Zootaxa, Catalogue of Squat Lobsters of the World (Crustacea: Decapoda

Total Page:16

File Type:pdf, Size:1020Kb

Zootaxa, Catalogue of Squat Lobsters of the World (Crustacea: Decapoda ZOOTAXA 1905 Catalogue of squat lobsters of the world (Crustacea: Decapoda: Anomura—families Chirostylidae, Galatheidae and Kiwaidae) KEIJI BABA, ENRIQUE MACPHERSON, GARY C. B. POORE, SHANE T. AHYONG, ADRIANA BERMUDEZ, PATRICIA CABEZAS, CHIA-WEI LIN, MARTHA NIZINSKI, CELSO RODRIGUES & KAREEN E. SCHNABEL Magnolia Press Auckland, New Zealand Keiji Baba, Enrique Macpherson, Gary C. B. Poore, Shane T. Ahyong, Adriana Bermudez, Patricia Cabezas, Chia-Wei Lin, Martha Nizinski, Celso Rodrigues & Kareen E. Schnabel Catalogue of squat lobsters of the world (Crustacea: Decapoda: Anomura—families Chirostylidae, Galatheidae and Kiwaidae) (Zootaxa 1905) 220 pp.; 30 cm. 15 Oct. 2008 ISBN 978-1-86977-289-5 (paperback) ISBN 978-1-86977-290-1 (Online edition) FIRST PUBLISHED IN 2008 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2008 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 1905 © 2008 Magnolia Press BABA ET AL. Zootaxa 1905: 1–220 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) Catalogue of squat lobsters of the world (Crustacea: Decapoda: Anomura—families Chirostylidae, Galatheidae and Kiwaidae) KEIJI BABA1, ENRIQUE MACPHERSON2, GARY C. B. POORE3, SHANE T. AHYONG4, ADRIANA BERMUDEZ5, PATRICIA CABEZAS6, CHIA-WEI LIN7, MARTHA NIZINSKI8, CELSO RODRIGUES9 & KAREEN E. SCHNABEL10 1Kumamoto University, Faculty of Education, 2-40-1 Kurokami, Kumamoto 860-8555, Japan. E-mail: [email protected] 2Centro de Estudios Avanzados de Blanes (CSIC), C. acc. Cala Sant Francesc 14, 17300 Blanes, Girona, Spain. E-mail: [email protected] 3Museum Victoria, GPO Box 666, Melbourne, Vic. 3001, Australia. E-mail: [email protected] 4Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie, Wellington, New Zealand. E-mail: [email protected] 5Instituto de Investigaciones Marinas y Costeras José Benito Vives de Andréis INVEMAR, Cerro Punta Betin, Santa Marta, Colombia. E-mail: [email protected] 6Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal, 2, 28006 Madrid, Spain. E-mail: [email protected] 7Crustacean Lab., Institute of Marine Biology, National Taiwan Ocean University, 2 Pei-Ning Rd, Keelung 20224, Taiwan. E-mail: [email protected] 8NOAA/NMFS Systematics Laboratory, Smithsonian Institution, PO Box 37012, NHB, WC-57, MRC-153, Washington, DC 20013- 7012, USA. E-mail: [email protected] 9Museu Nacional/UFRJ, Quinta da Boa Vista, 20940-040, Rio de Janiero, RJ, Brazil. E-mail: [email protected] 10Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand. E-mail: [email protected] Table of contents Abstract ............................................................................................................................................................................... 3 Introduction .......................................................................................................................................................................... 4 Museum and collection acronyms........................................................................................................................................ 7 Contributions of the authors................................................................................................................................................. 8 Acknowledgements .............................................................................................................................................................. 8 List of taxa, synonymies, geographical distribution and type data .................................................................................... 13 Family Chirostylidae.......................................................................................................................................................... 13 Family Galatheidae ............................................................................................................................................................ 46 Family Kiwaidae .............................................................................................................................................................. 182 References........................................................................................................................................................................ 182 Index ................................................................................................................................................................................ 