Theon of Smyrna: Re-Thinking Platonic Mathematics in Middle Platonism

Total Page:16

File Type:pdf, Size:1020Kb

Theon of Smyrna: Re-Thinking Platonic Mathematics in Middle Platonism chapter 8 Theon of Smyrna: Re-thinking Platonic Mathematics in Middle Platonism Federico M. Petrucci Broadly speaking, an interest in mathematics characterizes the history of Platonism.1 However, it manifests itself in different ways. The most familiar approach involves the use of the “potentialities” of mathematical objects as ontological items. Indeed, this is a typical element of Platonic instruction from the Old Academy to Neoplatonism, rooted both in philosophic historiogra- phy and in various Platonic passages (of Parmenides, Republic, Timaeus): from Xenocrates to Eudorus, from Plutarch to Proclus, ontological principles were often identified with notions somehow borrowed from mathematics, such as the One and the Dyad. This does not imply, however, that such notions main- tained their mathematical status: rather, in consequence of their “re-use” as ontologically defined items, they were eventually transfigured, while their fundamental properties (e. g. extreme simplicity of the one/monad) were con- sidered in a new perspective. Accordingly, this use of mathematics (including arithmological speculation)2 is somehow non-mathematical, and will not be the focus of this paper.3 However, two approaches clearly show a direct com- mitment to mathematical (i. e., arithmetical, geometrical, musical and astro- nomical)4 doctrines as such, whose goal was to outline (if at different levels) a 1 See O’Meara (1989); Dörrie & Baltes (1993), 266–79; Fowler (1999); Giardina (1999); Radke (2003). 2 Arithmological speculation, somehow arising in ancient Pythagoreanism and recovered in the Old Academy, underwent fundamental developments in the Hellenistic age, e. g. Mans- feld (1971), was practiced by later Platonists, and in some context was used in the exegesis of Plato’s psychogony to discover the “potentialities” of the numbers employed by Plato. See Petrucci (2012), 408–27. 3 Exceptions involve those authors, such as Nicomachus and Theon, who ascribed to numbers (qua numbers) a specific ontological status; in this case, arithmology could be a means to indicate “qualities” instantiated by number-intelligibles. 4 It is noteworthy that classifications of mathematics in antiquity – not only those based in the quadrivium-structure – chiefly depend on Plato’s account in Rep.VII. See Vitrac (2005). For mathematics based in the quadrivium-structure see Hadot (2006). © Koninklijke Brill NV, Leiden, 2018 | doi 10.1163/9789004355385_010 144 Petrucci “Platonic system of mathematics”: some Platonists5 (including Nicomachus of Gerasa) wished to establish a certain model of mathematics by applying their own Platonic perspective to the task of writing technical treatises. Others (in- cluding Theon of Smyrna) took the dialogues (especially Timaeus) as starting points to develop such a system exegetically. In this paper, priority is given to the latter group, for reasons which shall emerge in due course. I Nicomachus: “Platonically Orientated” Mathematics In the Old Academy a deep and variegated interest in mathematics found fertile ground, from both a theoretical and a technical point of view. While the latter is exemplified by Eudoxus’ seminal researches, it is likely that arith- mogeometry was also systematically formulated in this context:6 numbers are geometrically structured aggregates of monads, and are provided with related properties and reciprocal relationships. Traces of such an approach virtual- ly disappear until the first centuries of our era, when Nicomachus of Gerasa wrote his Introductio Arithmetica. This work, which soon became a reference text, is at face value a comprehensive handbook of arithmogeometry, although this entailed further important topics, such as an exposition of ancient theory of ratios and proportions.7 Its historical relevance mainly depends on the fact that it establishes a complete and systematic survey of (partly non-Euclidean) arithmetic, namely arithmogeometry. In this way, Nicomachus locates himself in an established tradition: the Old Academy’s legacy had probably been recov- ered at least as early as Moderatus of Gades,8 and Theon of Smyrna opens his Expositio with an arithmogeometrical survey. In the next centuries Platonists wrote works inspired by Nicomachus’ (such as Iamblichus’ In Nicomachi Arithmeticam, Domninus’ Encheiridion, Asclepius’ and Philoponus’ Commen- taries).9 But Nicomachus applied a similar approach also to music: he wrote 5 I shall avoid the category of “Neo-Pythagoreanism”. See Centrone (2000). 6 See Burkert (1972), 401–47, esp. 446–7. 7 Most relevant studies are D’Odge (1938); Bertier (1976); O’Meara (1989), 14–23; Dillon (1977/1996), 352–61; Mansfeld (1998), 82–91; Giardina (1999), 36–52; Radke (2003), pas- sim; Helmig (2007). As to its posterity, besides related writings, it is telling that according to Marinus (Vit. Procl. 28) Proclus considered himself to be a reincarnation of Nicomachus. 8 See Centrone and Macris (2005) for a survey. Important mathematical interests must be ascribed also to Thrasyllus, on whom see Tarrant (1993). 9 On Domninus see Riedleberger (2013); on Iamblichus’ In Nicom. see Vinel (2014); on Philo- ponus’ Commentary see Giardina (1999)..
