Using a Shareable Extraction Ontology and a Reasoner

Total Page:16

File Type:pdf, Size:1020Kb

Using a Shareable Extraction Ontology and a Reasoner SEMAPRO 2011 : The Fifth International Conference on Advances in Semantic Processing Semantic Annotation Semantically: Using a Shareable Extraction Ontology and a Reasoner Jan Dedekˇ Peter Vojta´sˇ Department of Software Engineering Department of Software Engineering MFF, Charles University MFF, Charles University Prague, Czech Republic Prague, Czech Republic [email protected] [email protected] Abstract—Information extraction (IE) and automated se- In the environment of the Semantic Web it is essential mantic annotation of text are usually done by complex tools. that information is shareable and some ontology based IE These tools use some kind of a model that represents the tools keep the model in so called extraction ontologies actual task and its solution. The model is usually represented as a set of extraction rules (e.g., regular expressions), gazetteer [1]. Extraction ontologies should serve as a wrapper for lists, or it is based on some statistical measurements and documents of a narrow domain of interest. When we apply probability assertions. In the environment of the Semantic an extraction ontology to a document, the ontology identifies Web it is essential that information is shareable and some objects and relationships present in the document and it ontology based IE tools keep the model in so called extraction associates them with the corresponding ontology terms and ontologies. In practice, the extraction ontologies are usually strongly dependent on a particular extraction/annotation tool thus wraps the document so that it is understandable in terms and cannot be used separately. In this paper, we present an of the ontology [1]. extension of the idea of extraction ontologies. According to In practice the extraction ontologies are usually strongly the presented concept the extraction ontologies should not dependent on a particular extraction/annotation tool and be dependent on the particular extraction/annotation tool. In cannot be used separately. The strong dependency of an our solution the extraction/annotation process can be done separately by an ordinary reasoner. We also present a proof of extraction ontology on the corresponding tool makes it very concept for the idea: a case study with a linguistically based difficult to share. When an extraction ontology cannot be IE engine that exports its extraction rules to an extraction used outside the tool there is also no need to keep the ontology and we demonstrate how this extraction ontology can ontology in a standard ontology format (RDF or OWL). be applied to a document by a reasoner. The paper also contains The only way how to use such extraction ontology is an evaluation experiment with several OWL reasoners. within the corresponding extraction tool. It is not necessary Keywords-Extraction Ontology; Reasoning; Information Extrac- to have the ontology in a “owl or rdf file”. In a sense tion; Semantic Annotation; such extraction ontology is just a configuration file. For example in [2] (and also in [1]) the so called extraction I. INTRODUCTION ontologies are kept in XML files with a proprietary structure Information extraction (IE) and automated semantic anno- and it is absolutely sufficient, there is no need to treat them tation of text are usually done by complex tools and all these differently. tools use some kind of model that represents the actual task and its solution. The model is usually represented as a set A. Shareable Extraction Ontologies of some kind of extraction rules (e.g., regular expressions), In this paper, we present an extension of the idea of gazetteer lists or it is based on some statistical measure- extraction ontologies. We adopt the point that extraction ments and probability assertions (classification algorithms models are kept in extraction ontologies and we add that like Support Vector Machines (SVM), Maximum Entropy the extraction ontologies should not be dependent on the Models, Decision Trees, Hidden Markov Models (HMM), particular extraction/annotation tool. In such case the ex- Conditional Random Fields (CRF), etc.) traction/annotation process can be done separately by an In the beginning, a model is either created by a hu- ordinary reasoner. man user or it is learned from a training dataset. Then, In this paper, we present a proof of concept for the idea: in the actual extraction/annotation process, the model is a case study with our linguistically based IE engine and an used as a configuration or as a parameter of the particular experiment with several OWL reasoners. In the case study extraction/annotation tool. These models are usually stored (see Section IV) the IE engine exports its extraction rules to in proprietary formats and they are accessible only by the the form of an extraction ontology. Third party linguistic tool corresponding tool. linguistically annotates an input document and the linguistic Copyright (c) IARIA, 2011. ISBN: 