Lake Okeechobee Conceptual Model
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Efficacy of Using Electrofishing to Reduce Recruitment of Invasive Common Carp in Malheur Lake, a Large Endorheic Marsh
U.S. Fish and Wildlife Service Efficacy of using electrofishing to reduce recruitment of invasive Common Carp in Malheur Lake, a large endorheic marsh Final Report May 2017 By William Simpson, Doug Peterson , and Kurt Steinke Abernathy Fish Technology Center Longview, Washington Linda Beck1 Malheur Naonal Wildlife Refuge Princeton, Oregon 1 Current address: U.S. Fish and Wildlife Service, Fisheries and Aquac Conservaon, Portland, Oregon Adult Common Carp from Malheur Lake Developing embryos of Common Carp Abstract Concern about electrofishing inadvertently harming the embryos of species of conservation concern has motivated much of the research that describes what electrical conditions can kill fish embryos. As a result, targeted electrofishing might be underutilized as a potential control method to reduce the recruitment of nuisance or invasive fishes like Common Carp (Cyprinus carpio). Common Carp are one of the most widely distributed invasive fish in North America, and biologist are turning to integrated pest management techniques and targeting multiple life stages because control efforts based solely on removal of adults have often been unsuccessful. We examined changes in the survival of invasive Common Carp embryos while manipulating the transfer of electric power to the embryos by shocking them in water from carp-occupied areas using a variety of voltage gradient and waveform treatments produced by commercial electrofishing units and generators. Survival of electroshocked Common Carp embryos was < 50% at power densities (12,700 -
From Ghost and Mud Shrimp
Zootaxa 4365 (3): 251–301 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4365.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:C5AC71E8-2F60-448E-B50D-22B61AC11E6A Parasites (Isopoda: Epicaridea and Nematoda) from ghost and mud shrimp (Decapoda: Axiidea and Gebiidea) with descriptions of a new genus and a new species of bopyrid isopod and clarification of Pseudione Kossmann, 1881 CHRISTOPHER B. BOYKO1,4, JASON D. WILLIAMS2 & JEFFREY D. SHIELDS3 1Division of Invertebrate Zoology, American Museum of Natural History, Central Park West @ 79th St., New York, New York 10024, U.S.A. E-mail: [email protected] 2Department of Biology, Hofstra University, Hempstead, New York 11549, U.S.A. E-mail: [email protected] 3Department of Aquatic Health Sciences, Virginia Institute of Marine Science, College of William & Mary, P.O. Box 1346, Gloucester Point, Virginia 23062, U.S.A. E-mail: [email protected] 4Corresponding author Table of contents Abstract . 252 Introduction . 252 Methods and materials . 253 Taxonomy . 253 Isopoda Latreille, 1817 . 253 Bopyroidea Rafinesque, 1815 . 253 Ionidae H. Milne Edwards, 1840. 253 Ione Latreille, 1818 . 253 Ione cornuta Bate, 1864 . 254 Ione thompsoni Richardson, 1904. 255 Ione thoracica (Montagu, 1808) . 256 Bopyridae Rafinesque, 1815 . 260 Pseudioninae Codreanu, 1967 . 260 Acrobelione Bourdon, 1981. 260 Acrobelione halimedae n. sp. 260 Key to females of species of Acrobelione Bourdon, 1981 . 262 Gyge Cornalia & Panceri, 1861. 262 Gyge branchialis Cornalia & Panceri, 1861 . 262 Gyge ovalis (Shiino, 1939) . 264 Ionella Bonnier, 1900 . -
Genes to Ecosystems: Exploring the Frontiers of Ecology with One of the Smallest Biological Units
New Phytologist Review Tansley review Genes to ecosystems: exploring the frontiers of ecology with one of the smallest biological units 1 2 2 Author for correspondence: Adam S. Wymore , Annika T. H. Keeley , Kasey M. Yturralde , Thomas G. Whitham Melanie L. Schroer1, Catherine R. Propper1 and Thomas G. Whitham1,3 Tel: +1 928 523 7215 1 2 Email: [email protected] Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; School of Forestry, Northern Arizona University, Flagstaff, AZ 86011, USA; 3Merriam-Powell Center for Received: 9 December 2010 Accepted: 3 March 2011 Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA Contents Summary 19 VI. Gene expression, fish and pollution 28 I. Introduction 19 VII. An emphasis on foundation species and 31 their biotic and abiotic interactions II. Fundamental