Recommended publications
  • Plato As "Architectof Science"
    Plato as "Architectof Science" LEONID ZHMUD ABSTRACT The figureof the cordialhost of the Academy,who invitedthe mostgifted math- ematiciansand cultivatedpure research, whose keen intellectwas able if not to solve the particularproblem then at least to show the methodfor its solution: this figureis quite familiarto studentsof Greekscience. But was the Academy as such a centerof scientificresearch, and did Plato really set for mathemati- cians and astronomersthe problemsthey shouldstudy and methodsthey should use? Oursources tell aboutPlato's friendship or at leastacquaintance with many brilliantmathematicians of his day (Theodorus,Archytas, Theaetetus), but they were neverhis pupils,rather vice versa- he learnedmuch from them and actively used this knowledgein developinghis philosophy.There is no reliableevidence that Eudoxus,Menaechmus, Dinostratus, Theudius, and others, whom many scholarsunite into the groupof so-called"Academic mathematicians," ever were his pupilsor close associates.Our analysis of therelevant passages (Eratosthenes' Platonicus, Sosigenes ap. Simplicius, Proclus' Catalogue of geometers, and Philodemus'History of the Academy,etc.) shows thatthe very tendencyof por- trayingPlato as the architectof sciencegoes back to the earlyAcademy and is bornout of interpretationsof his dialogues. I Plato's relationship to the exact sciences used to be one of the traditional problems in the history of ancient Greek science and philosophy.' From the nineteenth century on it was examined in various aspects, the most significant of which were the historical, philosophical and methodological. In the last century and at the beginning of this century attention was paid peredominantly, although not exclusively, to the first of these aspects, especially to the questions how great Plato's contribution to specific math- ematical research really was, and how reliable our sources are in ascrib- ing to him particular scientific discoveries.
    [Show full text]
  • Mathematical Discourse in Philosophical Authors: Examples from Theon of Smyrna and Cleomedes on Mathematical Astronomy
    Mathematical discourse in philosophical authors: Examples from Theon of Smyrna and Cleomedes on mathematical astronomy Nathan Sidoli Introduction Ancient philosophers and other intellectuals often mention the work of mathematicians, al- though the latter rarely return the favor.1 The most obvious reason for this stems from the im- personal nature of mathematical discourse, which tends to eschew any discussion of personal, or lived, experience. There seems to be more at stake than this, however, because when math- ematicians do mention names they almost always belong to the small group of people who are known to us as mathematicians, or who are known to us through their mathematical works.2 In order to be accepted as a member of the group of mathematicians, one must not only have mastered various technical concepts and methods, but must also have learned how to express oneself in a stylized form of Greek prose that has often struck the uninitiated as peculiar.3 Be- cause of the specialized nature of this type of intellectual activity, in order to gain real mastery it was probably necessary to have studied it from youth, or to have had the time to apply oneself uninterruptedly.4 Hence, the private nature of ancient education meant that there were many educated individuals who had not mastered, or perhaps even been much exposed to, aspects of ancient mathematical thought and practice that we would regard as rather elementary (Cribiore 2001; Sidoli 2015). Starting from at least the late Hellenistic period, and especially during the Imperial and Late- Ancient periods, some authors sought to address this situation in a variety of different ways— such as discussing technical topics in more elementary modes, rewriting mathematical argu- ments so as to be intelligible to a broader audience, or incorporating mathematical material di- rectly into philosophical curricula.