978-1-61208-175-5 29 SEMAPRO 2011 : The Fifth International Conference on Advances in Semantic Processing 2) It is hard to argue that linguistic extraction rules should be considered a part of an ontology while Document TectoMT GRDDL information extractors based on other IE techniques XSLT Document Ontology (such as SVM, HMM, CRF, etc. classifiers used to identify instances of a class when classification is used Information Extraction engine as the IE technique) should be kept out of it: all IE Reasoner techniques perform the same task with comparable TectoMT effectiveness (generally successful but not 100% ac- curate). But the techniques advocated for the inclusion of linguistic rules in ontologies cannot accommodate Extraction such IE techniques. Learning Corpus Rules “Annotated” The authors then conclude that either all information Extraction Document Ontology Ontology extractors (that use different IE techniques) should be included in the ontologies or none should be included. Figure 1. Semantic annotation driven by an extraction ontology and a Concerning the first argument, we have to take into ac- reasoner – schema of the process. count that extraction ontologies are not ordinary ontologies, annotations are translated to so-called document ontology. it should be agreed that they do not contain 100% accurate After that an ordinary OWL reasoner is used to apply the knowledge. Also the estimated accuracy of the extraction extraction ontology on the document ontology, which has the rules can be saved in the extraction ontology and it can then same effect as a direct application of the extraction rules on help potential users to decide how much they will trust the the document. The process is depicted in Fig 1 and it will extraction ontology. be described in detail in Section IV-B. Concerning the second argument, we agree that in the case Section II presents several closely related works. The of complex classification based models (SVM, HMM, CRF, main idea of the paper will be described in Section III, etc.) serialization of such model to RDF does not make much its implementation in Section IV and in Section V an sense (cf. the next section). But on the other hand we think experiment with several OWL reasoners and IE datasets will that there are cases when shareable extraction ontologies be presented. In Section VI related issues are discussed and can be useful and in the context of Linked Data providing Section VII concludes the paper. shareable descriptions of information extraction rules may II. RELATED WORK be valuable. It is also possible that new standard ways how to encode such models to an ontology will appear in the Ontology-based Information Extraction (OBIE) [3] or future. Ontology-driven Information Extraction [4] has recently emerged as a subfield of information extraction. Further- III. SEMANTIC ANNOTATION SEMANTICALLY more, Web Information Extraction [5] is a closely related The problem of extraction ontologies that are not share- discipline. Many extraction and annotation tools can be able was pointed out in the introduction (Section I). The found in the above mentioned surveys ([3], [5]), many of the cause of the problem is that a particular extraction model can tools also use an ontology as the output format, but almost all only be used and interpreted by the corresponding extraction of them store their extraction models in proprietary formats tool. If an extraction ontology should be shareable, there and the models are accessible only by the corresponding has to be a commonly used tool that is able to interpret tool. the extraction model encoded by the extraction ontology. In the literature we have found only two approaches that In this paper we present a proof of concept that Semantic use extraction ontologies. The former one was published Web reasoners can play the role of commonly used tools by D. Embley [1], [6] and the later one – IE system Ex that can interpret shareable extraction ontologies. was developped by M. Labsky´ [2]. But in both cases the Although it is probably always possible to encode an extraction ontologies are dependent on the particular tool extraction model using a standard ontology language, only and they are kept in XML files with a proprietary structure. certain way of encoding makes it possible to interpret By contrast authors of [3] (a recent survey of OBIE such model by a standard reasoner in the same way as if systems) do not agree with allowing for extraction rules to the original extraction tool was used. The difference is in be a part of an ontology. They use two arguments against semantics. It is not sufficient to encode just the model’s data, that: it is also necessary to encode the semantics of the model. 1) Extraction rules are known to contain errors (because Only then the reasoner is able to interpret the model in the they are never 100% accurate), and objections can same way as the original tool. And this is where the title of be raised on their inclusion in ontologies in terms of the paper and the present section comes from.
