Categorical Type Theory Preface

Total Page:16

File Type:pdf, Size:1020Kb

Categorical Type Theory Preface Preface Categorical Typ e Theory Acknowledgements PhD thesis of The rst to be mentioned here is Henk Barendregt He provided an atmosphere with the rightcombination of intellectual freedom and stimulation for this work to emerge The years in Nijmegen havebeenvery pleasant ones due also to the other memb ers of the lamb da group I thank all of them for their p ersonal contribution Bart Jacobs Secondly I wish to express my indebtedness to Ieke Mo erdijk His comments on mywork were b oth sharp and constructive They resulted in many improvements notably in chapters and Over the past few years I enjoyed stimulating discussions on categorical typ e University of Nijmegen The Netherlands theory with Andrea Asp erti Javier Blanco PierreLouis Curien Thomas Ehrhard september Martin Hyland Giusepp e Longo Simone Martini Eugenio Moggi DuskoPavlovic Andy Pitts and Thomas Streicher Among these I want to single out Eugenio and Thomas Streicher writing a joint pap er with them formed an essential stage in my understanding of the sub ject Much of the folklore in this eld I learned from Thomas in often lively conversations a Many of the technical asp ects of writing in L T Xhave b een explained to me by E Erik Barendsen Paul Taylors macros for diagrams and pro oftrees have b een used throughout Finally I want to acknowledge supp ort from two funds of the Europ ean Com munity The Jumelage pro ject enabled me to stay during the rst half of at the University of Pisa The last bits of this thesis were put together in Marchand April at Cambridge University supp orted by the CLICS pro ject Prerequisites Promotor Prof Dr HP Barendregt Familiarity with basic category theory is asssumed The reader is supp osed to have Copromotor Dr I Mo erdijk aworking knowledge of functors adjunctions lo cally cartesian closed categories Afdeling Wiskunde Rijksuniversiteit Utrecht Yoneda etc Lets say that the rst ve chapters in Mac Lane form the starting p oint A good intro duction would b e Barr Wells the parts ab out sketches are not relevant though Two points may go beyond this basic category theory In the rst chapter categories are mentioned o ccasionally Briey a category is a category where the morphisms b etween anytwo ob jects are ob jects for a category i ii PREFACE again this yields two sorts of comp osition vertical and horizontal which should satisfy certain interchange laws see eg Mac Lane The basic thing used is that adjointness and equivalence are categorical notions More information may b e found in Kelly and Street In some examples top oses o ccur The exp ositions there are not selfcontained and the reader is referred to Johnstone Barr Wells or Bell for Contents more information Information for reading One of the main concerns in this work is the connection b etween two relations typ e Preface i theoretical dep endence on and categorical b eing bred over Before plunging into technical exp ositions the reader maywant to see this main line and take a lo ok Intro duction and summary v at sections and rst Basic Fibred Category Theory The category theory needed to describ e calculi with typ e dep endency is denitely Fibrations more advanced and interesting than the one for calculi without such dep endency Category theory over a base category The latter prop ositional systems are describ ed categorically in chapter and the Indexed categories and split brations prerequisites may b e found in chapter esp sections and This organization Internal categories has b een chosen to enable reading only these prop ositional parts The subsequent Quantication along cartesian pro jections chapter contains the technical work on typ e dep endency Typ e Systems Informal description Rules Examples of typ e systems The Prop ositional Setting Typ e theoretical and category theoretical settings Denitions and examples Some constructions More Fibred Category Theory Comprehension categories Quantication along arbitrary pro jections Closed comprehension categories Category theory over a bration Lo cally small brations Applications From typ e theory to category theory CCcategories HMLcategories HOLcategories and PREDcategories The untyp ed lamb da calculus revisited iii iv CONTENTS References Index Samenvatting Dutch Summary Curriculum Vitae Intro duction and summary Categorical typ e theory is understo o d here as the eld concerned b oth with category theory and typ e theory and esp ecially with their interplay As such it grew out of categorical logic Roughlywe view a logic as a typ e theory in which prop ositions can have at most one pro ofob ject Indeed one nds that the prop ositional part of the structures used in categorical logic are preordered categories where one has at most one arrowbetween two ob jects Thus typ e theory exhibits more categorical structure than logic A logician might want to point out that there are no small complete categories other than preorders Quite reassuringly one do es havesmall complete bred categories which are not preordered see and further These giveinteresting examples in categorical typ e theory Having mentioned these dierences b etween categorical logic and typ e theorywe stress