Reimagined Machine Vision with On-Camera Deep Learning

Total Page:16

File Type:pdf, Size:1020Kb

Reimagined Machine Vision with On-Camera Deep Learning CASE STUDY IndustryAI-Assisted Machine Vision SolutionFLIR Focus Area Reimagined Machine Vision with On-Camera Deep Learning The FLIR® Firefly® camera adds a new level of intelligence to machine vision and image analysis supporting on-device inference with an Intel® Movidius™ Myriad™ 2 vision processing unit. Automated analysis of images captured by cameras is a key part of our day-to-day lives that we may not often think about. The quality and affordability of the phones in our pockets, the cars we drive, and the food on our plates are made possible by machines using cameras for process automation, quality inspection, and robot guidance. Without this kind of “machine vision,” the high speed and high volume required for these tasks would make them too tedious and error-prone for humans to handle reliably or affordably. As this technology has developed, machine vision has gone from enabling basic inspection and sorting operations to more complex tasks, such as guiding manufacturing robots in automotive factories and enhancing surveillance applications. Still, there has been a hard limit on the capabilities of these systems because they rely on pre-established rules. For example, machine vision has been well suited to reading a standardized barcode or checking a manufactured part against specifications, but not to the subjective judgment of whether a piece of fruit is of export quality. Neural networks trained using modern deep learning techniques take image analysis to the next level, being able to recognize objects or people with a high degree of accuracy, for example. Using machine-learning approaches, neural networks can be trained on large data sets, enabling highly accurate decision making. This approach provides greater precision than legacy object-recognition methods, as well as removing the need for painstaking hand-coding of explicit rules. The capabilities with sophisticated software are open-ended. The forthcoming FLIR® Firefly® machine vision camera (available in 2019) incorporates an on-camera deep neural network accelerator based on the Intel® Movidius™ Myriad™ 2 Vision Processing Unit (VPU). The Firefly machine vision camera enables sophisticated machine vision applications, while remaining more cost-effective, simpler to integrate, and more reliable than discrete systems. FLIR® Firefly®: Machine Vision + Deep Learning FLIR engineers accelerated the Firefly’s development cycle using Intel® Movidius™ technology for both prototype development and large-scale commercial production, as shown in Figure 1. Rapid prototyping based on the Intel® Movidius™ Neural Compute Stick (NCS) and Neural Compute SDK streamlined the early development of machine learning in the camera. The production version of the Firefly uses the tiny, stand-alone Intel Movidius Myriad 2 VPU to do two jobs: image signal processing and open platform inference. Once satisfied with neural network performance in the prototyping phase, FLIR engineers took advantage of the VPU’s onboard image signal processor and CPU. Utilizing onboard imaging, convolutional neural network (CNN) and programmable compute capabilities of the chip allowed FLIR to aggressively minimize size, weight, and power consumption. This approach provides a single hardware and software target that simplifies prototyping, while also enabling the production version of CASE STUDY | Reimagined Machine Vision with On-Camera Deep Learning the full camera to be about an inch square, as illustrated in Figure 2. Placing deep neural network acceleration directly on the camera enables inference to be performed at the network edge, rather than having to transmit the raw video stream elsewhere for processing. This approach introduces a number of advantages that improve the overall solution, including the following: Figure 2. Use of the onboard image signal processor and • Real-time operation. Processing in place eliminates CPU enable the Firefly® camera—including its onboard the latency associated with transporting data for off- processing hardware—to be very small in size. camera computation, allowing detection and subsequent responses to be made in real time. “The inspiration for Firefly is to subjectively analyze • Efficiency . Eliminating the need to send raw video data over visual information. For example, it can inspect a the network reduces costs related to bandwidth, storage, and power consumption. manufactured part and identify defects that no one has ever seen before or even anticipated seeing. • Security . On-camera inference enables a simplified, self- contained architecture that reduces the attack surface, and The result will be automation of visual tasks that the relatively small amount of data passed over the wire can be encrypted with minimal impact. previously could only be handled by humans.” – Mike Fussell, Product Marketing Manager, FLIR Systems The Intel Movidius Myriad 2 VPU is a system-on-chip (SoC) design that enables high-performance, on-camera image 1 processing and inference, as illustrated in Figure 3. Key features of the VPU include the following: • Hardware accelerators for image processing are purpose- built for imaging and computer vision. • Streaming hybrid architecture vector engine (SHAVE) 2 processor cores accelerate on-camera inference based on CNNs, with a very long instruction word (VLIW) architecture, including vector data processing that is more optimized for the branching logic of neural networks than the more general-purpose cores found in graphics processing units (GPUs). The FLIR Firefly integrates three discrete devices • General-purpose RISC CPU cores support interaction with 3 onto a single device: external systems, parse and schedule workload processing 1. Camera on the SHAVE processor cores, and execute the actual on- 2. Development board camera inferences. 3. Neural compute stick The advanced firmware that ships with the Firefly adds significant value. Key firmware machine-vision features Figure 1. The FLIR® Firefly® camera was tested (left) with the include the USB3 Vision protocol, eight- and 16-bit raw pixel Intel® Movidius™ Neural Compute Stick and prototyped (right) formats, pixel binning, and selectable region of interest. In with the Intel® Movidius™ Myriad™ 2 vision processing unit. addition, the firmware offers control of the four GPIO ports, allowing other systems to trigger the camera, as well as The FLIR Firefly camera marries machine vision and deep enabling the camera to trigger external equipment such as learning by combining excellent image quality with Sony lighting, actuators, or other cameras. Pregius* sensors, GenICam* compliance for ease of use, and an Intel Movidius Myriad 2 VPU for performing deep neural network inference. Firefly’s ultra-compact footprint and low power consumption make it ideal for implementations with space and power constraints, such as handheld and embedded systems. The camera is also equipped with a USB port for host connectivity as well as four bi-directional general-purpose input/output (GPIO) lines for connection to other systems. The initial version of the Firefly uses a 1.6 MP Sony Pregius CMOS image sensor. This 60-FPS global shutter sensor features excellent imaging performance, even in challenging Figure 3. Pass/fail quality inferences during inspection lighting conditions. Future iterations of the Firefly camera will of manufactured parts with the prototype for the FLIR® offer increased flexibility with additional sensor options. Firefly camera. 2 CASE STUDY | Reimagined Machine Vision with On-Camera Deep Learning Use Cases An Open-Standards Platform for Innovation AI is disruptive in the machine vision field because of its The Firefly is part of an open ecosystem, which allows for ability to answer questions that require judgment, which is tremendous flexibility in terms of interactions with other to say the estimates could not have been specifically defined equipment and software, as well as giving developers the on the basis of preset rules. Deep neural networks are flexibility to take advantage of their tools of choice. The trained on large amounts of sample data and the resultant FLIR Spinnaker* SDK is the GenICam API library that enables trained model is then uploaded to the Firefly camera. Figure CNNs to be uploaded to the camera with the same familiar 4 illustrates examples of use cases enabled by on-camera tools used across FLIR’s machine-vision product lines. It execution of deep neural networks. provides a simple approach to deploying trained networks • Robotic guidance can help industrial, healthcare, and into the field with a user experience similar to uploading consumer robots interact in more sophisticated ways with new firmware. objects, including avoiding obstacles when navigating Developers can use the Intel Movidius NCS to begin work unfamiliar spaces. immediately on applications for Firefly that meet specific • Quality inspection can be automated and sophisticated, real-world scenarios, including appropriate business such as gauging whether variations in a pattern are logic, as well as CNNs tuned for an optimal combination of acceptable in a textile manufacturing scenario. accuracy and speed. The training set size can also be altered • Biometric recognition based on inputs such as face, experimentally, dialing in the required level of subjective thumbprint, or iris scans can be used to govern access decision making. authorization for facilities, computer systems, or other resources. Conclusion • Precision agriculture can draw on the analysis of The upcoming FLIR Firefly