Recommended publications
  • An Ontological Approach for Querying Distributed Heterogeneous Information Systems Under Critical Operational Environments
    An Ontological Approach for Querying Distributed Heterogeneous Information Systems Under Critical Operational Environments Atif Khan, John Doucette, and Robin Cohen David R. Cheriton School of Computer Science, University of Waterloo {a78khan,j3doucet,rcohen}@uwaterloo.ca Abstract. In this paper, we propose an information exchange frame- work suited for operating in time-critical environments where diverse heterogeneous sources may be involved. We utilize a request-response type of communication in order to eliminate the need for local collection of distributed information. We then introduce an ontological knowledge representation with a semantic reasoner that operates on an aggregated view of the knowledge sources to generate a response and a semantic proof. A prototype of the system is demonstrated in two example emer- gency health care scenarios, where there is low tolerance for inaccuracy and the use of diverse sources is required, not all of which may be known to the individual generating the request. The system is contrasted with conventional machine learning approaches and existing work in seman- tic data mining (used to infer knowledge in order to provide responses), and is shown to oer theoretical and practical advantages over these conventional techniques. 1 Introduction As electronic information systems become mainstream, society's dependence upon them for knowledge acquisition and distribution has increased. Over the years, the sophistication of these systems has evolved, making them capable of not only storing large amounts of information in diverse formats, but also of reasoning about complex decisions. The increase in technological capabilities has revolutionized the syntactic interoperability of modern information systems, allowing for a heterogeneous mix of systems to exchange a wide spectrum of data in many dierent formats.
    [Show full text]
  • Semantic Resource Adaptation Based on Generic Ontology Models
    Semantic Resource Adaptation Based on Generic Ontology Models Bujar Raufi, Florije Ismaili, Jaumin Ajdari, Mexhid Ferati and Xhemal Zenuni Faculty of Contemporary Sciences and Technologies, South East European University, Ilindenska 335, Tetovo, Macedonia Keywords: Semantic Web, Linked Open Data, User Adaptive Software Systems, Adaptive Web-based Systems. Abstract: In recent years, a substantial shift from the web of documents to the paradigm of web of data is witnessed. This is seen from the proliferation of massive semantic repositories such as Linked Open Data. Recommending and adapting resources over these repositories however, still represents a research challenge in the sense of relevant data aggregation, link maintenance, provenance and inference. In this paper, we introduce a model of adaptation based on user activities for performing concept adaptation on large repositories built upon extended generic ontology model for Adaptive Web-Based Systems. The architecture of the model is consisted of user data extraction, user knowledgebase, ontology retrieval and application and a semantic reasoner. All these modules are envisioned to perform specific tasks in order to deliver efficient and relevant resources to the users based on their browsing preferences. Specific challenges in relation to the proposed model are also discussed. 1 INTRODUCTION edge. While PIR is mostly query based, AH is mainly browsing oriented. The expansion of the web in the recent years, espe- An ongoing challenge is the semantic retrieval cially with the proliferation of new paradigms such and adaptation of resources over a huge repositories as semantic web, linked semantic data and the so- such as Linked Open Data (LOD) as well as the fa- cial web phenomena has rendered it a place where cilitation of the collaborative knowledge construction information is not simply posted, searched, browsed by assisting in discovering new things (Bizer, 2009).