    [Show full text]
  • Fiboquadratic Sequences and Extensions of the Cassini Identity Raised from the Study of Rithmomachia
    Fiboquadratic sequences and extensions of the Cassini identity raised from the study of rithmomachia Tom´asGuardia∗ Douglas Jim´enezy October 17, 2018 To David Eugene Smith, in memoriam. Mathematics Subject Classification: 01A20, 01A35, 11B39 and 97A20. Keywords: pythagoreanism, golden ratio, Boethius, Nicomachus, De Arithmetica, fiboquadratic sequences, Cassini's identity and rithmomachia. Abstract In this paper, we introduce fiboquadratic sequences as a consequence of an extension to infinity of the board of rithmomachia. Fiboquadratic sequences approach the golden ratio and provide extensions of Cassini's Identity. 1 Introduction Pythagoreanism was a philosophical tradition, that left a deep influence over the Greek mathematical thought. Its path can be traced until the Middle Ages, and even to present. Among medieval scholars, which expanded the practice of the pythagoreanism, we find Anicius Manlius Severinus Boethius (480-524 A.D.) whom by a free translation of De Institutione Arithmetica by Nicomachus of Gerasa, preserved the pythagorean teaching inside the first universities. In fact, Boethius' book became the guide of study for excellence during quadriv- ium teaching, almost for 1000 years. The learning of arithmetic during the arXiv:1509.03177v3 [math.HO] 22 Nov 2016 quadrivium, made necessary the practice of calculation and handling of basic mathematical operations. Surely, with the mixing of leisure with this exercise, Boethius' followers thought up a strategy game in which, besides the training of mind calculation, it was used to preserve pythagorean traditions coming from the Greeks and medieval philosophers. Maybe this was the origin of the philoso- phers' game or rithmomachia. Rithmomachia (RM, henceforward) became the ∗Department of Mathematics.
    [Show full text]
  • OUT of TOUCH: PHILOPONUS AS SOURCE for DEMOCRITUS Jaap
    OUT OF TOUCH: PHILOPONUS AS SOURCE FOR DEMOCRITUS Jaap Mansfeld 1. Introduction The view that according to Democritus atoms cannot touch each other, or come into contact, has been argued by scholars, most recently and carefully by C.C.W. Taylor, especially in his very useful edition of the fragments of the early Atomists.1 I am not concerned here with the theoretical aspect of this issue, that is to say with the view that the early Atomists should have argued (or posthumously admitted) that atoms cannot touch each other because only the void that separates them prevents fusion. I wish to focus on the ancient evidence for this interpretation. Our only ancient source for this view happens to be Philoponus; to be more precise, one brief passage in his Commentary on Aristotle’s Physics (fr. 54c Taylor) and two brief passages in that on Aristotle’s On Generation and Corruption (54dand54eTaylor~67A7 DK). These commentaries, as is well known, are notes of Ammonius’ lectures, with additions by Philoponus himself. Bodnár has argued that this evidence is not good enough, because all other ancient sources, in the first place Aristotle, are eloquently silent on a ban on contact; what we have here therefore are ‘guesses of Philoponus, which are solely based on the text of Aristotle’.2 Taylor admits the force of this objection, but sticks to his guns: ‘perhaps’, 1 Taylor (1997) 222,(1999) 186–188, 192–193,(1999a) 184, cf. the discussion in Kline and Matheson (1987) and Godfrey (1990). On the problems related to the assumption that attraction plays an important part see further the cautious remarks of Morel (1996) 422–424, who however does not take into account the passages in Philoponus which suggest that atoms cannot touch each other.