the historic continuity the basic notions used in categorical typ e theory have b een develop ed b efore in categorical logic In this thesis one nds forms of indexing quantication by adjoints comprehension and algebraic theories which are all based on previous work in logic esp ecially byFLawvere see eg Lawvere or Ko ck Reyes Wewant to emphasize that these notions require some renements and adjustments to make them suitable for typ e theoretical exp o sitions For example we describ e quantication by adjoints to weakening functors and not to substitution functors therefore a general form of weakening functor will be intro duced see and Typ ed lamb da calculus started with Curry Feys and Howard who considered prop ositional asp ects Typ e dep endency was brought in by de Bruijn with the AUTOMATH pro ject see eg de Bruijn followed by MartinLof with his intuitionistic typ e theory see eg MartinLof In the s the eld grew rapidly mainly by the interest shown from the computer science community Categorically prop ositional calculi are straightforward except mayb e for higher order quantication but that is not what wewant to fo cus on now Contexts are simply cartesian pro ducts of the constituenttyp es since there is no typ e dep endency involved In case such dep endencies mayoccur things b ecome categorically more interesting contexts are no longer cartesian pro ducts but a form of disjoint sum is needed to mo del such dep ending chains of typ es The rst studies are Cartmell and Seely It thus turned out that the main op eration which had to be explained cate gorically was context extension or context comprehension as we sometimes v vi INTRODUCTION AND SUMMARY INTRODUCTION AND SUMMARY vii like to call it given a context and a typ e Typ e what is the mean ing of the context x ie extended with an extra v ariable declaration For As already mentioned this work can be seen as a survey of categorical typ e this purp ose various notions have b een intro duced contextual categories Cartmell theory It seems therefore appropriate to p oint out what we consider to b e our own Streicher categories with attributes Cartmell Moggi contributions displaymap categories Taylor Hyland Pitts Lamarche The notion of a comprehension category and the related results see sections Dcategories Ehrhard a b IC of ICs Obtulowicz categories More sp ecically the double role these categories play one time with brations Pitts comprehensive brations Pavlovic and com as a mo del and one time as a domain of quantication Also the notion of prehension categories Jacobs In fact there are so many notions around a closed comprehension category it can b e seen as a syntaxfree description that almost everyone working in the eld can cherish a private one of a structure with dep endent pro ducts and sums which has go o d closure In this thesis we work exclusively with comprehension categories to describ e prop erties typ e dep endency Among the ab ove alternatives comprehension categories are in our opinion at the rightlevel of generality and abstraction once the notion is fully The notion of a setting see which formalizes the typ e theoretical rela understo o d closure prop erties like under changeofbase or generalizations like tion of dep endency The exp osition that b eing bred over is the categorical over a bration suggest themselves in an obvious way Much of this work can b e counterpart of this relation read as a systematic exp osition of categorical typ e theory in terms of comprehension categories The translation from typ e theoretical settings and features to categorical set We briey outline the contents of the ve chapters The rst one is ab out tings and features using constant brations and constant comprehension indexing of categories it contains the basic denitions and results mainly ab out categories Constant brations
Recommended publications
  • An Introduction to Category Theory and Categorical Logic
    An Introduction to Category Theory and Categorical Logic Wolfgang Jeltsch Category theory An Introduction to Category Theory basics Products, coproducts, and and Categorical Logic exponentials Categorical logic Functors and Wolfgang Jeltsch natural transformations Monoidal TTU¨ K¨uberneetika Instituut categories and monoidal functors Monads and Teooriaseminar comonads April 19 and 26, 2012 References An Introduction to Category Theory and Categorical Logic Category theory basics Wolfgang Jeltsch Category theory Products, coproducts, and exponentials basics Products, coproducts, and Categorical logic exponentials Categorical logic Functors and Functors and natural transformations natural transformations Monoidal categories and Monoidal categories and monoidal functors monoidal functors Monads and comonads Monads and comonads References References An Introduction to Category Theory and Categorical Logic Category theory basics Wolfgang Jeltsch Category theory Products, coproducts, and exponentials basics Products, coproducts, and Categorical logic exponentials Categorical logic Functors and Functors and natural transformations natural transformations Monoidal categories and Monoidal categories and monoidal functors monoidal functors Monads and Monads and comonads comonads References References An Introduction to From set theory to universal algebra Category Theory and Categorical Logic Wolfgang Jeltsch I classical set theory (for example, Zermelo{Fraenkel): I sets Category theory basics I functions from sets to sets Products, I composition