Recommended publications
  • EECS 498/598: Brain-Inspired Computing: Models, Architectures, and Programming
    NEW COURSE ANNOUNCEMENT FOR FALL 2019 EECS 498/598: Brain-Inspired Computing: Models, Architectures, and Programming Time: Tuesday and Thursday 1:30 to 3:00 pm Instructor: Prof. Pinaki Mazumder Phone: 734-763-2107; e-mail: [email protected] Brain-inspired computing is a subset of AI-based machine learning and is generally referred to both deep and shallow artificial neural networks (ANN) and spiking neural networks (SNN). Deep convolutional neural networks (CNN) have made pervasive market inroads in numerous commercial applications and their software implementations are widely studied in computer vision, speech processing and other courses. The purpose of this course will be to study the wide gamut of shallow and deep neural network models, the methodologies for specialized hardware design of popular learning algorithms, as well as adapting hardware architectures on crossbar fabrics of emerging technologies such as memristors and spin torque nanomagnetic devices. Existing software development tools such as TensorFlow, Caffe, and PyTorch will be leveraged to teach various aspects of neuromorphic designs. Prerequisites: Senior undergrad and grad student standing in Electrical Engineering, Computer Engineering, Computer Science or Applied Physics program. Outline: i) Fundamentals of brain-inspired computing and history of neural computing, ii) Basics of linear algebra and probability theory needed for modeling of neural networks, iii) Deep learning by convolutional neural networks such as AlexNet, VGG, GoogLeNet, and ResNet, iv) Deep Neural
    [Show full text]
  • A Deep Neural Network for On-Board Cloud Detection on Hyperspectral Images
    remote sensing Article CloudScout: A Deep Neural Network for On-Board Cloud Detection on Hyperspectral Images Gianluca Giuffrida 1,* , Lorenzo Diana 1 , Francesco de Gioia 1 , Gionata Benelli 2 , Gabriele Meoni 1 , Massimiliano Donati 1 and Luca Fanucci 1 1 Department of Information Engineering, University of Pisa, Via Girolamo Caruso 16, 56122 Pisa PI, Italy; [email protected] (L.D.); [email protected] (F.d.G.); [email protected] (G.M.); [email protected] (M.D.); [email protected] (L.F.) 2 IngeniArs S.r.l., Via Ponte a Piglieri 8, 56121 Pisa PI, Italy; [email protected] * Correspondence: [email protected] Received: 31 May 2020; Accepted: 5 July 2020; Published: 10 July 2020 Abstract: The increasing demand for high-resolution hyperspectral images from nano and microsatellites conflicts with the strict bandwidth constraints for downlink transmission. A possible approach to mitigate this problem consists in reducing the amount of data to transmit to ground through on-board processing of hyperspectral images. In this paper, we propose a custom Convolutional Neural Network (CNN) deployed for a nanosatellite payload to select images eligible for transmission to ground, called CloudScout. The latter is installed on the Hyperscout-2, in the frame of the Phisat-1 ESA mission, which exploits a hyperspectral camera to classify cloud-covered images and clear ones. The images transmitted to ground are those that present less than 70% of cloudiness in a frame. We train and test the network against an extracted dataset from the Sentinel-2 mission, which was appropriately pre-processed to emulate the Hyperscout-2 hyperspectral sensor.
    [Show full text]
  • AI EDGE up Series
    AI EDGE UP Series Jason Lu Director, PSM AAEON Centralized AI = Real Time Decision an the Edge AI at the Edge with CPUs + GPUs = Not as Efficient (Gflops/W) AI On The Edge for Robots, Drones, Portable/Mobile Devices Outdoor Devices = Efficient (Gflops/W) Reasonable Cost Industrial Grade Archit. CREDIT SIZED STACKABLE ARTIFICIAL INTELLIGENCE PLATFORM FULLY POWERED by Intel® TECHNOLOGY UP CORE PLUS X86 AI PLUS FPGA AI CORE VPU Intel® Intel® Intel® Cyclone® MOVIDIUS™ Atom x5/x7 + 10 GX + Celeron/Pentium Myriad 2 Low Power Consumption Programmable Versatile Architecture Video Processing Unit Quad Core 64 bit x86 Architecture (Hardware Neural Network) Super Rich I/O GPU integrated Optimized for Machine Learning Good for CPU Offload, and Real Time Rich I/O Real Time High Speed