier. Evaluation of the ensemble classifier accuracy pro- duced a macro-averaged F1 score = 0.92 and an MCC = 0.84 for predicting correctly membrane-pen- etrating residues on unknown proteins of an independent test set.
    [Show full text]
  • Functional Consequences of Lipid Packing Stress
    Current Opinion in Colloid & Interface Science 5Ž. 2000 237᎐243 Functional consequences of lipid packing stress Sergey M. Bezrukov a,b,U aLaboratory of Physical and Structural Biology, NICHD, NIH, Bethesda, MD 20892-0924, USA bSt. Petersburg Nuclear Physics Institute, Gatchina, Russia 188350 Abstract When two monolayers of a non-lamellar lipid are brought together to form a planar bilayer membrane, the resulting structure is under elastic stress. This stress changes the membrane's physical properties and manifests itself in at least two biologically relevant functional aspects. First, by modifying the energetics of hydrophobic inclusions, it in¯uences protein᎐lipid interactions. The immediate consequences are seen in several effects that include changes in conformational equilibrium between different functional forms of integral proteins and peptides, membrane-induced interactions between proteins, and partitioning of proteins between different membranes and between the bulk and the membrane. Secondly, by changing the energetics of spontaneous formation of non-lamellar local structures, lipid packing stress in¯uences membrane stability and fusion. ᮊ Published by 2000 Elsevier Science Ltd. Keywords: Integral proteins; Intra-membrane pressure; Non-lamellar lipids 1. Introduction derived second messengers serve as ligands for highly speci®c biochemical reactions. Although a role for Membrane lipids are no longer regarded as a kind phosphoinositides in signal transduction was ®rst sug- wx of ®ller or passive solvent for the membrane protein gested about half a century ago, recent reviews 1,2 machinery. It is now well established that lipids play have demonstrated new exciting developments in this an important role at several levels of cell regulation.
    [Show full text]
  • Conformational Proofreading: the Impact of Conformational
    Conformational Proofreading: The Impact of Conformational Changes on the Specificity of Molecular Recognition Yonatan Savir1 and Tsvi Tlusty1,* 1Department of Physics of Complex Systems, the Weizmann Institute of Science, Rehovot, Israel, 76100 *Corresponding author. E-mail: [email protected] Abstract To perform recognition, molecules must locate and specifically bind their targets within a noisy biochemical environment with many look-alikes. Molecular recognition processes, especially the induced-fit mechanism, are known to involve conformational changes. This arises a basic question: does molecular recognition gain any advantage by such conformational changes? By introducing a simple statistical-mechanics approach, we study the effect of conformation and flexibility on the quality of recognition processes. Our model relates specificity to the conformation of the participant molecules and thus suggests a possible answer: Optimal specificity is achieved when the ligand is slightly off target, that is a conformational mismatch between the ligand and its main target improves the selectivity of the process. This indicates that deformations upon binding serve as a conformational proofreading mechanism, which may be selected for via evolution. Introduction Practically all biological systems rely on the ability of bio-molecules to specifically recognize each other. Examples are antibodies targeting antigens, regulatory proteins binding DNA and enzymes catalyzing their substrates. These and other molecular recognizers must locate and preferentially interact with their specific targets among a vast variety of molecules that are often structurally similar. This task is further complicated by the inherent noise in the biochemical environment, whose magnitude is comparable with that of the non- covalent binding interactions [1-3].
    [Show full text]
  • The Effect of Peptide/Lipid Hydrophobic Mismatch on the Phase Behavior of Model Membranes Mimicking the Lipid Composition in Escherichia Coli Membranes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biophysical Journal Volume 78 May 2000 2475–2485 2475 The Effect of Peptide/Lipid Hydrophobic Mismatch on the Phase Behavior of Model Membranes Mimicking the Lipid Composition in Escherichia coli Membranes Sven Morein,* Roger E. Koeppe II,† Go¨ran Lindblom,‡ Ben de Kruijff,* and J. Antoinette Killian* *Department of Biochemistry of Membranes, Centre for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, the Netherlands; †Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701 USA; and ‡Biophysical Chemistry, Department of Chemistry, Umeå University, Umeå, Sweden ABSTRACT The effect of hydrophobic peptides on the lipid phase behavior of an aqueous dispersion of dioleoylphosphati- dylethanolamine and dioleoylphosphatidylglycerol (7:3 molar ratio) was studied by 31P NMR spectroscopy. The peptides (WALPn peptides, where n is the total number of amino acid residues) are designed as models for transmembrane parts of integral membrane proteins and consist of a hydrophobic sequence of alternating leucines and alanines, of variable length, that is flanked on both ends by tryptophans. The pure lipid dispersion was shown to undergo a lamellar-to-isotropic phase transition at ϳ60°C. Small-angle x-ray scattering showed that at a lower water content a cubic phase belonging to the space group Pn3m is formed, suggesting also that the isotropic phase in the lipid dispersion represents a cubic liquid crystalline phase. It was found that the WALP peptides very efficiently promote formation of nonlamellar phases in this lipid system.