208 Abstract Taxonomic and ecological interest in squat lobsters has grown considerably over the last two decades. A checklist of the 870 current valid species of squat lobsters of the world (families Chirostylidae, Galatheidae and Kiwaidae) is presented. The compilation includes the complete taxonomic synonymy and geographical distribution of each species plus type information (type locality, repository and registration number). The numbers of described species in the world’s major ocean basins are summarised. Key words: Crustacea, Decapoda, Anomura, Chirostylidae, Galatheidae, Kiwaidae, checklist, taxonomy Accepted by J. Goy: 29 Jul. 2008; published: 15 Oct. 2008 3 Introduction Crustaceans generally referred to as squat lobsters are members of three families of colourful anomuran deca- pods, the Chirostylidae, Galatheidae and Kiwaidae (Figs 1–4). Squat lobsters share with other Anomura the characteristic presence of five pairs of thoracic legs (pereopods). The first pair is elongate, slender and modi- fied as pincers (chelipeds) and the next three pairs are shorter, simple, walking legs. The fifth pair is much smaller than the others, chelate, folded and usually hidden under the carapace. The general body plan is sym- metrical and the abdomen is depressed. The uropods are spatulate, forming with the telson a broad tailfan, folding up against itself or the thoracic sternum. Adult males usually bear abdominal appendages (pleopods), the first one or two pairs of which are modified into copulatory structures known as gonopods. The first pair of female pleopods is always absent. Squat lobsters are abundant, speciose and distributed worldwide. At the time of writing (May 2008) 870 species of squat lobsters are recognised (Table 1). They occur in all marine habitats, including anchialine caves and hydrothermal vent areas, and at depths ranging from the surface of the sea to more than 5000 m (Baba, 2005). Squat lobsters are primarily found in tropical and temperate waters but are scarce in high lati- tudes. All species are benthic although a few, such as Munida gregaria, can have pelagic juvenile forms (Wil- liams, 1980). Few representatives of these families are economically important. Exceptions include several species from the Eastern Pacific (e.g., Munida gregaria, Pleuroncodes monodon and Cervimunida johni – see Tapella & Lovrich, 2006; Vinuesa, 2007) and off Europe (e.g., Munida intermedia). The ecological impor- tance of squat lobsters, however, is unquestionable. The Galatheidae are exceptionally diverse and include 675 species in 34 genera. The most speciose gen- era are Munida (243 species), Munidopsis (224) and Galathea (70). Most species of Munida are from shelf and slope depths. The majority of species of Galathea live in shallow waters whereas those of Munidopsis are found mainly on continental slopes and abyssal plains. Seventeen galatheid genera are exclusively found in the Pacific Ocean. In contrast, only one genus is found exclusively in the Atlantic Ocean (Anomoeomunida) and one in the Indian Ocean (Nanogalathea). Galatheid species are commonly found living in coral reef, rocky or muddy bottoms. Galatheids are found over the complete depth range of the oceans and in particular are the numerically dominant organisms collected in many shelf and slope benthic samples. The Chirostylidae are also diverse and comprises seven genera and 192 species. Uroptychus (124 species) is the most speciose genus of this family. Hapaloptyx, a monospecific genus from off South Africa, is poorly defined taxonomically and needs further research. Representatives of most chirostylid genera are found in all oceans, with the exception of Pseudomunida and Uroptychodes, found exclusively in the Pacific Ocean, and Hapaloptyx restricted to the Indian Ocean. Chirostylids are typically deep-water animals from the continental slope or abyssal depths and often are associated with corals such as antipatharians, alcyonaceans and gorgo- naceans. The Kiwaidae are known only from one species Kiwa hirsuta (the ‘yeti lobster’), but a second unde- scribed species is known. Kiwa hirsuta was collected at hydrothermal vent sites in the southeastern Pacific and to date kiwaids are only known from this habitat (Macpherson et al., 2005). The systematic placement of squat lobster taxa continues to be debated as families, genera and species become better defined. Previously,
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • Table of Contents
    Table of Contents Systematics ... Morphological Tenus ..............................................................2 Chirostylidae ...,......,..‘......... ,-且., .. ,.. ····7 Chirostylus . .‘. ..............,.....,......,.,........,...................., 8 Chirostylus rostratus .,..,...............................,.,....,.......... 9 Eumunida ...................,.,.,.................,..............,'....., 11 Eumunida capillata ....................................,.....,.........., 12 Eumunida chani . ,............................................... 14 Eumunida depressa ......,.,...........,.....,..................,........ 16 Eumunida 戶 nambulus ,...... , . , . , . , . 18 b馴的也 macpherso 肘. , • • • • • • • • • • • • • • • • • , • • • • • • • • • • • . • • • • • • • • ·21 Eumunida parva .......................... ,.....,................,...... ·23 Uropηchodes ..................,.,........................................25 Uroptychodes barμnae . .. .. .. .. .. .. .. , • ••• • ·26 Uroptychodes grα ndirostris .........‘. ,...................,., .. , .. ·········28 Uroptychodes spinimarginatus . ,...................,.........,......... 30 Uroptychus ..................................................,.......‘. ···32 Uroptychus anacα ena . ,............,....,................. 34 Uroptychus anatonus .. , ..........,...............,.,................... ·36 Uroptychμ s babai . ,..,.......,...... ................. .因. • • • , . ·38 Uroptychus bispinatus ........,..........................,....,........... 40 Uroptychus ciliatus ...,...........................................,.....