Signal Analysis Pattern Recognition UP CORE PLUS Credit Card Form Factor Low Power Consumption 6th Generation Atom, Celeron Stackable & Expandable Pentium Quad Core 64 bit x86 Architecture GPU integrated Low Power Consumption Intel Sensor HUB Cost Effective Solution Support of Windows 10, Linux Ubuntu, Yocto, Debian UP CORE PLUS Intel® Atom™ x5 / x7 / Celeron ®/ Pentium ® 2/4/8 GB DDRL 4 Dual Channel 2.400 MHz 32/64/128 GB eMMC DP 4K@60 Hz eDP CSI 2 Lane + CSI 4 Lane USB 3.0 Type A USB 3.0 Type B WiFi 802.11 AC 2T2R 2 x 100 pin expansion connector Compatible with UP Core expansion board 12V DC In AI PLUS Programmable Versatile Architecture Rich high speed I/O Credit Card Expansion Board Hardened Floating Point Capabilities Good for CPU Off-loading Reach I/O Real Time
    [Show full text]
  • Artificial Intelligence Computing for Automotive Webcast for Xilinx Adapt: Automotive: Anywhere January 12Th, 2021
    From Technologies to Markets Artificial Intelligence Computing for Automotive Webcast for Xilinx Adapt: Automotive: Anywhere January 12th, 2021 © 2020 AGENDA • Scope • From CPU to accelerators to platforms • Levels of autonomy • Forecasts • Trends • Ecosystem • Conclusions Artificial Intelligence Computing for Automotive | Webcast for Xilinx Adapt: Automotive: Anywhere | www.yole.fr | ©2020 2 SCOPE Not included in the report Robotic cars Autonomous driving Data center computing Cloud computing Performance Understand the impact of Artificial Centralized computing Intelligence on the computing Level 5 Level 4 hardware for automotive Advanced Driver- Assistance Systems Driver environment Infotainment Level 3 (ADAS) Multimedia computing Level 2 Edge computing Computing close to Gesture Speech sensor recognition recognition Artificial Intelligence Computing for Automotive | Webcast for Xilinx Adapt: Automotive: Anywhere | www.yole.fr | ©2020 3 FROM GENERAL APPLICATIONS TO NEURAL NETWORKS The focus for the semiconductor industry is shifting from to General Applications + Neural Networks General workloads + Deep learning workloads • Integer operations + Floating operations • Tend to be sequential in nature + Tend to be parallel in nature Parallelization is key Scalar Engines Platforms and Accelerators explaining why Few powerful cores that tackle computing Hundred of specialized cores working in this is so tasks sequentially parallel popular Only allocate a portion of transistors for Most transistors are devoted to floating floating point operations
    [Show full text]
  • Synopsys and Movidius First-Pass Silicon Success for Myriad 2 Vision Processing Unit with Designware USB 3.0, LPDDR3/2 & MIPI D-PHY IP
    Success Story Synopsys and Movidius First-Pass Silicon Success for Myriad 2 Vision Processing Unit with DesignWare USB 3.0, LPDDR3/2 & MIPI D-PHY IP Selecting Synopsys DesignWare IP and design tools for our low-power, high-performance Myriad 2 VPU gave us peace of mind, a seamless and mature end-to-end design process, and most importantly, first-silicon success.” Sean Mitchell Chief Operating Officer, Movidius Business Benefits Movidius is a vision processor company that designs ``Focused design resources on their core compact, high-performance, ultra low power, competencies computational imaging and vision processing chips, ``Reduced integration risk and achieved first-pass software and development tools, and reference silicon success with DesignWare IP designs. Movidius’ architecture delivers a new wave ``Received excellent technical support from an of intelligent and contextually aware experiences expert team for consumers in mobile and wearable devices, robotics, and other consumer and industrial camera applications. Overview Movidius’ Myriad 2 vision processing unit (VPU) is Challenges designed for high-performance, low-power computer vision applications including wearable devices, ``Obtain a portfolio of proven IP solutions smartphones and tablets. Its unique combination of ``Differentiate the SoC by meeting aggressive power high performance, low power, and programmability and performance budgets enhance the image processing capabilities of ``Deliver a complex 28nm design on a tight timeline devices used in indoor navigation, 3D scanning, and immersive gaming with multi-aperture and multi- spectral cameras. Synopsys Solutions DesignWare® IP including: Movidius’ focus on mobile devices makes minimizing area and power consumption while maximizing ``MIPI D-PHY performance paramount. The Myriad 2 VPU offers ``USB 3.0 PHY and Dual Role Device Controller a small footprint that delivers high computational ``Gen2 DDR multiPHY supporting LPDDR3/2 and images with low power consumption.