    [Show full text]
  • Categorical Semantics of Constructive Set Theory
    Categorical semantics of constructive set theory Beim Fachbereich Mathematik der Technischen Universit¨atDarmstadt eingereichte Habilitationsschrift von Benno van den Berg, PhD aus Emmen, die Niederlande 2 Contents 1 Introduction to the thesis 7 1.1 Logic and metamathematics . 7 1.2 Historical intermezzo . 8 1.3 Constructivity . 9 1.4 Constructive set theory . 11 1.5 Algebraic set theory . 15 1.6 Contents . 17 1.7 Warning concerning terminology . 18 1.8 Acknowledgements . 19 2 A unified approach to algebraic set theory 21 2.1 Introduction . 21 2.2 Constructive set theories . 24 2.3 Categories with small maps . 25 2.3.1 Axioms . 25 2.3.2 Consequences . 29 2.3.3 Strengthenings . 31 2.3.4 Relation to other settings . 32 2.4 Models of set theory . 33 2.5 Examples . 35 2.6 Predicative sheaf theory . 36 2.7 Predicative realizability . 37 3 Exact completion 41 3.1 Introduction . 41 3 4 CONTENTS 3.2 Categories with small maps . 45 3.2.1 Classes of small maps . 46 3.2.2 Classes of display maps . 51 3.3 Axioms for classes of small maps . 55 3.3.1 Representability . 55 3.3.2 Separation . 55 3.3.3 Power types . 55 3.3.4 Function types . 57 3.3.5 Inductive types . 58 3.3.6 Infinity . 60 3.3.7 Fullness . 61 3.4 Exactness and its applications . 63 3.5 Exact completion . 66 3.6 Stability properties of axioms for small maps . 73 3.6.1 Representability . 74 3.6.2 Separation . 74 3.6.3 Power types .
    [Show full text]
  • Logic and Categories As Tools for Building Theories
    Logic and Categories As Tools For Building Theories Samson Abramsky Oxford University Computing Laboratory 1 Introduction My aim in this short article is to provide an impression of some of the ideas emerging at the interface of logic and computer science, in a form which I hope will be accessible to philosophers. Why is this even a good idea? Because there has been a huge interaction of logic and computer science over the past half-century which has not only played an important r^olein shaping Computer Science, but has also greatly broadened the scope and enriched the content of logic itself.1 This huge effect of Computer Science on Logic over the past five decades has several aspects: new ways of using logic, new attitudes to logic, new questions and methods. These lead to new perspectives on the question: What logic is | and should be! Our main concern is with method and attitude rather than matter; nevertheless, we shall base the general points we wish to make on a case study: Category theory. Many other examples could have been used to illustrate our theme, but this will serve to illustrate some of the points we wish to make. 2 Category Theory Category theory is a vast subject. It has enormous potential for any serious version of `formal philosophy' | and yet this has hardly been realized. We shall begin with introduction to some basic elements of category theory, focussing on the fascinating conceptual issues which arise even at the most elementary level of the subject, and then discuss some its consequences and philosophical ramifications.
    [Show full text]
  • Notes on Categorical Logic
    Notes on Categorical Logic Anand Pillay & Friends Spring 2017 These notes are based on a course given by Anand Pillay in the Spring of 2017 at the University of Notre Dame. The notes were transcribed by Greg Cousins, Tim Campion, L´eoJimenez, Jinhe Ye (Vincent), Kyle Gannon, Rachael Alvir, Rose Weisshaar, Paul McEldowney, Mike Haskel, ADD YOUR NAMES HERE. 1 Contents Introduction . .3 I A Brief Survey of Contemporary Model Theory 4 I.1 Some History . .4 I.2 Model Theory Basics . .4 I.3 Morleyization and the T eq Construction . .8 II Introduction to Category Theory and Toposes 9 II.1 Categories, functors, and natural transformations . .9 II.2 Yoneda's Lemma . 14 II.3 Equivalence of categories . 17 II.4 Product, Pullbacks, Equalizers . 20 IIIMore Advanced Category Theoy and Toposes 29 III.1 Subobject classifiers . 29 III.2 Elementary topos and Heyting algebra . 31 III.3 More on limits . 33 III.4 Elementary Topos . 36 III.5 Grothendieck Topologies and Sheaves . 40 IV Categorical Logic 46 IV.1 Categorical Semantics . 46 IV.2 Geometric Theories . 48 2 Introduction The purpose of this course was to explore connections between contemporary model theory and category theory. By model theory we will mostly mean first order, finitary model theory. Categorical model theory (or, more generally, categorical logic) is a general category-theoretic approach to logic that includes infinitary, intuitionistic, and even multi-valued logics. Say More Later. 3 Chapter I A Brief Survey of Contemporary Model Theory I.1 Some History Up until to the seventies and early eighties, model theory was a very broad subject, including topics such as infinitary logics, generalized quantifiers, and probability logics (which are actually back in fashion today in the form of con- tinuous model theory), and had a very set-theoretic flavour.