    [Show full text]
  • INPUT CONTRIBUTION Group Name:* MAS WG Title:* Semantic Web Best Practices
    Semantic Web best practices INPUT CONTRIBUTION Group Name:* MAS WG Title:* Semantic Web best practices. Semantic Web Guidelines for domain knowledge interoperability to build the Semantic Web of Things Source:* Eurecom, Amelie Gyrard, Christian Bonnet Contact: Amelie Gyrard, [email protected], Christian Bonnet, [email protected] Date:* 2014-04-07 Abstract:* This contribution proposes to describe the semantic web best practices, semantic web tools, and existing domain ontologies for uses cases (smart home and health). Agenda Item:* Tbd Work item(s): MAS Document(s) Study of Existing Abstraction & Semantic Capability Enablement Impacted* Technologies for consideration by oneM2M. Intended purpose of Decision document:* Discussion Information Other <specify> Decision requested or This is an informative paper proposed by the French Eurecom institute as a recommendation:* guideline to MAS contributors on Semantic web best practices, as it was suggested during MAS#9.3 call. Amélie Gyrard is a new member in oneM2M (via ETSI PT1). oneM2M IPR STATEMENT Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by all provisions of IPR policy of the admitting Partner Type 1 and permission that all communications and statements, oral or written, or other information disclosed or presented, and any translation or derivative thereof, may without compensation, and to the extent such participant or attendee may legally and freely grant such copyright rights, be distributed, published, and posted on oneM2M’s web site, in whole or in part, on a non- exclusive basis by oneM2M or oneM2M Partners Type 1 or their licensees or assignees, or as oneM2M SC directs.
    [Show full text]
  • Enabling Scalable Semantic Reasoning for Mobile Services
    IGI PUBLISHING ITJ 5113 701Int’l E. JournalChocolate on Avenue, Semantic Hershey Web & PA Information 17033-1240, Systems, USA 5(2), 91-116, April-June 2009 91 Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.igi-global.com This paper appears in the publication, International Journal on Semantic Web & Information Systems, Volume 5, Issue 2 edited by Amit Sheth © 2009, IGI Global Enabling Scalable Semantic Reasoning for Mobile Services Luke Albert Steller, Monash University, Australia Shonali Krishnaswamy, Monash University, Australia Mohamed Methat Gaber, Monash University, Australia ABSTRACT With the emergence of high-end smart phones/PDAs there is a growing opportunity to enrich mobile/pervasive services with semantic reasoning. This article presents novel strategies for optimising semantic reasoning for re- alising semantic applications and services on mobile devices. We have developed the mTableaux algorithm which optimises the reasoning process to facilitate service selection. We present comparative experimental results which show that mTableaux improves the performance and scalability of semantic reasoning for mobile devices. [Article copies are available for purchase from InfoSci-on-Demand.com] Keywords: Optimised Semantic Reasoning; Pervasive Service Discovery; Scalable Semantic Match- ing INTRODUCTION edge is the resource intensive nature of reason- ing. Currently available semantic reasoners are The semantic web offers new opportunities to suitable for deployment on high-end desktop represent knowledge based on meaning rather or service based infrastructure. However, with than syntax. Semantically described knowledge the emergence of high-end smart phones / can be used to infer new knowledge by reasoners PDAs the mobile environment is increasingly in an automated fashion.
    [Show full text]
  • CTHIOT-1010.Pdf
    Making Sense of Data with Machine Reasoning Samer Salam Principal Engineer, Cisco CHTIOT-1010 Cisco Spark Questions? Use Cisco Spark to communicate with the speaker after the session How 1. Find this session in the Cisco Live Mobile App 2. Click “Join the Discussion” 3. Install Spark or go directly to the space 4. Enter messages/questions in the space Cisco Spark spaces will be cs.co/ciscolivebot#CHTIOT-1010 available until July 3, 2017. © 2017 Cisco and/or its affiliates. All rights reserved. Cisco Public Agenda • Introduction • Climbing the Data Chain: Machine Reasoning Primer • Use-Cases • Conclusion Introduction Introduction Challenges in Network & IT Operations Over 50% of network outages from human factors Orchestration ERRORS Virtualization driving an explosion in data to be managed Controller / NMS / EMS Service activation too slow with humans in the loop Smart “things” connecting to network providing myriad of new data Paradigm shift: manage system at operator desired level of abstraction CLI API GUI Easy Button CHTIOT-1010 © 2017 Cisco and/or its affiliates. All rights reserved. Cisco Public 6 SDN, Meet IoT Network Business APP Applications … Applications Machine Reasoning Machine Learning Device Data Abstraction Base Service Controller APIs Application Communication & Models Functions Layer Services Laptop TP Manager Viewpoint Switch IoT SDN Viewpoint SDN Network Router Things Devices IP Phone Printer Call Manager Firewall Web Server Server Farm WLC Telepresence CHTIOT-1010 © 2017 Cisco and/or its affiliates. All rights reserved. Cisco Public 7 Making Sense of Data Data Chain for Machine Reasoning Getting Machine Answers Intelligence Building the Knowledge Enriching with Context Network Data + Understanding the Data Endpoint Meta-Data + Collecting the Application Data Meta-Data [DIKW Pyramid] CHTIOT-1010 © 2017 Cisco and/or its affiliates.
