Bulletin 267
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Forestiera Lace Bugs Leptoypha Elliptica (From Wheeler, 2002) (No Common Names) Leptoypha Elliptica Leptoypha Ilicis Contributor: Alfred G
Forestiera Lace Bugs Leptoypha elliptica (from Wheeler, 2002) (No common names) Leptoypha elliptica Leptoypha ilicis Contributor: Alfred G. Wheeler DESCRIPTION Taxonomy and Basic Description Both adults and nymphs of the family Tingidae are strictly phytophagous. Lace bugs are mostly host restricted, developing on plants of only one genus or several related genera. They are found mainly on woody plants, the nymphs feeding on lower surfaces of leaves. Their feeding on mesophyll tissues usually results in a bleached or chlorotic appearance of the upper leaf surface and dark spots of excrement on the lower surface. Some lace bugs feed on herbaceous vascular plants and species of one genus (Acalypta) feed mainly on mosses. Lace bugs associated with small trees and shrubs of the genus Forestiera (olive family; Oleaceae) include two morphologically similar species of Leptoypha. McAtee described L. elliptica from Texas in 1917; L. ilicis was described in 1919 from Georgia by Drake. Only recently was the specific name of the latter species shown to be a Leptoypha ilicis (from Wheeler, 2002) misnomer. This lace bug was named ilicis because of its assumed host association: Ilex sp. Its actual hosts are species of Forestiera, the plant mentioned in the original description having been misidentified. Forestiera species bear a superficial resemblance to certain species of Ilex (holly; family Aquifoliaceae). Leptoypha species are small (about 3 mm long or 0.12 inches), elongate or narrowly oblong, and straw yellow to reddish brown. A hood (prothoracic covering of the head) and paranota (lateral expansions of pronotum), which characterize many lace bugs, are lacking. Also absent is the translucent lacy appearance of the forewings (hemelytra) that is typical of the Tingidae; elevations of the forewings also are absent. -
Luis Lenin Vicente Pereira Análise Dos Aspectos Ultraestruturais Da
Campus de São José do Rio Preto Luis Lenin Vicente Pereira Análise dos aspectos ultraestruturais da espermatogênese de Heteroptera São José do Rio Preto 2017 Luis Lenin Vicente Pereira Análise dos aspectos ultraestruturais da espermatogênese de Heteroptera Tese apresentada como parte dos requisitos para obtenção do título de Doutor em Biociências, área de concentração em Genética, junto ao Programa de Pós- Graduação em Biociências, do Instituto de Biociências, Letras e Ciências Exatas da Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de São José do Rio Preto. Financiadora: CAPES Orientador: Profª. Drª. Mary Massumi Itoyama São José do Rio Preto 2017 Pereira, Luis Lenin Vicente. Análise dos aspectos ultraestruturais da espermatogênese de Heteroptera / Luis Lenin Vicente Pereira. - São José do Rio Preto, 2017 119 f. : il. Orientador: Mary Massumi Itoyama Tese (doutorado) - Universidade Estadual Paulista “Júlio de Mesquita Filho”, Instituto de Biociências, Letras e Ciências Exatas 1. Genética dos insetos. 2. Espermatogênese. 3. Hemiptera. 4. Inseto aquático - Morfologia. 5. Testículos. 6. Mitocôndria. I. Universidade Estadual Paulista "Júlio de Mesquita Filho". Instituto de Biociências, Letras e Ciências Exatas. II. Título. CDU – 595.7:575 Ficha catalográfica elaborada pela Biblioteca do IBILCE UNESP - Campus de São José do Rio Preto Luis Lenin Vicente Pereira Análise dos aspectos ultraestruturais da espermatogênese de Heteroptera Tese apresentada como parte dos requisitos para obtenção do título de Doutor em Biociências, área de concentração em Genética, junto ao Programa de Pós- Graduação em Biociências, do Instituto de Biociências, Letras e Ciências Exatas da Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de São José do Rio Preto. -
A Bug on the Ocean Waves (Heteroptera, Gerridae, Halobates ESCHSCHOLTZ)1
© Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at A bug on the ocean waves (Heteroptera, Gerridae, Halobates ESCHSCHOLTZ)1 L. CHENG Abstract: Five species of Halobates are the only insects known to live on the open ocean. Here is a brief description of what they are, where to find them, some of their special adaptations and their origins. Key words: Gerridae, Halobates, Heteroptera, marine, ocean. Introduction scribed species (ANDERSEN & WEIR 2004). Most of the known gerrid species are fresh- Insects are ubiquitous on land but they water in habitat and can be found on ponds, are commonly thought to be completely ab- lakes, streams, rivers, waterfalls and even sent from the sea, which covers more than temporary rain-filled pools. However, some 70 % of the earth’s surface. This is actually 80 species are considered marine. These be- not quite true. A large variety of insects do long to 11 genera in 3 subfamilies: Trepo- occur in various marine environments batinae, Rhagadotarsinae, and Halobatinae, (CHENG 1976). In fact, marine representa- to which Halobates belongs. tives can be found in at least 20 orders of the Insecta (CHENG 2003), the most important The genus Halobates was created in 1822 being the Collembola, Heteroptera, Coleo- by ESCHSCHOLTZ for 3 insect species collect- ptera and Diptera (CHENG & FRANK 1993). ed during a circumnavigation expedition. Among the Gerromorpha (Heteroptera), Many new species were added during the marine species can be found in five of the subsequent years, some from major ocean six known families: Gerridae, Hebridae, basins and others from various near-shore Hermatobatidae, Mesoveliidae and Veli- habitats. -
Proceedings of the United States National Museum
Proceedings of the United States National Museum SMITHSONIAN INSTITUTION • WASHINGTON, D.C. Volume 112 I960 Number 3431 LACE-BUG GENERA OF THE WORLD (HEMIPTERA: TINGIDAE) « By Carl J. Drake and Florence A. Ruhoff Introduction A treatise of the generic names of the family Tingidae from a global standpoint embodies problems similar to those frequently encountered in corresponding studies in other animal groups. The more im- portant criteria, including such basic desiderata as fixation of type species, synonyms, priority, and dates of technical publications implicate questions concomitant with recent trends toward the clarification and stabilization of zoological nomenclature. Zoogeography, predicated and authenticated on the generic level by the distribution of genera and species, is portrayed here by means of tables, charts, and maps of the tingifauna of the world. This visual pattern of distribution helps one to form a more vivid concept of the family and its hierarchic levels of subfamilies and genera. To a limited extent the data indicate distributional concentrations and probable centers of evolution and dispersal paths of genera. The phylogenetic relationship of genera is not discussed. The present treatise recognizes 216 genera (plus 79 synonyms, homonyms, and emendations) of the Tingidae of the world and gives 1 Research for this paper was supported In part by the National Science Foundation, grant No. 4095. 2 PROCEEDINGS OF THE NATIONAL MUSEUM vol. 112 the figure of 1,767 as the approximate number of species now recog- nized. These figures, collated with similar categories in Lethierry and Severin (1896), show that there has been an increase of many genera and hundreds of species of Tingidae during the past three- quarters of a century. -
Tingidae (Heteroptera) De Nicaragua
ISSN 1021-0296 REVISTA NICARAGUENSE DE ENTOMOLOGIA N° 113. Diciembre 2016 Tingidae (Heteroptera) de Nicaragua. Por Jean-Michel Maes & Alex Knudson. PUBLICACIÓN DEL MUSEO ENTOMOLÓGICO ASOCIACIÓN NICARAGÜENSE DE ENTOMOLOGÍA LEON - - - NICARAGUA Revista Nicaragüense de Entomología. Número 113. 2016. La Revista Nicaragüense de Entomología (ISSN 1021-0296) es una publicación reconocida en la Red de Revistas Científicas de América Latina y el Caribe, España y Portugal (Red ALyC) e indexada en los índices: Zoological Record, Entomológical Abstracts, Life Sciences Collections, Review of Medical and Veterinary Entomology and Review of Agricultural Entomology. Los artículos de esta publicación están reportados en las Páginas de Contenido de CATIE, Costa Rica y en las Páginas de Contenido de CIAT, Colombia. Todos los artículos que en ella se publican son sometidos a un sistema de doble arbitraje por especialistas en el tema. The Revista Nicaragüense de Entomología (ISSN 1021-0296) is a journal listed in the Latin-American Index of Scientific Journals. It is indexed in: Zoological Records, Entomológical, Life Sciences Collections, Review of Medical and Veterinary Entomology and Review of Agricultural Entomology. And reported in CATIE, Costa Rica and CIAT, Colombia. Two independent specialists referee all published papers. Consejo Editorial Jean Michel Maes Fernando Hernández-Baz Editor General Editor Asociado Museo Entomológico Universidad Veracruzana Nicaragua México José Clavijo Albertos Silvia A. Mazzucconi Universidad Central de Universidad de -