    [Show full text]
  • Categorical Logic from a Categorical Point of View
    Categorical logic from a categorical point of view Michael Shulman DRAFT for AARMS Summer School 2016 Version of July 28, 2016 2 ii Contents Prefacei 0 Introduction3 0.1 Appetizer: inverses in group objects................3 0.2 On syntax and free objects.....................8 0.3 On type theory and category theory................ 12 0.4 Expectations of the reader...................... 16 1 Unary type theories 19 1.1 Posets................................. 19 1.2 Categories............................... 23 1.2.1 Primitive cuts......................... 24 1.2.2 Cut admissibility....................... 29 1.3 Meet-semilattices........................... 39 1.3.1 Sequent calculus for meet-semilattices........... 40 1.3.2 Natural deduction for meet-semilattices.......... 44 1.4 Categories with products...................... 47 1.5 Categories with coproducts..................... 56 1.6 Universal properties and modularity................ 61 1.7 Presentations and theories...................... 63 1.7.1 Group presentations..................... 64 1.7.2 Category presentations.................... 66 1.7.3 ×-presentations........................ 68 1.7.4 Theories............................ 75 2 Simple type theories 85 2.1 Towards multicategories....................... 85 2.2 Introduction to multicategories................... 89 2.3 Multiposets and monoidal posets.................. 93 2.3.1 Multiposets.......................... 93 2.3.2 Sequent calculus for monoidal posets............ 95 2.3.3 Natural deduction for monoidal posets........... 99 2.4
    [Show full text]
  • Lecture Notes: Introduction to Categorical Logic
    Lecture Notes: Introduction to Categorical Logic [DRAFT: January 16, 2017] Steven Awodey Andrej Bauer January 16, 2017 Contents 1 Review of Category Theory 7 1.1 Categories . 7 1.1.1 The empty category 0 .................... 8 1.1.2 The unit category 1 ..................... 8 1.1.3 Other finite categories . 8 1.1.4 Groups as categories . 8 1.1.5 Posets as categories . 9 1.1.6 Sets as categories . 9 1.1.7 Structures as categories . 9 1.1.8 Further Definitions . 10 1.2 Functors . 11 1.2.1 Functors between sets, monoids and posets . 12 1.2.2 Forgetful functors . 12 1.3 Constructions of Categories and Functors . 12 1.3.1 Product of categories . 12 1.3.2 Slice categories . 13 1.3.3 Opposite categories . 14 1.3.4 Representable functors . 14 1.3.5 Group actions . 16 1.4 Natural Transformations and Functor Categories . 16 1.4.1 Directed graphs as a functor category . 18 1.4.2 The Yoneda Embedding . 19 1.4.3 Equivalence of Categories . 21 1.5 Adjoint Functors . 23 1.5.1 Adjoint maps between preorders . 24 1.5.2 Adjoint Functors . 26 1.5.3 The Unit of an Adjunction . 28 1.5.4 The Counit of an Adjunction . 30 1.6 Limits and Colimits . 31 1.6.1 Binary products . 31 1.6.2 Terminal object . 32 1.6.3 Equalizers . 32 1.6.4 Pullbacks . 33 1.6.5 Limits . 35 [DRAFT: January 16, 2017] 4 1.6.6 Colimits . 39 1.6.7 Binary Coproducts .