principles and the community genetics 20 equivalent of Koch’s postulates VIII. Applications to the human condition 32 III. Genes, invasions and competition 21 IX. Conclusions 32 IV. Mutation, resistance and ecosystem consequences 24 Acknowledgements 33 V. Heritable traits, pine cones and climate 26 References 33 Summary New Phytologist (2011) 191: 19–36 Genes and their expression levels in individual species can structure whole commu- doi: 10.1111/j.1469-8137.2011.03730.x nities and affect ecosystem processes. Although much has been written about community and ecosystem phenotypes with a few model systems, such as poplar Key words: climate change, community and goldenrod, here we explore the potential application of a community genetics genetics postulates, ecosystem services, approach with systems involving invasive species, climate change and pollution. -
Population Structure, Recruitment, and Mortality of the Freshwater Crab Dilocarcinus Pagei Stimpson, 1861 (Brachyura, Trichodactylidae) in Southeastern Brazil
Invertebrate Reproduction & Development ISSN: 0792-4259 (Print) 2157-0272 (Online) Journal homepage: https://www.tandfonline.com/loi/tinv20 Population structure, recruitment, and mortality of the freshwater crab Dilocarcinus pagei Stimpson, 1861 (Brachyura, Trichodactylidae) in Southeastern Brazil Fabiano Gazzi Taddei, Thiago Maia Davanso, Lilian Castiglioni, Daphine Ramiro Herrera, Adilson Fransozo & Rogério Caetano da Costa To cite this article: Fabiano Gazzi Taddei, Thiago Maia Davanso, Lilian Castiglioni, Daphine Ramiro Herrera, Adilson Fransozo & Rogério Caetano da Costa (2015) Population structure, recruitment, and mortality of the freshwater crab Dilocarcinuspagei Stimpson, 1861 (Brachyura, Trichodactylidae) in Southeastern Brazil, Invertebrate Reproduction & Development, 59:4, 189-199, DOI: 10.1080/07924259.2015.1081638 To link to this article: https://doi.org/10.1080/07924259.2015.1081638 Published online: 15 Sep 2015. Submit your article to this journal Article views: 82 View Crossmark data Citing articles: 2 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tinv20 Invertebrate Reproduction & Development, 2015 Vol. 59, No. 4, 189–199, http://dx.doi.org/10.1080/07924259.2015.1081638 Population structure, recruitment, and mortality of the freshwater crab Dilocarcinus pagei Stimpson, 1861 (Brachyura, Trichodactylidae) in Southeastern Brazil Fabiano Gazzi Taddeia*, Thiago Maia Davansob, Lilian Castiglionic, Daphine Ramiro Herrerab, Adilson Fransozod and Rogério Caetano da Costab aLaboratório de Estudos de Crustáceos Amazônicos (LECAM), Universidade do Estado do Amazonas – UEA/CESP, Centro de Estudos Superiores de Parintins, Estrada Odovaldo Novo, KM 1, 69152-470 Parintins, AM, Brazil; bFaculdade de Ciências, Laboratório de Estudos de Camarões Marinhos e Dulcícolas (LABCAM), Departamento de Ciências Biológicas, Universidade Estadual Paulista (UNESP), Av. -
Characterization of the G Protein-Coupled Receptor Family
www.nature.com/scientificreports OPEN Characterization of the G protein‑coupled receptor family SREB across fsh evolution Timothy S. Breton1*, William G. B. Sampson1, Benjamin Cliford2, Anyssa M. Phaneuf1, Ilze Smidt3, Tamera True1, Andrew R. Wilcox1, Taylor Lipscomb4,5, Casey Murray4 & Matthew A. DiMaggio4 The SREB (Super‑conserved Receptors Expressed in Brain) family of G protein‑coupled receptors is highly conserved across vertebrates and consists of three members: SREB1 (orphan receptor GPR27), SREB2 (GPR85), and SREB3 (GPR173). Ligands for these receptors are largely unknown or only recently identifed, and functions for all three are still beginning to be understood, including roles in glucose homeostasis, neurogenesis, and hypothalamic control of reproduction. In addition to the brain, all three are expressed in gonads, but relatively few studies have focused on this, especially in non‑mammalian models or in an integrated approach across the entire receptor family. The purpose of this study was to more fully characterize sreb genes in fsh, using comparative genomics and gonadal expression analyses in fve diverse ray‑fnned (Actinopterygii) species across evolution. Several unique characteristics were identifed in fsh, including: (1) a novel, fourth euteleost‑specifc gene (sreb3b or