    [Show full text]
  • Semi Autonomous Vehicle Intelligence: Real Time Target Tracking for Vision Guided Autonomous Vehicles
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2007-03-16 Semi Autonomous Vehicle Intelligence: Real Time Target Tracking For Vision Guided Autonomous Vehicles Jonathan D. Anderson Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Electrical and Computer Engineering Commons BYU ScholarsArchive Citation Anderson, Jonathan D., "Semi Autonomous Vehicle Intelligence: Real Time Target Tracking For Vision Guided Autonomous Vehicles" (2007). Theses and Dissertations. 869. https://scholarsarchive.byu.edu/etd/869 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. SEMI AUTONOMOUS VEHICLE INTELLIGENCE: REAL TIME TARGET TRACKING FOR VISION GUIDED AUTONOMOUS VEHICLES by Jonathan D. Anderson A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Department of Electrical and Computer Engineering Brigham Young University April 2007 BRIGHAM YOUNG UNIVERSITY GRADUATE COMMITTEE APPROVAL of a thesis submitted by Jonathan D. Anderson This thesis has been read by each member of the following graduate committee and by majority vote has been found to be satisfactory. Date Dah-Jye Lee, Chair Date James K. Archibald Date Doran K Wilde BRIGHAM YOUNG UNIVERSITY As chair of the candidate’s graduate committee, I have read the thesis of Jonathan D. Anderson in its final form and have found that (1) its format, citations, and bibliographical style are consistent and acceptable and fulfill university and department style requirements; (2) its illustrative materials including figures, tables, and charts are in place; and (3) the final manuscript is satisfactory to the graduate committee and is ready for submission to the university library.
    [Show full text]
  • A Comparative Analysis of Tightly-Coupled Monocular, Binocular, and Stereo VINS
    A Comparative Analysis of Tightly-coupled Monocular, Binocular, and Stereo VINS Mrinal K. Paul, Kejian Wu, Joel A. Hesch, Esha D. Nerurkar, and Stergios I. Roumeliotisy Abstract— In this paper, a sliding-window two-camera vision- few works address the more computationally demanding aided inertial navigation system (VINS) is presented in the tightly-coupled stereo VINS. To the best of our knowledge, square-root inverse domain. The performance of the system Leutenegger et al. [7] and Manderson et al. [10] present the is assessed for the cases where feature matches across the two-camera images are processed with or without any stereo only tightly-coupled stereo VINS, which operate in real- constraints (i.e., stereo vs. binocular). To support the com- time but only on desktop CPUs. Manderson et al. [10] parison results, a theoretical analysis on the information gain employ an extension of PTAM [11] where the tracking and when transitioning from binocular to stereo is also presented. mapping pipelines are decoupled, and hence is inconsistent.1 Additionally, the advantage of using a two-camera (both stereo On the other hand, Leutenegger et al. [7] propose a consistent and binocular) system over a monocular VINS is assessed. Furthermore, the impact on the achieved accuracy of different keyframe-based stereo simultaneous localization and map- image-processing frontends and estimator design choices is ping (SLAM) algorithm that performs nonlinear optimization quantified. Finally, a thorough evaluation of the algorithm’s over both visual and inertial cost terms. In order to maintain processing requirements, which runs in real-time on a mobile the sparsity of the system, their approach employs the follow- processor, as well as its achieved accuracy as compared to ing approximation: Instead of marginalizing the landmarks alternative approaches is provided, for various scenes and motion profiles.