    [Show full text]
  • An Institutional View on Categorical Logic and the Curry-Howard-Tait-Isomorphism
    An Institutional View on Categorical Logic and the Curry-Howard-Tait-Isomorphism Till Mossakowski1, Florian Rabe2, Valeria De Paiva3, Lutz Schr¨oder1, and Joseph Goguen4 1 Department of Computer Science, University of Bremen 2 School of Engineering and Science, International University of Bremen 3 Intelligent Systems Laboratory, Palo Alto Research Center, California 4 Dept. of Computer Science & Engineering, University of California, San Diego Abstract. We introduce a generic notion of propositional categorical logic and provide a construction of an institution with proofs out of such a logic, following the Curry-Howard-Tait paradigm. We then prove logic-independent soundness and completeness theorems. The framework is instantiated with a number of examples: classical, intuitionistic, linear and modal propositional logics. Finally, we speculate how this framework may be extended beyond the propositional case. 1 Introduction The well-known Curry-Howard-Tait isomorphism establishes a correspondence between { propositions and types { proofs and terms { proof reductions and term reductions. Moreover, in this context, a number of deep correspondences between cate- gories and logical theories have been established (identifying `types' with `objects in a category'): conjunctive logic cartesian categories [19] positive logic cartesian closed categories [19] intuitionistic propositional logic bicartesian closed categories [19] classical propositional logic bicartesian closed categories with [19] ::-elimination linear logic ∗-autonomous categories [33] first-order logic hyperdoctrines [31] Martin-L¨of type theory locally cartesian closed categories [32] Here, we present work aimed at casting these correspondences in a common framework based on the theory of institutions. The notion of institution arose within computer science as a response to the population explosion among logics in use, with the ambition of doing as much as possible at a level of abstraction independent of commitment to any particular logic [16, 18].
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Smooth Field Theories and Homotopy Field Theories Permalink https://escholarship.org/uc/item/8049k3bs Author Wilder, Alan Cameron Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Smooth Field Theories and Homotopy Field Theories by Alan Cameron Wilder A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Peter Teichner, Chair Associate Professor Ian Agol Associate Professor Michael Hutchings Professor Mary K. Gaillard Fall 2011 Smooth Field Theories and Homotopy Field Theories Copyright 2011 by Alan Cameron Wilder 1 Abstract Smooth Field Theories and Homotopy Field Theories by Alan Cameron Wilder Doctor of Philosophy in Mathematics University of California, Berkeley Professor Peter Teichner, Chair In this thesis we assemble machinery to create a map from the field theories of Stolz and Teichner (see [ST]), which we call smooth field theories, to the field theories of Lurie (see [Lur1]), which we term homotopy field theories. Finally, we upgrade this map to work on inner-homs. That is, we provide a map from the fibred category of smooth field theories to the Segal space of homotopy field theories. In particular, along the way we present a definition of symmetric monoidal Segal space, and use this notion to complete the sketch of the defintion of homotopy bordism category employed in [Lur1] to prove the cobordism hypothesis. i To Kyra, Dashiell, and Dexter for their support and motivation.
    [Show full text]
  • Natural Number Objects in Dialectica Categories
    Available online at www.sciencedirect.com Electronic Notes in Theoretical Computer Science 305 (2014) 53–65 www.elsevier.com/locate/entcs Natural Number Objects in Dialectica Categories Valeria de Paiva1,2 NLU Research Lab Nuance Communications, Inc. Sunnyvale, CA, USA Charles Morgan3 Department of Mathematics University College London London, United Kingdom Samuel G. da Silva4 Departamento de Matem´atica Universidade Federal da Bahia Salvador, BA, Brazil Abstract This note sets down some facts about natural number objects in the Dialectica category Dial2(Sets). Natural number objects allow us to model G¨odel’s System T in an intrinsically logical fashion. G¨odel’s Dialectica Interpretation is a powerful tool originally used to prove the consistency of arithmetic. It was surprising (but pleasing) to discover, in the late eighties, that studying the Dialectica Interpretation by means of categorical proof theory led to models of Girard’s Linear Logic, in the shape of Dialectica categories. More recently Dialectica Interpretations of (by now established) Linear Logic systems have been studied, but not extended to System T. In this note we set out to to consider notions of natural number objects in the original Dialectica category models of the Interpretation. These should lead to intrinsic notions of linear recursitivity, we hope. Keywords: categorical logic, linear logic, natural numbers object, dialectica categories 1 We gratefully acknowledge support from CNPq for a visit of Valeria de Paiva to the Depto of Matematica of the Universidade Federal da Bahia that allowed us to collaborate in this work. 2 Email: [email protected] 3 Email: [email protected] 4 Email: [email protected] http://dx.doi.org/10.1016/j.entcs.2014.06.005 1571-0661/© 2014 Elsevier B.V.