The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V
The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V. Bennett Edwin F. Cook Technical Bulletin 332-1981 Agricultural Experiment Station University of Minnesota St. Paul, Minnesota 55108 CONTENTS PAGE Introduction ...................................3 Key to Adults of Nearctic Families of Semiaquatic Hemiptera ................... 6 Family Saldidae-Shore Bugs ............... 7 Family Mesoveliidae-Water Treaders .......18 Family Hebridae-Velvet Water Bugs .......20 Family Hydrometridae-Marsh Treaders, Water Measurers ...22 Family Veliidae-Small Water striders, Rime bugs ................24 Family Gerridae-Water striders, Pond skaters, Wherry men .....29 Family Ochteridae-Velvety Shore Bugs ....35 Family Gelastocoridae-Toad Bugs ..........36 Literature Cited ..............................37 Figures ......................................44 Maps .........................................55 Index to Scientific Names ....................59 Acknowledgement Sincere appreciation is expressed to the following individuals: R. T. Schuh, for being extremely helpful in reviewing the section on Saldidae, lending specimens, and allowing use of his illustrations of Saldidae; C. L. Smith for reading the section on Veliidae, checking identifications, and advising on problems in the taxon omy ofthe Veliidae; D. M. Calabrese, for reviewing the section on the Gerridae and making helpful sugges tions; J. T. Polhemus, for advising on taxonomic prob lems and checking identifications for several families; C. W. Schaefer, for providing advice and editorial com ment; Y. A. Popov, for sending a copy ofhis book on the Nepomorpha; and M. C. Parsons, for supplying its English translation. The University of Minnesota, including the Agricultural Experi ment Station, is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, creed, color, sex, national origin, or handicap. The information given in this publication is for educational purposes only. -
Familia Tingidae. Página 1 Documentos Fauna Ibérica
Edición Electrónica DFI-0012 Checklist de Fauna Ibérica. Familia Tingidae Laporte, 1832 (Insecta: Heteroptera) en la península ibérica, islas Baleares e islas Canarias (edición 2020) Miguel Costas, Tomás López y Mª Ángeles Vázquez 12-06-2020 Documentos Fauna Ibérica, 12. Edición electrónica. ISSN: 2445-4133 Documentos Fauna Ibérica. Edición electrónica http://www.faunaiberica.es/publicaciones/dfi/dfi-0012.pdf Proyecto Fauna Ibérica Museo Nacional de Ciencias Naturales (CSIC). Madrid Editores: Autores: Mª Ángeles Ramos Sánchez Miguel Costas ([email protected]) Manuel Sánchez Ruiz Tomás López ([email protected]) Museo Nacional de Ciencias Naturales. CSIC. Madrid. Mª. Ángeles Vázquez ([email protected]) Universidad Complutense de Madrid. Facultad de Biología. Departamento de Biodiversidad, Ecología y Evolución. C/ José Antonio Novais, 2. 28040 Madrid. España. Forma de citar el trabajo: Costas, M.; López, T. & Vázquez, M.A. 2020. Checklist de Fauna Ibérica. Familia Tingidae Laporte, 1832 (Insecta: Heteroptera) en la península ibérica, islas Baleares e islas Canarias (edición 2020). En: Documentos Fauna Ibérica, 12. Ramos, M.A. & Sánchez Ruiz, M. (Eds.). Museo Nacional de Ciencias Naturales, CSIC. Madrid: 2 (sn) + 14 pp. Edición electrónica ISSN 2445-4133 Fecha 12/06/2020 Con licencia Creative Commons: Reconocimiento - NoComercial - CompartirIgual (CC BY-NC-SA 4.0): No se permite un uso comercial de la obra original ni de las posibles obras derivadas, la distribución de las cuales se debe hacer con una licencia igual a la que regula la obra original. Documentos Fauna Ibérica. DFI-0012 Edición electrónica. ISSN: 2445-4133 Checklist de Fauna Ibérica. Familia Tingidae Laporte, 1832 (Insecta: Heteroptera) en la península ibérica, islas Baleares e islas Canarias (edición 2020). -