    [Show full text]
  • Semantic BIM Reasoner for the Verification of IFC Models M
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Semantic BIM Reasoner for the verification of IFC Models M. Fahad, Bruno Fies, Nicolas Bus To cite this version: M. Fahad, Bruno Fies, Nicolas Bus. Semantic BIM Reasoner for the verification of IFC Models. 12th European Conference on Product and Process Modelling (ECPPM 2018), Sep 2018, Copenhagen, Denmark. 10.1201/9780429506215. hal-02270827 HAL Id: hal-02270827 https://hal-cstb.archives-ouvertes.fr/hal-02270827 Submitted on 26 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Paper published in: Proceedings of the 12th European conference on product and process modelling (ECPPM 2018), Copenhagen, Denmark, September 12-14, 2018, eWork and eBusiness in Architecture, Engineering and Construction - Jan Karlshoj, Raimar Scherer (Eds) Taylor & Francis Group, [ISBN 9781138584136] Semantic BIM Reasoner for the verification of IFC Models M. Fahad Experis IT, 1240 Route des Dolines, 06560 Valbonne, France N. Bus & B. Fies CSTB - Centre Scientifique et Technique du Bâtiment, 290 Route de Lucioles, 06560 Valbonne, France ABSTRACT: Recent years have witnessed the development of various techniques and tools for the building code-compliance of IFC models.
    [Show full text]
  • Semantic Web & Relative Analysis of Inference Engines
    International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 2 Issue 10, October - 2013 Semantic Web & Relative Analysis of Inference Engines Ravi L Verma 1, Prof. Arjun Rajput 2 1Information Technology, Technocrats Institute of Technology 2Computer Engineering, Technocrats Institute of Technology, Excellence Bhopal, MP Abstract - Semantic web is an enhancement to the reasoners to make logical conclusion based on the current web that will provide an easier path to find, framework. Use of inference engine in semantic web combine, share & reuse the information. It brings an allows the applications to investigate why a particular idea of having data to be defined & linked in a way that solution has been reached, i.e. semantic applications can can be used for more efficient discovery, integration, provide proof of the derived conclusion. This paper is a automation & reuse across many applications.Today’s study work & survey, which demonstrates a comparison web is purely based on documents that are written in of different type of inference engines in context of HTML, used for coding a body of text with interactive semantic web. It will help to distinguish among different forms. Semantic web provides a common language for inference engines which may be helpful to judge the understanding how data related to the real world various proposed prototype systems with different views objects, allowing a person or machine to start with in on what an inference engine for the semantic web one database and then move through an unending set of should do. databases that are not connected by wires but by being about the same thing.