    [Show full text]
  • BIOPAPUA Expedition Highlighting Deep-Sea Benthic Biodiversity of Papua New- Guinea
    Biopapua Expedition – Progress report MUSÉUM NATIONAL D'HISTOIRE NATURELLE 57 rue Cuvier 75005 PARIS‐ France BIOPAPUA Expedition Highlighting deep-sea benthic Biodiversity of Papua New- Guinea Submitted by: Muséum National d'Histoire Naturelle (MNHN) Represented by (co‐PI): Dr Sarah Samadi (Researcher, IRD) Dr Philippe Bouchet (Professor, MNHN) Dr Laure Corbari (Research associate, MNHN) 1 Biopapua Expedition – Progress report Contents Foreword 3 1‐ Our understanding of deep‐sea biodiversity of PNG 4 2 ‐ Tropical Deep‐Sea Benthos program 5 3‐ Biopapua Expedition 7 4‐ Collection management 15 5‐ Preliminary results 17 6‐ Outreach and publications 23 7‐ Appendices 26 Appendix 1 27 NRI, note n°. 302/2010 on 26th march, 2010, acceptance of Biopapua reseach programme Appendix 2 28 Biopapua cruise Report, submitted by Ralph MANA (UPNG) A Report Submitted to School of Natural and Physical Sciences, University of Papua New Guinea Appendix 3 39 Chan, T.Y (2012) A new genus of deep‐sea solenocerid shrimp (Crustacea: Decapoda: Penaeoidea) from the Papua New Guinea. Journal of Crustacean Biology, 32(3), 489‐495. Appendix 4 47 Pante E, Corbari L., Thubaut J., Chan TY, Mana R., Boisselier MC, Bouchet P., Samadi S. (In Press). Exploration of the deep‐sea fauna of Papua New Guinea. Oceanography Appendix 5 60 Richer de Forges B. & Corbari L. (2012) A new species of Oxypleurodon Miers, 1886 (Crustacea Brachyura, Majoidea) from the Bismark Sea, Papua New Guinea. Zootaxa. 3320: 56–60 Appendix 6 66 Taxonomic list: Specimens in MNHN and Taiwan collections 2 Biopapua Expedition – Progress report Foreword Biopapua cruise was a MNHN/IRD deep‐sea cruise in partnership with the School of Natural and Physical Sciences, University of Papua New Guinea.