    [Show full text]
  • Modulation of Non-Bilayer Lipid Phases and the Structure And
    www.nature.com/scientificreports OPEN Modulation of non‑bilayer lipid phases and the structure and functions of thylakoid membranes: efects on the water‑soluble enzyme violaxanthin de‑epoxidase Ondřej Dlouhý1, Irena Kurasová1,2, Václav Karlický1,2, Uroš Javornik3, Primož Šket3,4, Nia Z. Petrova5, Sashka B. Krumova5, Janez Plavec3,4,6, Bettina Ughy1,7*, Vladimír Špunda1,2* & Győző Garab1,7* The role of non‑bilayer lipids and non‑lamellar lipid phases in biological membranes is an enigmatic problem of membrane biology. Non‑bilayer lipids are present in large amounts in all membranes; in energy‑converting membranes they constitute about half of their total lipid content—yet their functional state is a bilayer. In vitro experiments revealed that the functioning of the water‑soluble violaxanthin de-epoxidase (VDE) enzyme of plant thylakoids requires the presence of a non-bilayer lipid phase. 31P-NMR spectroscopy has provided evidence on lipid polymorphism in functional thylakoid membranes. Here we reveal reversible pH‑ and temperature‑dependent changes of the lipid-phase behaviour, particularly the fexibility of isotropic non-lamellar phases, of isolated spinach thylakoids. These reorganizations are accompanied by changes in the permeability and thermodynamic parameters of the membranes and appear to control the activity of VDE and the photoprotective mechanism of non-photochemical quenching of chlorophyll-a fuorescence. The data demonstrate, for the frst time in native membranes, the modulation of the activity of a water-soluble enzyme by a non‑bilayer lipid phase. Te primary function of biological membranes is to allow compartmentalization of cells and cellular organelles and, in general, the separation of two aqueous phases with diferent compositions.
    [Show full text]
  • M.Sc. [Botany] 346 13
    cover page as mentioned below: below: mentioned Youas arepage instructedcover the to updateupdate to the coverinstructed pageare asYou mentioned below: Increase the font size of the Course Name. Name. 1. IncreaseCourse the theof fontsize sizefont ofthe the CourseIncrease 1. Name. use the following as a header in the Cover Page. Page. Cover 2. the usein the followingheader a as as a headerfollowing the inuse the 2. Cover Page. ALAGAPPAUNIVERSITY UNIVERSITYALAGAPPA [Accredited with ’A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle Cycle Third the in (CGPA:3.64) [AccreditedNAAC by withGrade ’A+’’A+’ Gradewith by NAAC[Accredited (CGPA:3.64) in the Third Cycle and Graded as Category–I University by MHRD-UGC] MHRD-UGC] by University and Category–I Graded as as Graded Category–I and University by MHRD-UGC] M.Sc. [Botany] 003 630 – KARAIKUDIKARAIKUDI – 630 003 346 13 EDUCATION DIRECTORATEDISTANCE OF OF DISTANCEDIRECTORATE EDUCATION BIOLOGICAL TECHNIQUES IN BOTANY I - Semester BOTANY IN TECHNIQUES BIOLOGICAL M.Sc. [Botany] 346 13 cover page as mentioned below: below: mentioned Youas arepage instructedcover the to updateupdate to the coverinstructed pageare asYou mentioned below: Increase the font size of the Course Name. Name. 1. IncreaseCourse the theof fontsize sizefont ofthe the CourseIncrease 1. Name. use the following as a header in the Cover Page. Page. Cover 2. the usein the followingheader a as as a headerfollowing the inuse the 2. Cover Page. ALAGAPPAUNIVERSITY UNIVERSITYALAGAPPA [Accredited with ’A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle Cycle Third the in (CGPA:3.64) [AccreditedNAAC by withGrade ’A+’’A+’ Gradewith by NAAC[Accredited (CGPA:3.64) in the Third Cycle and Graded as Category–I University by MHRD-UGC] MHRD-UGC] by University and Category–I Graded as as Graded Category–I and University by MHRD-UGC] M.Sc.