    [Show full text]
  • Exploring Semantic Hierarchies to Improve Resolution Theorem Proving on Ontologies
    The University of Maine DigitalCommons@UMaine Honors College Spring 2019 Exploring Semantic Hierarchies to Improve Resolution Theorem Proving on Ontologies Stanley Small University of Maine Follow this and additional works at: https://digitalcommons.library.umaine.edu/honors Part of the Computer Sciences Commons Recommended Citation Small, Stanley, "Exploring Semantic Hierarchies to Improve Resolution Theorem Proving on Ontologies" (2019). Honors College. 538. https://digitalcommons.library.umaine.edu/honors/538 This Honors Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Honors College by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. EXPLORING SEMANTIC HIERARCHIES TO IMPROVE RESOLUTION THEOREM PROVING ON ONTOLOGIES by Stanley C. Small A Thesis Submitted in Partial Fulfillment of the Requirements for a Degree with Honors (Computer Science) The Honors College University of Maine May 2019 Advisory Committee: Dr. Torsten Hahmann, Assistant Professor1, Advisor Dr. Mark Brewer, Professor of Political Science Dr. Max Egenhofer, Professor1 Dr. Sepideh Ghanavati, Assistant Professor1 Dr. Roy Turner, Associate Professor1 1School of Computing and Information Science ABSTRACT A resolution-theorem-prover (RTP) evaluates the validity (truthfulness) of conjectures against a set of axioms in a knowledge base. When given a conjecture, an RTP attempts to resolve the negated conjecture with axioms from the knowledge base until the prover finds a contradiction. If the RTP finds a contradiction between the axioms and a negated conjecture, the conjecture is proven. The order in which the axioms within the knowledge-base are evaluated significantly impacts the runtime of the program, as the search-space increases exponentially with the number of axioms.
    [Show full text]
  • Improving Data Identification and Tagging for More Effective Decision Making in Agriculture Pascal Neveu, Romain David, Clement Jonquet
    Improving data identification and tagging for more effective decision making in agriculture Pascal Neveu, Romain David, Clement Jonquet To cite this version: Pascal Neveu, Romain David, Clement Jonquet. Improving data identification and tagging for more effective decision making in agriculture. Leisa Armstrong. Improving Data Management and Decision Support Systems in Agriculture, 85, Burleigh Dodds Science Publishing, 2020, Series in Agricultural Science, 978-1-78676-340-2. hal-02164149 HAL Id: hal-02164149 https://hal.archives-ouvertes.fr/hal-02164149 Submitted on 11 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Improving data identification and tagging for more effective decision making in agriculture Pascal Neveu and Romain David, INRA, France and Clement Jonquet, LIRMM, France Abstract Data integration, data analytics and decision support methods can help increase agriculture challenges such as climate change adaptation or food security. In this context, smart data acquisition systems, interoperable information systems and frameworks for data structuring are required. In this chapter we describe methods for data identification and provide some recommendations. We also describe how to enrich data with semantics and a way to tag data with the relevant ontology.
    [Show full text]
  • Data Standards and Guidelines 05/11/2020 Online Event
    Artificial Intelligence and Augmented Intelligence for Automated Investigations for Scientific Discovery The Physical Sciences Data-Science Service (PSDS) Patterns Failed it to Nailed it: Data Standards and Guidelines 05/11/2020 Online Event Dr Samantha Kanza & Dr Nicola Knight University of Southampton 10/12/2020 AI3SD-Event-Series:Report-20 Failed it to Nailed it: Data Standards and Guidelines AI3SD-Event-Series:Report-20 10/12/2020 DOI: 10.5258/SOTON/P0033 Published by University of Southampton Network: Artificial Intelligence and Augmented Intelligence for Automated Invest- igations for Scientific Discovery This Network+ is EPSRC Funded under Grant No: EP/S000356/1 Principal Investigator: Professor Jeremy Frey Co-Investigator: Professor Mahesan Niranjan Network+ Coordinator: Dr Samantha Kanza An EPSRC National Research Facility to facilitate Data Science in the Physical Sciences: The Physical Sciences Data science Service (PSDS) This Facility is EPSRC Funded under Grant No: EP/S020357/1 Principal Investigator: Professor Simon Coles Co-Investigators: Dr Brian Matthews, Dr Juan Bicarregui & Professor Jeremy Frey Contents 1 Event Details1 2 Event Summary and Format1 3 Event Background1 4 Talks 2 4.1 Metadata........................................2 4.1.1 Introduction to Metadata...........................2 4.1.2 Introduction to FAIR.............................2 4.1.3 Data generation, data standards, and metadata capture in drug discovery - Dr Martin-Immanuel Bittner (Arctoris)..................2 4.2 Open Data.......................................8 4.2.1 Introduction to Open Data..........................8 4.2.2 Giving your open data the best chance to realise its potential - Mr Chris Gutteridge (University of Southampton)...................8 4.3 Linked Data....................................... 13 4.3.1 Introduction to Semantic Web Technologies................