    [Show full text]
  • Downloaded from Brill.Com10/11/2021 08:33:28AM Via Free Access 224 E
    Contributions to Zoology, 67 (4) 223-235 (1998) SPB Academic Publishing bv, Amsterdam Optics and phylogeny: is there an insight? The evolution of superposition eyes in the Decapoda (Crustacea) Edward Gaten Department of Biology, University’ ofLeicester, Leicester LEI 7RH, U.K. E-mail: [email protected] Keywords: Compound eyes, superposition optics, adaptation, evolution, decapod crustaceans, phylogeny Abstract cannot normally be predicted by external exami- nation alone, and usually microscopic investiga- This addresses the of structure and in paper use eye optics the tion of properly fixed optical elements is required construction of and crustacean phylogenies presents an hypoth- for a complete diagnosis. This largely rules out esis for the evolution of in the superposition eyes Decapoda, the use of fossil material in the based the of in comparatively on distribution eye types extant decapod fami- few lies. It that arthropodan specimens where the are is suggested reflecting superposition optics are eyes symplesiomorphic for the Decapoda, having evolved only preserved (Glaessner, 1969), although the optics once, probably in the Devonian. loss of Subsequent reflecting of some species of trilobite have been described has superposition optics occurred following the adoption of a (Clarkson & Levi-Setti, 1975). Also the require- new habitat (e.g. Aristeidae,Aeglidae) or by progenetic paedo- ment for good fixation and the fact that complete morphosis (Paguroidea, Eubrachyura). examination invariably involves the destruction of the specimen means that museum collections Introduction rarely reveal enough information to define the optics unequivocally. Where the optics of the The is one of the compound eye most complex component parts of the eye are under investiga- and remarkable not on of its fixation organs, only account tion, specialised to preserve the refrac- but also for the optical precision, diversity of tive properties must be used (Oaten, 1994).
    [Show full text]
  • From Ghost and Mud Shrimp
    Zootaxa 4365 (3): 251–301 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4365.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:C5AC71E8-2F60-448E-B50D-22B61AC11E6A Parasites (Isopoda: Epicaridea and Nematoda) from ghost and mud shrimp (Decapoda: Axiidea and Gebiidea) with descriptions of a new genus and a new species of bopyrid isopod and clarification of Pseudione Kossmann, 1881 CHRISTOPHER B. BOYKO1,4, JASON D. WILLIAMS2 & JEFFREY D. SHIELDS3 1Division of Invertebrate Zoology, American Museum of Natural History, Central Park West @ 79th St., New York, New York 10024, U.S.A. E-mail: [email protected] 2Department of Biology, Hofstra University, Hempstead, New York 11549, U.S.A. E-mail: [email protected] 3Department of Aquatic Health Sciences, Virginia Institute of Marine Science, College of William & Mary, P.O. Box 1346, Gloucester Point, Virginia 23062, U.S.A. E-mail: [email protected] 4Corresponding author Table of contents Abstract . 252 Introduction . 252 Methods and materials . 253 Taxonomy . 253 Isopoda Latreille, 1817 . 253 Bopyroidea Rafinesque, 1815 . 253 Ionidae H. Milne Edwards, 1840. 253 Ione Latreille, 1818 . 253 Ione cornuta Bate, 1864 . 254 Ione thompsoni Richardson, 1904. 255 Ione thoracica (Montagu, 1808) . 256 Bopyridae Rafinesque, 1815 . 260 Pseudioninae Codreanu, 1967 . 260 Acrobelione Bourdon, 1981. 260 Acrobelione halimedae n. sp. 260 Key to females of species of Acrobelione Bourdon, 1981 . 262 Gyge Cornalia & Panceri, 1861. 262 Gyge branchialis Cornalia & Panceri, 1861 . 262 Gyge ovalis (Shiino, 1939) . 264 Ionella Bonnier, 1900 .
    [Show full text]
  • The Evolutionary History of the Genus Seriola and the Phylogeography and Genetic Diversity of S. Lalandi (Yellowtail) Across
    The evolutionary history of the genus Seriola and the phylogeography and genetic diversity of S. lalandi (yellowtail) across its distribution range By Belinda Louisa Swart Dissertation presented for the degree of Doctor of Philosophy in the Faculty of Genetics at Stellenbosch University Supervisor: Prof. Rouvay Roodt-Wilding Co-supervisor: Dr. Aletta E. Bester-van der Merwe Dr. Sophie von der Heyden April 2014 1 Stellenbosch University http://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. April 2014 Copyright © 2014 Stellenbosch University All rights reserved 1 Stellenbosch University http://scholar.sun.ac.za Abstract The genus Seriola includes several important commercial fish species, yet the phylogenetic relationships between species have not been fully investigated to date. This study reports the first molecular phylogeny for this genus based on two mitochondrial (Cytb and COI) and two nuclear gene (RAG1 and Rhod) fragments for all extant Seriola species (nine species, n = 27). The phylogenetic patterns resolved three main lineages: a ((S. fasciata and S. peruana), S. carpenteri) clade, a (S. dumerili and S. rivoliana) clade and a (S. lalandi and S. quinqueradiata) clade. The closure of the Tethys Sea (12 - 20 MYA) coincides with divergence of the ((S. fasciata and S.