gpr173b) that likely emerged from a copy of sreb3 in a separate event after the teleost whole genome duplication, (2) sreb3a gene loss in Order Cyprinodontiformes, and (3) expression diferences between a gar species and teleosts. Overall, gonadal patterns suggested an important role for all sreb genes in teleost testicular development, while gar were characterized by greater ovarian expression that may refect similar roles to mammals. The novel sreb3b gene was also characterized by several unique features, including divergent but highly conserved amino acid positions, and elevated brain expression in pufer (Dichotomyctere nigroviridis) that more closely matched sreb2, not sreb3a. -
Gar (Lepisosteidae)
Indiana Division of Fish and Wildlife’s Animal Information Series Gar (Lepisosteidae) Gar species found in Indiana waters: -Longnose Gar (Lepisosteus osseus) -Shortnose Gar (Lepisosteus platostomus) -Spotted Gar (Lepisosteus oculatus) -Alligator Gar* (Atractosteus spatula) *Alligator Gar (Atractosteus spatula) Alligator gar were extirpated in many states due to habitat destruction, but now they have been reintroduced to their old native habitat in the states of Illinois, Missouri, Arkansas, and Kentucky. Because they have been stocked into the Ohio River, there is a possibility that alligator gar are either already in Indiana or will be found here in the future. Alligator gar are one of the largest freshwater fishes of North America and can reach up to 10 feet long and weigh 300 pounds. Alligator gar are passive, solitary fishes that live in large rivers, swamps, bayous, and lakes. They have a short, wide snout and a double row of teeth on the upper jaw. They are ambush predators that eat mainly fish but have also been seen to eat waterfowl. They are not, however, harmful to humans, as they will only attack an animal that they can swallow whole. Photo Credit: Duane Raver, USFWS Other Names -garpike, billy gar -Shortnose gar: shortbill gar, stubnose gar -Longnose gar: needlenose gar, billfish Why are they called gar? The Anglo-Saxon word gar means spear, which describes the fishes’ long spear-like appearance. The genus name Lepisosteus contains the Greek words lepis which means “scale” and osteon which means “bone.” What do they look like? Gar are slender, cylindrical fishes with hard, diamond-shaped and non-overlapping scales. -
BIOLÓGICA VENEZUELICA Es Editada Por Dirección Postal De Los Mismos
7 M BIOLÓGICA II VENEZUELICA ^^.«•r-íí-yííT"1 VP >H wv* "V-i-, •^nru-wiA ">^:^;iW SWv^X/^ií. UN I VE RSIDA P CENTRAL DÉ VENEZUELA ^;."rK\'':^>:^:;':••'': ; .-¥•-^>v^:v- ^ACUITAD DE CIENCIAS INSilTÜTO DÉ Z00LOGIA TROPICAL: •RITiTRnTOrr ACTA BIOLÓGICA VENEZUELICA es editada por Dirección postal de los mismos. Deberá suministrar el Instituto de Zoología Tropical, Facultad, de Ciencias se en página aparte el título del trabajo en inglés en de la Universidad Central de Venezuela y tiene por fi caso de no estar el manuscritp elaborado en ese nalidad la publicación de trabajos originales sobre zoo idioma. logía, botánica y ecología. Las descripciones de espe cies nuevas de la flora y fauna venezolanas tendrán Resúmenes: Cada resumen no debe exceder 2 pági prioridad de publicación. Los artículos enviados no de nas tamaño carta escritas a doble espacio. Deberán berán haber sido publicados previamente ni estar sien elaborarse en castellano e ingles, aparecer en este do considerados para tal fin en otras revistas. Los ma mismo orden y en ellos deberá indicarse el objetivo nuscritos deberán elaborarse en castellano o inglés y y los principales resultados y conclusiones de la co no deberán exceder 40 páginas tamaño carta, escritas municación. a doble espacio, incluyendo bibliografía citada, tablas y figuras. Ilustraciones: Todas las ilustraciones deberán ser llamadas "figuras" y numeradas en orden consecuti ACTA BIOLÓGICA VENEZUELICA se edita en vo (Ejemplo Fig. 1. Fig 2a. Fig 3c.) el número, así co cuatro números que constituyen un volumen, sin nin mo también el nombre del autor deberán ser escritos gún compromiso de fecha fija de publicación. -
Family Lepisosteidae (Gars)