    [Show full text]
  • Direct Visualization of Dispersed Lipid Bicontinuous Cubic Phases by Cryo-Electron Tomography
    ARTICLE Received 5 Jun 2015 | Accepted 16 Oct 2015 | Published 17 Nov 2015 DOI: 10.1038/ncomms9915 OPEN Direct visualization of dispersed lipid bicontinuous cubic phases by cryo-electron tomography Davide Demurtas1, Paul Guichard2, Isabelle Martiel3,w, Raffaele Mezzenga3,Ce´cile He´bert1 & Laurent Sagalowicz4 Bulk and dispersed cubic liquid crystalline phases (cubosomes), present in the body and in living cell membranes, are believed to play an essential role in biological phenomena. Moreover, their biocompatibility is attractive for nutrient or drug delivery system applications. Here the three-dimensional organization of dispersed cubic lipid self-assembled phases is fully revealed by cryo-electron tomography and compared with simulated structures. It is demonstrated that the interior is constituted of a perfect bicontinuous cubic phase, while the outside shows interlamellar attachments, which represent a transition state between the liquid crystalline interior phase and the outside vesicular structure. Therefore, compositional gradients within cubosomes are inferred, with a lipid bilayer separating at least one water channel set from the external aqueous phase. This is crucial to understand and enhance controlled release of target molecules and calls for a revision of postulated transport mechanisms from cubosomes to the aqueous phase. 1 Interdisciplinary Centre for Electron Microscopy, Swiss Federal Institute of Technology (EPFL), Lausanne 1015, Switzerland. 2 Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne 1015, Switzerland. 3 Department of Health Science and Technology, ETH Zurich, Zurich 8092, Switzerland. 4 Nestle´ Research Center, Vers-Chez-Les-Blanc, Lausanne 1000, Switzerland. w Present address: Swiss Light Source, Paul Scherrer Institut, Villigen 5232, Switzerland.
    [Show full text]
  • Cell Signaling: G-Protein Coupled Receptors and the Β
    Cell Signaling: G-Protein Coupled Receptors and the β2-Adrenergic Receptor Dianna Amasino, Axel Glaubitz, Susan Huang, Joy Li, Hsien-Yu Shih, Junyao Song, Xiao Zhu Madison West High School, Madison, WI 53726 Advisor: Basudeb Bhattacharyya, University of Wisconsin, Madison, WI 53706 Mentors: Dr. Dave Nelson and Peter Vander Velden, University of Wisconsin, Madison, WI 53706 Introduction Mechanism of the β adrenergic receptor: an example of GPCR signal A conserved structure and mechanism G protein-coupled receptors (GPCRs) are the largest transduction family of integral membrane proteins coded by the human genome. GPCRs are important for signal transduction with the general structural characteristic of a plasma membrane receptor with seven transmembrane segments (Figure 1). One example of a GPCR targeted by pharmaceutical companies is the β2-adrenergic receptor. Adrenergic receptors are found through out the body and are triggered by the hormone epinephrine (also known as adrenaline, hence the name adrenergic). When epinephrine binds to the receptors, it causes a slight conformational change within the receptor. This Cherezov, et al., 2007 change then triggers activation of a G-protein, which induces a response within the cell (for example, muscle contraction). When this signal transduction event Figure 4. Overlay of bovine rhodopsin (cyan) and the functions normally in the body, it helps regulate heart rate human β2-adrenergic receptor (orange) and blood pressure and is important for the “fight or Figure 4 above demonstrates how conserved the structure, flight” response. Beta blockers are medically used to and hence the mechannsm, of signal transduction using bind to adrenergic receptors, manipulating the hormone’s GPCRs really is.
    [Show full text]