    [Show full text]
  • Benchmarking the Applicability of Ontology in Geographic Object-Based Image Analysis
    International Journal of Geo-Information Article Benchmarking the Applicability of Ontology in Geographic Object-Based Image Analysis Sachit Rajbhandari 1,* ID , Jagannath Aryal 1 ID , Jon Osborn 1, Rob Musk 2 and Arko Lucieer 1 ID 1 Discipline of Geography and Spatial Sciences, University of Tasmania, Private Bag 76, Hobart, TAS 7001, Australia; [email protected] (J.A.); [email protected] (J.O.); [email protected] (A.L.) 2 Sustainable Timber Tasmania, 99 Bathurst Street, Hobart, TAS 7000, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-415-692-370 Received: 19 September 2017; Accepted: 22 November 2017; Published: 28 November 2017 Abstract: In Geographic Object-based Image Analysis (GEOBIA), identification of image objects is normally achieved using rule-based classification techniques supported by appropriate domain knowledge. However, GEOBIA currently lacks a systematic method to formalise the domain knowledge required for image object identification. Ontology provides a representation vocabulary for characterising domain-specific classes. This study proposes an ontological framework that conceptualises domain knowledge in order to support the application of rule-based classifications. The proposed ontological framework is tested with a landslide case study. The Web Ontology Language (OWL) is used to construct an ontology in the landslide domain. The segmented image objects with extracted features are incorporated into the ontology as instances. The classification rules are written in Semantic Web Rule Language (SWRL) and executed using a semantic reasoner to assign instances to appropriate landslide classes. Machine learning techniques are used to predict new threshold values for feature attributes in the rules.
    [Show full text]
  • Application of Semantic Web Technologies for (Semi-)Automatic Metadata Generation for Multimedia Data
    Application of Semantic Web Technologies for (Semi-)Automatic Metadata Generation for Multimedia Data Ruben Verborgh Promotor: prof. dr. ir. Rik Van de Walle Begeleiders: dr. Davy Van Deursen en Erik Mannens Masterproef ingediend tot het behalen van de academische graad van Master in de ingenieurswetenschappen: computerwetenschappen Vakgroep Elektronica en informatiesystemen Voorzitter: prof. dr. ir. Jan Van Campenhout Faculteit Ingenieurswetenschappen Academiejaar 2009–2010 Word of Thanks Firstly, I would like to thank Davy Van Deursen for devising the subject of this dissertation and for the highly professional way in which he supervised my work. He allowed me to give my creativity free rein while providing excellent support on crucial decisions. I would like to express my sincere appreciation to Professor Van de Walle for helping me outline my academic career, in which this dissertation is a milestone. Furthermore, I would like to thank Erik Mannens for initiating me into the Semantic Web. My gratitude goes out to Jos De Roo for detailing the use of Semantic Web technologies at Agfa-Gevaert, his helpful e-mails and the excellent Euler software. His colleague Giovanni Mels showed me an operational application of SPARQL services. Thanks to Anna Hristoskova for the insights into OWL-S composition and for lending me her composer program. Joshua Tauberer did a magnificent job with the SemWeb library, which he allowed me to extend. Last but not least, a heartfelt thank you to everyone that encouraged me during five intensive years of study, in particular my parents and Eddy Van Steenkiste. Special thanks to my mother for sustaining a pleasant study environment and to my father, who introduced me to computers as early as in 1993, when most things I write about were still in their infancy.
    [Show full text]