Invasive Species Fact Sheet Gar, Family Lepisosteidae General Description Gars are large, freshwater fish belonging to the Lepisosteidae family, which consists of 7 species of gar: alligator, Cuban, Florida, longnose, shortnose, spotted, and tropical. Gars have long, cylindrical bodies covered in hard, shiny, diamond-shaped Alligator gar (Atractosteus spatula) scales. Their dorsal and anal fins sit far back on the body, Photo by South Carolina Department of Natural Resources near the tail. They have slender snouts with sharp, needle- like teeth. Gars are generally green to brown in color on their top and sides and white to yellow on their bellies; some species have spots on their bodies and/or fins. The different species of gar can be distinguished by snout length, number of rows of teeth, and the amount and location of spots. Depending on the species, adult gar range from 1 to over 9 feet long. The largest species of gar, the alligator gar, has been reported to grow up to 10 feet and weigh 350 lbs. Current Distribution Gars are not currently found in California. Alligator gars have been collected in California waters on a few occasions, but these fish were likely the result of aquarium releases. Five of the seven gar species are native to the United States. Spotted gars (Lepisosteus oculatus) confiscated Gars are currently found within and outside of their native ranges in by CDFW wardens the United States from the Great Lakes basin in the north, south Photo by CDFW through the Mississippi River drainage to Texas, Mexico, and Florida. Florida gars are only found in Florida and Georgia. -
Fine Structure of the Gas Bladder of Alligator Gar, Atractosteus Spatula Ahmad Omar-Ali1, Wes Baumgartner2, Peter J
www.symbiosisonline.org Symbiosis www.symbiosisonlinepublishing.com International Journal of Scientific Research in Environmental Science and Toxicology Research Article Open Access Fine Structure of the Gas Bladder of Alligator Gar, Atractosteus spatula Ahmad Omar-Ali1, Wes Baumgartner2, Peter J. Allen3, Lora Petrie-Hanson1* 1Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA 2Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA 3Department of Wildlife, Fisheries and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, MS 39762, USA Received: 1 November, 2016; Accepted: 2 December, 2016 ; Published: 12 December, 2016 *Corresponding author: Lora Petrie-Hanson, Associate Professor, College of Veterinary Medicine, 240 Wise Center Drive PO Box 6100, Mississippi State, MS 39762, USA, Tel: +1-(601)-325-1291; Fax: +1-(662)325-1031; E-mail: [email protected] Lepisosteidae includes the genera Atractosteus and Lepisosteus. Abstract Atractosteus includes A. spatula (alligator gar), A. tristoechus Anthropogenic factors seriously affect water quality and (Cuban gar), and A. tropicus (tropical gar), while Lepisosteus includes L. oculatus (spotted gar), L. osseus (long nose gar), L. in the Mississippi River and the coastal estuaries. Alligator gar platostomus (short nose gar), and L. platyrhincus (Florida gar) (adversely affect fish )populations. inhabits these Agricultural waters andrun-off is impactedaccumulates by Atractosteus spatula [2,6,7]. Atractosteus are distinguishable from Lepisosteus by agricultural pollution, petrochemical contaminants and oil spills. shorter, more numerous gill rakers and a more prominent accessory organ. The gas bladder, or Air Breathing Organ (ABO) of second row of teeth in the upper jaw [2]. -
Diel Horizontal Migration of Zooplankton: Costs and Benefits Of
Freshwater Biology (2002) 47, 343–365 FRESHWATER BIOLOGY SPECIAL REVIEW Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral R. L. BURKS,* D. M. LODGE,* E. JEPPESEN† and T. L. LAURIDSEN† *Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, U.S.A. †Department of Lake and Estuarine Ecology, National Environmental Research Institute, Vejlsøvej, Silkeborg, Denmark SUMMARY 1. In some shallow lakes, Daphnia and other important pelagic consumers of phyto- plankton undergo diel horizontal migration (DHM) into macrophytes or other structures in the littoral zone. Some authors have suggested that DHM reduces predation by fishes on Daphnia and other cladocerans, resulting in a lower phytoplankton biomass in shallow lakes than would occur without DHM. The costs and benefits of DHM, and its potential implications in biomanipulation, are relatively unknown, however. 