    [Show full text]
  • Deep-Water Squat Lobsters (Crustacea: Decapoda: Anomura) from India Collected by the FORV Sagar Sampada
    Bull. Natl. Mus. Nat. Sci., Ser. A, 46(4), pp. 155–182, November 20, 2020 Deep-water Squat Lobsters (Crustacea: Decapoda: Anomura) from India Collected by the FORV Sagar Sampada Vinay P. Padate1, 2, Shivam Tiwari1, 3, Sherine Sonia Cubelio1,4 and Masatsune Takeda5 1Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Government of India. Atal Bhavan, LNG Terminus Road, Puthuvype, Kochi 682508, India 2Corresponding author: [email protected]; https://orcid.org/0000-0002-2244-8338 [email protected]; https://orcid.org/0000-0001-6194-8960 [email protected]; http://orcid.org/0000-0002-2960-7055 5Department of Zoology, National Museum of Nature and Science, Tokyo. 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan. [email protected]; https://orcid/org/0000-0002-0028-1397 (Received 13 August 2020; accepted 23 September 2020) Abstract Deep-water squat lobsters collected during five cruises of the Fishery Oceanographic Research Vessel Sagar Sampada off the Andaman and Nicobar Archipelagos (299–812 m deep) and three cruises in the southeastern Arabian Sea (610–957 m deep) are identified. They are referred to each one species of the families Chirostylidae and Sternostylidae in the Superfamily Chirostyloidea, and five species of the family Munidopsidae and three species of the family Muni- didae in the Superfamily Galatheoidea. Of altogether 10 species of 5 genera dealt herein, the Uro- ptychus species of the Chirostylidae is described as new to science, and Agononida aff. indocerta Poore and Andreakis, 2012, of the Munididae, previously reported from Western Australia and Papua New Guinea, is newly recorded from Indian waters.
    [Show full text]
  • Addition of Fossil Evidence to a Robust Morphological Cladistic Data Set
    Bulletin of the Mizunami Fossil Museum, no. 31 (2004), p. 1-19, 7 figs., 1 table. c 2004, Mizunami Fossil Museum Decapod phylogeny: addition of fossil evidence to a robust morphological cladistic data set Frederick R. Schram 1 and Christopher J. Dixon 2 1 Zoological Museum, University of Amsterdam, Mauritskade 57, NL-1092 AD Amsterdam, The Netherlands <[email protected]> 2 Institut für Botanik, University of Vienna, Rennweg 14, A-1030 Vienna, Austria Abstract Incorporating fossils into schemes for the phylogenetic relationships of decapod crustaceans has been difficult because of the generally incomplete nature of the fossil record. Now a fairly robust data matrix of characters and taxa relevant to the phylogeny of decapods has been derived from consideration of living forms. We chose several taxa from the fossil record to test whether the robustness of the matrix can withstand insertion of fossils with various degrees of incomplete information. The essential structure of the original tree survives, and reasonable hypotheses about the affinities of selected fossils emerge. Sometimes we detected singular positions on our trees that indicate a high certainty about where certain taxa fit, while under other conditions there are alternative positions to choose from. Definitive answers are not to be expected. Rather, what is important is the demonstration of the usefulness of a method that can entertain and specifically document multiple alternative hypotheses. Key words: Decapoda, phylogeny, cladistics clades, viz., groups they termed Fractosternalia [Astacida Introduction + Thalassinida + Anomala + Brachyura], and Meiura [Anomala + Brachyura]. Schram (2001) later computerized Taxonomies of Decapoda have typically been constructed their analysis, allowing a more objective view of similar either with almost no regard to the fossil record, or, in a data.