    [Show full text]
  • Using Computer Vision in Retail Analytics
    Marcus Norrgård USING COMPUTER VISION IN RETAIL ANALYTICS MARCUS NORRGÅRD STRATACACHE OY Master of Science Thesis Supervisors: Annamari Soini, Johan Lilius Advisor: Niclas Jern Software Engineering Department of Information Technology Åbo Akademi University 2020 Marcus Norrgård ABSTRACT This thesis comprises the creation of a computer vision-based analytics platform for making age and gender-based inference for retail analytics. Computer vision in retail spaces is an emerging field with interesting opportunities for research. The thesis utilizes modern technologies to create a machine learning pipeline for training two convolutional neural networks for classifying age and gender. Furthermore, this thesis examines deployment and inference computing of the trained neural network models on a Raspberry Pi single board computer. The results presented in this thesis demonstrate the feasibility of the created solution. i Marcus Norrgård ACKNOWLEDGEMENTS I would like to thank professor Johan Lilius and my supervisor Annamari Soini for their help and guidance during the writing of this thesis. I would also like to thank my advisor Niclas Jern for his support and my employer Stratacache OY for giving me the opportunity to make this project a reality. Marcus Norrgård Turku, April 30, 2020 ii Marcus Norrgård Table of Contents ABSTRACT ....................................................................................................................... i ACKNOWLEDGEMENTS .............................................................................................
    [Show full text]
  • Cost-Effective Hardware Accelerator Recommendation for Edge Computing∗
    Cost-effective Hardware Accelerator Recommendation for Edge Computing∗ Xingyu Zhou, Robert Canady, Shunxing Bao, Aniruddha Gokhale Dept of EECS, Vanderbilt University, Nashville,TN (xingyu.zhou,robert.e.canady, shunxing.bao, a.gokhale)@vanderbilt.edu Abstract quire millions of operations for each inference [16]. Hardware accelerator devices have emerged as an alter- Thus, to maintain low latencies and compliance with native to traditional CPUs since they not only help per- the power sensitivity of edge deployment, smaller mod- form computations faster but also consume much less els [8] operating on more efficient hardware are pre- energy than a traditional CPU thereby helping to lower ferred [14]. To that end, hardware acceleration technolo- both capex (i.e., procurement costs) and opex (i.e., en- gies, such as field programmable gate arrays (FPGAs), ergy usage). However, since different accelerator tech- graphical processing units (GPUs) and application- nologies can illustrate different traits for different appli- specific integrated circuits (ASICs) among others, have cation types that run at the edge, there is a critical need shown significant promise for edge computing [20]. for effective mechanisms that can help developers select With the proliferation of different accelerator tech- the right technology (or a mix of) to use in their context, nologies, developers are faced with a significant which is currently lacking. To address this critical need, dilemma: which accelerator technology is best suited we propose a recommender system to help users rapidly for their application needs such that response times are and cost-effectively select the right hardware accelera- met under different workload variations, the overall cost tor technology for a given compute-intensive task.
    [Show full text]
  • Synopsys Insight
    Synopsys Insight DESIGNING A SMARTER FUTURE FROM SILICON TO SOFTWARE Subscribe Issue 2 | 2016 Smart, Secure Everything …from Silicon to Software EDA Tools Semiconductor IP Software Integrity Verify Software Bring-Up IP for the Era of FinFET and Software Is Everywhere — And on Your IC Design Before Smart Designs So Are the Vulnerabilities Sending It to the Fab From Silicon to Software: A Agile Development for How to Create a Testbench Quick Guide to Securing IoT Application Security Managers With Synopsys Verification IP Edge Devices and UVM in 5 Steps Addressing Physical Design Challenges in the Age of Customer Spotlight Additional Resources FinFET and Smarter Design Multi-Level Physical Hierarchy Movidius Keynotes IC Compiler Events Floorplanning vs. Two-Level II Technology Symposium With Floorplanning Vision of Smart, Connected Seminars Machines and Networks Webinars Synopsys Users Group (SNUG) Contact us: [email protected] Customer Spotlight Movidius Keynotes IC Compiler II Technology Symposium With Vision of Smart, Connected Machines and Networks Mike Santarini, Director of Corporate Communications Strategy, Synopsys “Is it a Chihuahua’s face or a blueberry muffin?” That is one of many problems that can be solved when deep neural networks are implemented close to the image sensors at the network’s edge, where SoCs with smart vision sensing can perform low-power image classification—a system envisioned by the high-tech industry now striving to bring higher intelligence to everything connected. In the keynote at the Synopsys IC Compiler II Technology Symposium (where Intel, Samsung, Broadcom, Mellanox and ecosystem partners ARM and TSMC also presented), Movidius’ vice president of marketing, Gary Brown, captivated the audience of 250 IC design experts by laying out Movidius’ vision of how a mix of innovative architectural design and advanced IC design tools (such as Synopsys’ IC Compiler II™) is enabling companies like Movidius to implement SoCs with greater algorithmic intelligence, advanced vision sensing, and deep learning techniques.