    [Show full text]
  • An Institutional View on Categorical Logic
    An Institutional View on Categorical Logic Florian Rabe, Jacobs University Bremen Till Mossakowski, DFKI-Lab Bremen and University of Bremen Valeria de Paiva, Palo Alto Research Center, Palo Alto, California Lutz Schr¨oder, DFKI-Lab Bremen and University of Bremen Joseph Goguen, University of California, San Diego † Abstract We introduce a generic notion of categorical propositional logic and provide a construc- tion of a preorder-enriched institution out of such a logic, following the Curry-Howard-Tait paradigm. The logics are specified as theories of a meta-logic within the logical framework LF such that institution comorphisms are obtained from theory morphisms of the meta- logic. We prove several logic-independent results including soundness and completeness theorems and instantiate our framework with a number of examples: classical, intuition- istic, linear and modal propositional logic. We dedicate this work to the memory of our dear friend and colleague Joseph Goguen who passed away during its preparation. 1 Introduction The well-known Curry-Howard isomorphism [25, 18] establishes a correspondence between propositions and types, and proofs and terms, and proof and term reductions. A number of correspondences between various kinds of logical theories, λ-calculi and categories have been established, see Fig. 1. Here, we present work aimed at casting the propositional part of these correspondences in a common framework based on the theory of institutions. The notion of institution arose within computer science as a response to the population explosion among logics in use [20, 22]. Its key idea is to focus on abstractly axiomatizing the satisfaction relation between sentences and models.
    [Show full text]
  • Introduction
    Pr´e-Publica¸c~oesdo Departamento de Matem´atica Universidade de Coimbra Preprint Number 19{19 DESCENT DATA AND ABSOLUTE KAN EXTENSIONS FERNANDO LUCATELLI NUNES Abstract: The fundamental construction underlying descent theory, the lax de- scent category, comes with a functor that forgets the descent data. We prove that, in any 2-category A with lax descent objects, the forgetful morphisms create all absolute Kan extensions. As a consequence of this result, we get a monadicity theo- rem which says that a right adjoint functor is monadic if and only if it is, up to the composition with an equivalence, a functor that forgets descent data. In particular, within the classical context of descent theory, we show that, in a fibred category, the forgetful functor between the category of internal actions of a precategory a and the category of internal actions of the underlying discrete precategory is monadic if and only if it has a left adjoint. This proves that one of the implications of the cele- brated B´enabou-Roubaud theorem does not depend on the so called Beck-Chevalley condition. Namely, we show that, in a fibred category with pullbacks, whenever an effective descent morphism induces a right adjoint functor, the functor is monadic. Keywords: effective descent morphisms, internal actions, indexed categories, cre- ation of absolute Kan extensions, Beck's monadicity theorem, B´enabou-Roubaud theorem, descent theory, monadicity theorem. Math. Subject Classification (2010): 18D05, 18C15, 18A22, 18A30, 18A40, 18F99, 11R32, 13B05. Introduction The (lax) descent objects [44, 46, 33, 36], the 2-dimensional limits underly- ing descent theory [18, 19, 23, 46, 34], play an important role in 2-dimensional universal algebra [27, 6, 30, 32].
    [Show full text]
  • Categorical Logic and Type Theory
    CATEGORICAL LOGIC AND TYPE THEORY Bart JACOBS Research Fellow ofthe Royal Netherlands Academy of Ans and Sciences Computing Science Institute, University ofNijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands 1999 ELSEVIER AMSTERDAM • LAUSANNE • NEW YORK • OXFORD • SHANNON • SINGAPORE • TOKYO Contents Preface v Contents vii Preliminaries xi 0. Prospectus 1 0.1. Logic, type theory, and fibred category theory 1 0.2. The logic and type theory of sets 11 1. Introduction to ßbred category theory 19 1.1. Fibrations 20 1.2. Some concrete examples: sets, w-sets and PERs 31 1.3. Some general examples 40 1.4. Cloven and split fibrations 47 1.5. Change-of-base and composition for fibrations 56 1.6. Fibrations of signatures 64 1.7. Categories of fibrations 72 1.8. Fibrewise structure and fibred adjunctions 80 1.9. Fibred products and coprodncts 93 1.10. Indexed categories 107 2. Simple type theory 119 2.1. The basic calculus of types and terms 120 2.2. Functorial semantics 126 vii viii Contents 2.3. Exponents, products and coproducts 133 2.4. Semantics of simple type theories 146 2.5. Semantics of the untyped lambda calculus as a corollary 154 2.6. Simple parameters 157 3. Equational Logic 169 3.1. Logics 170 3.2. Specifications and theories in equational logic 177 3.3. Algebraic specifications 183 3.4. Fibred equality 190 3.5. Fibrations for equational logic 201 3.6. Fibred functorial semantics 209 4. First order predicate logic 219 4.1. Signatures, connectives and quantifiers 221 4.2. Fibrations for first order predicate logic 232 4.3.
    [Show full text]