2. In this review, we compare studies on diel vertical migration (DVM) to assess factors potentially influencing DHM (e.g. predators, food, light, temperature, dissolved oxygen, pH). We first provide examples of DHM and examine avoidance by Daphnia of both planktivorous (PL) fishes and predacious invertebrates. 3. We argue that DHM should be favoured when the abundance of macrophytes is high (which reduces planktivory) and the abundance of piscivores in the littoral is sufficient to reduce planktivores. Food in the littoral zone may favour DHM by daphnids, but the quality of these resources relative to pelagic phytoplankton is largely unknown. 4. We suggest that abiotic conditions, such as light, temperature, dissolved oxygen and pH, are less likely to influence DHM than DVM because weaker gradients of these conditions occur horizontally in shallow lakes relative to vertical gradients in deep lakes. -
THROWTRAP FISH ID GUIDE.V5 Loftusedits
Fish Identification Guide For Throw trap Samples Florida International University Aquatic Ecology Lab April 2007 Prepared by Tish Robertson, Brooke Sargeant, and Raúl Urgellés Table of Contents Basic fish morphology diagrams………………………………………..3 Fish species by family…………………………………………………...4-31 Gar…..………………………………………………………….... 4 Bowfin………….………………………………..………………...4 Tarpon…...……………………………………………………….. 5 American Eel…………………..………………………………….5 Bay Anchovy…..……..…………………………………………...6 Pickerels...………………………………………………………...6-7 Shiners and Minnows…………………………...……………….7-9 Bullhead Catfishes……..………………………………………...9-10 Madtom Catfish…………………………………………………..10 Airbreathing Catfish …………………………………………….11 Brown Hoplo…...………………………………………………….11 Orinoco Sailfin Catfish……………………………..……………12 Pirate Perch…….………………………………………………...12 Topminnows ……………….……………………….……………13-16 Livebearers……………….……………………………….…….. 17-18 Pupfishes…………………………………………………………19-20 Silversides..………………………………………………..……..20-21 Snook……………………………………………………………...21 Sunfishes and Basses……………….……………………....….22-25 Swamp Darter…………………………………………………….26 Mojarra……...…………………………………………………….26 Everglades pygmy sunfish……………………………………...27 Cichlids………………………….….………………………….....28-30 American Soles…………………………………………………..31 Key to juvenile sunfish..………………………………………………...32 Key to cichlids………....………………………………………………...33-38 Note for Reader/References…………………………………………...39 2 Basic Fish Morphology Diagrams Figures from Page and Burr (1991). 3 FAMILY: Lepisosteidae (gars) SPECIES: Lepisosteus platyrhincus COMMON NAME: Florida gar ENP CODE: 17 GENUS-SPECIES -
Okefenokee National Wildlife Refuge Amphibians, Fish, Mammals and Reptiles List
U.S. Fish & Wildlife Service Okefenokee National Wildlife Refuge Amphibians, Fish, Mammals and Reptiles List The Okefenokee swamp is covered with Mammals ___Seminole Bat cypress, blackgum, and bay forests (Lasiurus seminolus). A common bat of scattered throughout a flooded prairie ___Virginia Opossum the Okefenokee which is found hanging in made of grasses, sedges, and various (Didelphis virginiana pigna). Common on Spanish Moss during the day. the swamp edge and the islands within aquatic plants. The peripheral upland and ___Hoary Bat the almost 70 islands within the swamp the Swamp. A night prowler. “Pogo” is often seen by campers. (Lasiurus cinereus cinereus). This are forested with pine interspersed with yellowish-brown bat flies high in the air hardwood hammocks. Lakes of varying ___Southern Short-Tailed Shrew late at night and will hang in trees when sizes and depths, and floating sections (Barina carolinensis). A specimen was resting. It is the largest bat in the East of the peat bed, are also part of the found on Floyds Island June 12, 1921. It and eats mostly moths. Okefenokee terrain. kills its prey with poisonous saliva. ___Northern Yellow Bat People have left their mark on the swamp. ___Least Shrew (Lasiurus intermedius floridanus). A 12-mile long canal was dug into the (Cryptotus parva parva). Rarely seen but Apparently a rare species in the area. It eastern prairies in the 1890’s in a failed probably fairly common. Specimens have likes to feed in groups. attempt to drain the swamp. During the been found on several of the islands, on early 1900’s large amounts of timber were the swamp edge, and in the pine woods ___Evening Bat removed, so that very few areas of virgin around the swamp.