    [Show full text]
  • Prince Henry the Navigator, Who Brought This Move Ment of European Expansion Within Sight of Its Greatest Successes
    This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible. https://books.google.com PrinceHenrytheNavigator CharlesRaymondBeazley 1 - 1 1 J fteroes of tbe TRattong EDITED BY Sveltn Bbbott, flD.B. FELLOW OF BALLIOL COLLEGE, OXFORD PACTA DUOS VIVE NT, OPEROSAQUE OLMIA MHUM.— OVID, IN LI VI AM, f«». THE HERO'S DEEDS AND HARD-WON FAME SHALL LIVE. PRINCE HENRY THE NAVIGATOR GATEWAY AT BELEM. WITH STATUE, BETWEEN THE DOORS, OF PRINCE HENRY IN ARMOUR. Frontispiece. 1 1 l i "5 ' - "Hi:- li: ;, i'O * .1 ' II* FV -- .1/ i-.'..*. »' ... •S-v, r . • . '**wW' PRINCE HENRY THE NAVIGATOR THE HERO OF PORTUGAL AND OF MODERN DISCOVERY I 394-1460 A.D. WITH AN ACCOUNr Of" GEOGRAPHICAL PROGRESS THROUGH OUT THE MIDDLE AGLi> AS THE PREPARATION FOR KIS WORlf' BY C. RAYMOND BEAZLEY, M.A., F.R.G.S. FELLOW OF MERTON 1 fr" ' RifrB | <lvFnwn ; GEOGRAPHICAL STUDEN^rf^fHB-SrraSR^tttpXFORD, 1894 ule. Seneca, Medea P. PUTNAM'S SONS NEW YORK AND LONDON Cbe Knicftetbocftet press 1911 fe'47708A . A' ;D ,'! ~.*"< " AND TILDl.N' POL ' 3 -P. i-X's I_ • •VV: : • • •••••• Copyright, 1894 BY G. P. PUTNAM'S SONS Entered at Stationers' Hall, London Ube ftntcfeerbocfter press, Hew Iffotfc CONTENTS. PACK PREFACE Xvii INTRODUCTION. THE GREEK AND ARABIC IDEAS OF THE WORLD, AS THE CHIEF INHERITANCE OF THE CHRISTIAN MIDDLE AGES IN GEOGRAPHICAL KNOWLEDGE . I CHAPTER I. EARLY CHRISTIAN PILGRIMS (CIRCA 333-867) . 29 CHAPTER II. VIKINGS OR NORTHMEN (CIRCA 787-1066) .
    [Show full text]
  • Annotated Checklist of New Zealand Decapoda (Arthropoda: Crustacea)
    Tuhinga 22: 171–272 Copyright © Museum of New Zealand Te Papa Tongarewa (2011) Annotated checklist of New Zealand Decapoda (Arthropoda: Crustacea) John C. Yaldwyn† and W. Richard Webber* † Research Associate, Museum of New Zealand Te Papa Tongarewa. Deceased October 2005 * Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, New Zealand ([email protected]) (Manuscript completed for publication by second author) ABSTRACT: A checklist of the Recent Decapoda (shrimps, prawns, lobsters, crayfish and crabs) of the New Zealand region is given. It includes 488 named species in 90 families, with 153 (31%) of the species considered endemic. References to New Zealand records and other significant references are given for all species previously recorded from New Zealand. The location of New Zealand material is given for a number of species first recorded in the New Zealand Inventory of Biodiversity but with no further data. Information on geographical distribution, habitat range and, in some cases, depth range and colour are given for each species. KEYWORDS: Decapoda, New Zealand, checklist, annotated checklist, shrimp, prawn, lobster, crab. Contents Introduction Methods Checklist of New Zealand Decapoda Suborder DENDROBRANCHIATA Bate, 1888 ..................................... 178 Superfamily PENAEOIDEA Rafinesque, 1815.............................. 178 Family ARISTEIDAE Wood-Mason & Alcock, 1891..................... 178 Family BENTHESICYMIDAE Wood-Mason & Alcock, 1891 .......... 180 Family PENAEIDAE Rafinesque, 1815 ..................................