    [Show full text]
  • An Introduction to Pythagorean Arithmetic
    AN INTRODUCTION TO PYTHAGOREAN ARITHMETIC by JASON SCOTT NICHOLSON B.Sc. (Pure Mathematics), University of Calgary, 1993 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES Department of Mathematics We accept this thesis as conforming tc^ the required standard THE UNIVERSITY OF BRITISH COLUMBIA March 1996 © Jason S. Nicholson, 1996 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my i department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia Vancouver, Canada Dale //W 39, If96. DE-6 (2/88) Abstract This thesis provides a look at some aspects of Pythagorean Arithmetic. The topic is intro• duced by looking at the historical context in which the Pythagoreans nourished, that is at the arithmetic known to the ancient Egyptians and Babylonians. The view of mathematics that the Pythagoreans held is introduced via a look at the extraordinary life of Pythagoras and a description of the mystical mathematical doctrine that he taught. His disciples, the Pythagore• ans, and their school and history are briefly mentioned. Also, the lives and works of some of the authors of the main sources for Pythagorean arithmetic and thought, namely Euclid and the Neo-Pythagoreans Nicomachus of Gerasa, Theon of Smyrna, and Proclus of Lycia, are looked i at in more detail.
    [Show full text]
  • INFINITE PROCESSES in GREEK MATHEMATICS by George
    INFINITE PROCESSES IN GREEK MATHEMATICS by George Clarence Vedova Thesis submitted to the Faculty of the Graduate School of the University of Maryland in partial fulfillment of the requirements for the degree of Doctor of Philosophy 1943 UMI Number: DP70209 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI DP70209 Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106 - 1346 PREFACE The thesis is a historico-philosophic survey of infinite processes in Greek mathematics* Beginning with the first emergence, in Ionian speculative cosmogony, of the tinder lying concepts of infinity, continuity, infinitesimal and limit, the survey follows the development of infinite processes through the ages as these concepts gain in clarity, -it notes the positive contributions of various schools of thought, the negative and corrective influences of others and, in a broad way, establishes the causal chain that finally led to the more abstract processes of the mathematical schools of Cnidus (Eudoxus) and Syracuse
    [Show full text]
  • Harmonica Membra Disjecta Fabio Acerbi and Anna Gioffreda
    Harmonica Membra Disjecta Fabio Acerbi and Anna Gioffreda HE AIM of the present note is to provide the details of a palaeographic finding and to work out some con- T sequences of it.1 The finding amounts to reassembling two membra disjecta of one of the most important manuscript witnesses of ancient Greek harmonic theory. The dismembered portions (which we shall call Mo and Va, and accordingly their reassembly MoVa) presently belong to the composite manu- scripts München, Bayerische Staatsbibliothek, Cod.graec. 361a, and Città del Vaticano, Biblioteca Apostolica Vaticana, Vat.gr. 2338. As we shall see, Mo and Va are both to be dated to the second half of the thirteenth century. The palaeographic analyisis will also reveal the presence of a common reviser to whom we may give a name. This fact will allow us to reconstruct the early history of MoVa to some extent. Again, palaeographic analysis, this time applied to MoVa and to another fundamental witness to Greek harmonics, Venezia, Biblioteca Nazionale Marciana, gr. VI.3 (eleventh century),2 will provide a first step towards eliminating a long-standing draw- 1 Frequently cited items are abbreviated as follows: AEH = R. Da Rios, Aristoxeni Elementa Harmonica (Rome 1954); EOO = J. L. Heiberg and H. Menge, Euclidis Opera omnia I–VIII (Leipzig 1883–1916); MSG = C. von Jan, Musici Scriptores Graeci (Leipzig 1895); PtH = I. Düring, Die Harmonielehre des Klaudios Ptolemaios (Göteborg 1930). Online reproductions of all relevant manuscripts mentioned in this article can be found through the website https://pinakes.irht.cnrs.fr/. Fabio Acerbi is responsible for parts 1, 2, and Appendix 2, Anna Gioffreda for Appendix 1.