About the Book the Format Acknowledgments
About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization. -
The Phylogeny of the Homoptera
PAP. & Prwe. ROY. Soc. TASMANIA. 1941 (35TH JU.I\;E j :i942.) 37 The Phylogeny of the Homoptera By ,T. W. EVANS (Read lOth ~ovember, HJ41) The question of the phylogeny of the Homoptera does not remain unsettled for want of discussion, as several authors have expressed most definite, though often contradictory, views on the subject. A few years ago a Bulletin entitled , The Phylogeny of the Hemiptera based on the Study of the Head Capsule' was published in the United States (Spooner, 1938). This work is no mere short paper, but a considerable contribution of over one hundred pages, containing close on four hundred figures. For this reason, quite apart from its obvious worth as a contribution to the comparative morphology of insects, it merits close attention. It consists of two parts; the first part deals with the Homoptera and the second with the Heteroptera, and at the end of each part the conclusions reached by the author with respect to phylogeny are expressed as trees. As far as the Heteroptera are concerned, no comment is offered, but the present paper has been written to dispute certain conclusions reached by Spooner regarding the inter-relationships of the Homoptera, and to present alternative proposals. In the phylogenetic tree for the Homoptera three main lines of descent are shown radiating from the Protohomoptel'ous stem. Two of these give rise to the Fulgoridae and Peloridiidae respectively and the third to the Cercopidae, all the several other groups of Homoptel'a, apart from those mentioned above, then being derived direct from the Cercopidae. -
Building-Up of a DNA Barcode Library for True Bugs (Insecta: Hemiptera: Heteroptera) of Germany Reveals Taxonomic Uncertainties and Surprises
Building-Up of a DNA Barcode Library for True Bugs (Insecta: Hemiptera: Heteroptera) of Germany Reveals Taxonomic Uncertainties and Surprises Michael J. Raupach1*, Lars Hendrich2*, Stefan M. Ku¨ chler3, Fabian Deister1,Je´rome Morinie`re4, Martin M. Gossner5 1 Molecular Taxonomy of Marine Organisms, German Center of Marine Biodiversity (DZMB), Senckenberg am Meer, Wilhelmshaven, Germany, 2 Sektion Insecta varia, Bavarian State Collection of Zoology (SNSB – ZSM), Mu¨nchen, Germany, 3 Department of Animal Ecology II, University of Bayreuth, Bayreuth, Germany, 4 Taxonomic coordinator – Barcoding Fauna Bavarica, Bavarian State Collection of Zoology (SNSB – ZSM), Mu¨nchen, Germany, 5 Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, Technische Universita¨tMu¨nchen, Freising-Weihenstephan, Germany Abstract During the last few years, DNA barcoding has become an efficient method for the identification of species. In the case of insects, most published DNA barcoding studies focus on species of the Ephemeroptera, Trichoptera, Hymenoptera and especially Lepidoptera. In this study we test the efficiency of DNA barcoding for true bugs (Hemiptera: Heteroptera), an ecological and economical highly important as well as morphologically diverse insect taxon. As part of our study we analyzed DNA barcodes for 1742 specimens of 457 species, comprising 39 families of the Heteroptera. We found low nucleotide distances with a minimum pairwise K2P distance ,2.2% within 21 species pairs (39 species). For ten of these species pairs (18 species), minimum pairwise distances were zero. In contrast to this, deep intraspecific sequence divergences with maximum pairwise distances .2.2% were detected for 16 traditionally recognized and valid species. With a successful identification rate of 91.5% (418 species) our study emphasizes the use of DNA barcodes for the identification of true bugs and represents an important step in building-up a comprehensive barcode library for true bugs in Germany and Central Europe as well. -
Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4 -
Microsoft Outlook
Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).