    [Show full text]
  • Kiwa Tyleri, a New Species of Yeti Crab from the East Scotia Ridge, Antarctica
    RESEARCH ARTICLE Adaptations to Hydrothermal Vent Life in Kiwa tyleri, a New Species of Yeti Crab from the East Scotia Ridge, Antarctica Sven Thatje1*, Leigh Marsh1, Christopher Nicolai Roterman2, Mark N. Mavrogordato3, Katrin Linse4 1 Ocean and Earth Science, University of Southampton, European Way, Southampton, SO14 3ZH, United Kingdom, 2 National Oceanography Centre, Southampton, European Way, Southampton, SO14 3ZH, United Kingdom, 3 Engineering Sciences, μ-VIS CT Imaging Centre, University of Southampton, Southampton, SO17 1BJ, United Kingdom, 4 British Antarctic Survey, High Cross Madingley Road, CB3 0ET, Cambridge, United Kingdom a11111 * [email protected] Abstract Hydrothermal vents in the Southern Ocean are the physiologically most isolated chemosyn- OPEN ACCESS thetic environments known. Here, we describe Kiwa tyleri sp. nov., the first species of yeti Citation: Thatje S, Marsh L, Roterman CN, crab known from the Southern Ocean. Kiwa tyleri belongs to the family Kiwaidae and is the Mavrogordato MN, Linse K (2015) Adaptations to visually dominant macrofauna of two known vent sites situated on the northern and southern Hydrothermal Vent Life in Kiwa tyleri, a New Species segments of the East Scotia Ridge (ESR). The species is known to depend on primary pro- of Yeti Crab from the East Scotia Ridge, Antarctica. ductivity by chemosynthetic bacteria and resides at the warm-eurythermal vent environment PLoS ONE 10(6): e0127621. doi:10.1371/journal. pone.0127621 for most of its life; its short-range distribution away from vents (few metres) is physiologically constrained by the stable, cold waters of the surrounding Southern Ocean. Kiwa tylerihas Academic Editor: Steffen Kiel, Universität Göttingen, GERMANY been shown to present differential life history adaptations in response to this contrasting thermal environment.
    [Show full text]
  • Memoires Du Museum National D'histoire Naturelle
    MEMOIRES DU MUSEUM NATIONAL D'HISTOIRE NATURELLE ^' Les N^^moires du Mus6um national d'Histoire naturelle publient des travaux originaux majeurs en Zoologie, Botanique et Sciences de la Terre. Mimoires du Museum national d'Histoire naturelle publishes major original contributions in Zoology, Botany and Earth Sciences. Informations: Internet: http://www.innhii.fr Ce tir6 k part vous est adress6 avec les compliments de I'auteur et de la reaction. This offprint is sent to you with the compliments of the author and editors. Tji6 k part de / Reprint from: Alain CROSNIER — R6siiltats des Campagnes MUSORSTOM, 18. Mimoires du Musium national d'Histoire naturelle. Vol. 176 (1997) (ISBN 2-85653-511-9), 570 pp. Teli6/hardback Prix/Price 600 FF TTC (ca. 115 US$ + postage) Vente en France MUSEUM NATIONAL D'HISTOIRE NATURELLE PUBUCATIONS SCIENTinQUES, DIFFUSION 57, rue Cuvier, F-75005 Paris 761 : 0140 79 37 00 Fax : 01 40 79 38 40 Send orders to: BACKHUYS PUBUSHERS P.O. Box 321, NL-2300 AH Leiden Tel: [31] (71) 517 02 08 Fax: [311(71)51718 56 R&ultats des Campagnes MUSORSTOM Volumes d6jk panis/ Volumes already published: Volume 1 : Mim. ORSTOM, 91: 1-558, (1981) ISBN : 2-7099-0578-7 Volume 2 : Mim. Mus. natn. Hist, not..(A) . 133 : 1-525. (1986) ISBN 2-85653-136-9. Volume 3 : Mim. Mus. natn. Hist, nat. (A), 137 :1-254, (1987) ISBN 2-85653-141-5. Volume 4 : MSm. Mus. natn. Hist, nat..(A) , 143 : 1-260, (1989) ISBN 2-85653-150-4. Volume 5 : Mim. Mus. natn. Hist, nat..(A) . 144 : 1-385, (1989) ISBN 2-85653-164-4.
    [Show full text]