    [Show full text]
  • Benchmarking of Cnns for Low-Cost, Low-Power Robotics Applications
    Benchmarking of CNNs for Low-Cost, Low-Power Robotics Applications Dexmont Pena, Andrew Forembski, Xiaofan Xu, David Moloney Abstract—This article presents the first known benchmark of Convolutional Neural Networks (CNN) with a focus on inference time and power consumption. This benchmark is important for low-cost and low-power robots running on batteries where it is required to obtain good performance at the minimal power consumption. The CNN are benchmarked either on a Raspberry Pi, Intel Joule 570X or on a USB Neural Compute Stick (NCS) based on the Movidius MA2450 Vision Processing Unit (VPU). Inference performance is evaluated for TensorFlow and Caffe running either natively on Raspberry Pi or Intel Joule and compared against hardware acceleration obtained by using the NCS. The use of the NCS demonstrates up to 4x faster inference time for some of the networks while keeping a reduced power Fig. 1: Embedded environments used to evaluate the inference consumption. For robotics applications this translates into lower time and power consumption of the CNNs. From left to right: latency and smoother control of a robot with longer battery NCS, Intel Joule 570X, Raspberry Pi 3 Model B. life and corresponding autonomy. As an application example, a low-cost robot is used to follow a target based on the inference obtained from a CNN. bedded platforms. Then we show an application of a low-cost follower robot. I. INTRODUCTION Recent advances in machine learning have been shown to II. RELATED WORK increase the ability of machines to classify and locate objects Current benchmarks for Deep Learning Software tools limit using Convolutional Neural Networks (CNN).
    [Show full text]
  • Download Apps in Their Smartphones to Interact with Eot Devices
    sensors Article Eyes of Things Oscar Deniz 1,*, Noelia Vallez 1, Jose L. Espinosa-Aranda 1, Jose M. Rico-Saavedra 1, Javier Parra-Patino 1, Gloria Bueno 1, David Moloney 2, Alireza Dehghani 2, Aubrey Dunne 2, Alain Pagani 3, Stephan Krauss 3, Ruben Reiser 3, Martin Waeny 4, Matteo Sorci 5, Tim Llewellynn 5, Christian Fedorczak 6, Thierry Larmoire 6, Marco Herbst 7, Andre Seirafi 8 and Kasra Seirafi 8 1 VISILAB, University of Castilla-La Mancha, E.T.S.I.Industriales, Avda Camilo Jose Cela s/n, Ciudad Real 13071, Spain; [email protected] (N.V.); [email protected] (J.L.E.-A.); [email protected] (J.M.R.-S.); [email protected] (J.P.-P.); [email protected] (G.B.) 2 Movidius, 1st Floor, O’Connell Bridge House, D’Olier Street, Dublin 2, Ireland; [email protected] (D.M.); [email protected] (A.D.); [email protected] (A.D.) 3 DFKI, Augmented Vision Research Group, Tripstaddterstr. 122, 67663 Kaiserslautern, Germany; [email protected] (A.P.); [email protected] (S.K.); [email protected] (R.R.) 4 Awaiba, Madeira Tecnopolo, 9020-105 Funchal, Portugal; [email protected] 5 nViso SA, PSE-D, Site EPFL, CH-1015 Lausanne, Switzerland; [email protected] (M.S.); [email protected] (T.L.) 6 THALES Communications & Security, 4 Avenue des Louvresses, 92230 Gennevilliers, France; [email protected] (C.F.); [email protected] (T.L.) 7 Evercam, 6-7 Granby Row, Dublin 1, D01 FW20, Ireland; [email protected] 8 Fluxguide, Burggasse 7-9/9, 1070 Vienna, Austria; andre@fluxguide.com (A.S.); kasra@fluxguide.com (K.S.) * Correspondence: [email protected] Academic Editors: Luca Roselli, Federico Alimenti and Stefania Bonafoni Received: 30 March 2017; Accepted: 17 May 2017; Published: 21 May 2017 Abstract: Embedded systems control and monitor a great deal of our reality.
    [Show full text]