    [Show full text]
  • The Two Earths of Eratosthenes Author(S): Christián Carlos Carman and James Evans Source: Isis, Vol
    University of Puget Sound Sound Ideas All Faculty Scholarship Faculty Scholarship 3-2015 The woT Earths of Eratosthenes James Evans University of Puget Sound, [email protected] Christián Carlos Carman Buenos Aires, Argentina Follow this and additional works at: http://soundideas.pugetsound.edu/faculty_pubs Citation Christián C. Carman and James Evans, “The wT o Earths of Eratosthenes,” Isis 106 (2015), 1-16. This Article is brought to you for free and open access by the Faculty Scholarship at Sound Ideas. It has been accepted for inclusion in All Faculty Scholarship by an authorized administrator of Sound Ideas. For more information, please contact [email protected]. The Two Earths of Eratosthenes Author(s): Christián Carlos Carman and James Evans Source: Isis, Vol. 106, No. 1 (March 2015), pp. 1-16 Published by: The University of Chicago Press on behalf of The History of Science Society Stable URL: http://www.jstor.org/stable/10.1086/681034 . Accessed: 08/12/2015 15:41 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and The History of Science Society are collaborating with JSTOR to digitize, preserve and extend access to Isis.
    [Show full text]
  • Aestimatio: Critical Reviews in the History of Science
    Teone di Smirne. Expositio rerum mathematicarum ad legendum Plato- nem utilium. Introduzione, traduzione, commento by Federico M. Petrucci Studies in Ancient Philosophy 11. Sankt Augustin, DE: Academia, 2012. Pp. ISBN 978–3–89665–550–9. Paper €44.50 609 Reviewed by Joëlle Delattre Biencourt Université de Lille 3 [email protected] Editorial and academic rules are a bit different on either side of the Alps and that is fortunate for researchers and scholars. Here is Theon of Smyrna smartly propelled into the foreground, thanks to a 27-year old researcher, Federico Petrucci, by the way of his Italian translation with commentary following the current text antiquo modo. Exhaustive research underpins references, parallelisms, contrasts, and alternative or divergent ways of interpretation: meticulous footnotes in the introduction and commentary draw just as easily on the Arabic tradition and medieval literature as on late Antiquity or modern authors. Synoptic tables [46–49, 52–53] on musical and astronomical topics, then arithmetic [542–552], and again astronomy [553–555], are precious tools showing how easily the author can read and mine ancient texts for answers. The book consists of 609 pages printed in small and rather squeezed charac- ters with narrow margins.In a strictly alphabetical order, the bibliography (18 pp.) displays together editions of ancient texts, books with general con- tents, papers on special issues, in all the ‘topics concerned’. There is an index of ancient sources (20 pp.), an analytical index (13 pp.) where one can find: both general and technical terms and among them ancient authors’ names (sic) with differentiated references to the translation or to the commentary, and lastly a brief list of Greek terms (2 pp.), i.e., a limited selection of concepts, sometimes without the translations used in the work.
    [Show full text]
  • The Origin of Life:Ahistory of Ancient Greek Theories
    Curriculum Units by Fellows of the Yale-New Haven Teachers Institute 1980 Volume V: Man and the Environment The Origin of Life:Ahistory of Ancient Greek Theories Curriculum Unit 80.05.11 by Joyce Puglia This unit presents a history of scientific thought relating to the origin of life as explained mainly by early Greek scientific philosophers. The unit begins with Greek science during the eighth century B.C. and proceeds quickly into the seventh century B.C., concluding with the fourth century B.C. Since the scope is limited to this time period the unit will end with information that is presently, for the most part, outdated. The teacher must constantly remind the students of this fact. The purpose of this unit is not to impart scientific knowledge for its own sake. Rather, it is to show how scientific thinkers came to their conclusions based upon how science was viewed in the scheme of history. There are various high school courses taught, yet no specific course has been designed to relate the development of the academic disciplines to each other. Many science textbooks include the names of scientists who contributed valuable information upon which specific ideas were developed. Yet, most textbooks provide a minimum amount of information relating to the scientists themselves. It is my feeling that students will better understand the development of scientific thought if an opportunity can be provided in which a connection can be made between science and history. There are four general objectives for this unit. Upon completing the unit students will: 1. be familiar with the ideas of early scientific minds, 2.
    [Show full text]
  • Pythagoras and the Pythagoreans1
    Pythagoras and the Pythagoreans1 Historically, the name Pythagoras meansmuchmorethanthe familiar namesake of the famous theorem about right triangles. The philosophy of Pythagoras and his school has become a part of the very fiber of mathematics, physics, and even the western tradition of liberal education, no matter what the discipline. The stamp above depicts a coin issued by Greece on August 20, 1955, to commemorate the 2500th anniversary of the founding of the first school of philosophy by Pythagoras. Pythagorean philosophy was the prime source of inspiration for Plato and Aristotle whose influence on western thought is without question and is immeasurable. 1 c G. Donald Allen, 1999 ° Pythagoras and the Pythagoreans 2 1 Pythagoras and the Pythagoreans Of his life, little is known. Pythagoras (fl 580-500, BC) was born in Samos on the western coast of what is now Turkey. He was reportedly the son of a substantial citizen, Mnesarchos. He met Thales, likely as a young man, who recommended he travel to Egypt. It seems certain that he gained much of his knowledge from the Egyptians, as had Thales before him. He had a reputation of having a wide range of knowledge over many subjects, though to one author as having little wisdom (Her- aclitus) and to another as profoundly wise (Empedocles). Like Thales, there are no extant written works by Pythagoras or the Pythagoreans. Our knowledge about the Pythagoreans comes from others, including Aristotle, Theon of Smyrna, Plato, Herodotus, Philolaus of Tarentum, and others. Samos Miletus Cnidus Pythagoras lived on Samos for many years under the rule of the tyrant Polycrates, who had a tendency to switch alliances in times of conflict — which were frequent.
    [Show full text]
  • Women in Early Pythagoreanism
    Women in Early Pythagoreanism Caterina Pellò Faculty of Classics University of Cambridge Clare Hall February 2018 This dissertation is submitted for the degree of Doctor of Philosophy Alla nonna Ninni, che mi ha insegnato a leggere e scrivere Abstract Women in Early Pythagoreanism Caterina Pellò The sixth-century-BCE Pythagorean communities included both male and female members. This thesis focuses on the Pythagorean women and aims to explore what reasons lie behind the prominence of women in Pythagoreanism and what roles women played in early Pythagorean societies and thought. In the first chapter, I analyse the social conditions of women in Southern Italy, where the first Pythagorean communities were founded. In the second chapter, I compare Pythagorean societies with ancient Greek political clubs and religious sects. Compared to mainland Greece, South Italian women enjoyed higher legal and socio-political status. Similarly, religious groups included female initiates, assigning them authoritative roles. Consequently, the fact that the Pythagoreans founded their communities in Croton and further afield, and that in some respects these communities resembled ancient sects helps to explain why they opened their doors to the female gender to begin with. The third chapter discusses Pythagoras’ teachings to and about women. Pythagorean doctrines did not exclusively affect the followers’ way of thinking and public activities, but also their private way of living. Thus, they also regulated key aspects of the female everyday life, such as marriage and motherhood. I argue that the Pythagorean women entered the communities as wives, mothers and daughters. Nonetheless, some of them were able to gain authority over their fellow Pythagoreans and engage in intellectual activities, thus overcoming the female traditional domestic roles.
    [Show full text]