**Diss Revisions Spring09-V2

Total Page:16

File Type:pdf, Size:1020Kb

**Diss Revisions Spring09-V2 Copyright by Laura Jean Alport 2009 The Dissertation Committee for Laura Jean Alport certifies that this is the approved version of the following dissertation: Lingual fungiform papillae and the evolution of the primate gustatory system Committee: E. Christopher Kirk, Supervisor Nathaniel J. Dominy Deborah J. Overdorff Liza J. Shapiro Timothy D. Smith Lingual fungiform papillae and the evolution of the primate gustatory system by Laura Jean Alport, B.F.A., M.A. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin May, 2009 Acknowledgements This dissertation was truly a collaborative effort. The generosity of people who have shared their time, efforts, and financial assistance with me has been overwhelming. The collection of tongue specimens used in this work was only possible with the help of others. Thanks to Chris Vinyard and family for hosting me at their home and feeding me, while Chris gave me access to his lab and primate collection. Several other individuals took the time to send me specimens or provided me the access that allowed me to do this work including Annie Burrows, Nate Dominy, Rich Kay, Chris Kirk, Magda Muchlinski, Liza Shapiro, Tim Smith, Suzette Tardif, Carl Terranova, Russ Tuttle, Joseph Wagner, and Steve Ward. In addition to those who helped me with lab specimens, many people were involved in enabling the collection of my field data. Many thanks to Trudy Turner who was the first person to let me join in on her field project so that I could collect data in South Africa. It was such a pleasure to get to know her and I am grateful for her friendship in addition to her academic generosity. Thanks to Ken Glander, who regularly introduces students to La Pacifica, for his work and help in Costa Rica. Work in Madagascar is never accomplished alone. I’d like to thank the many Malagasy people who help researchers to work there, including porters, cooks, guides, and the darting team, just to name a few. They make our research happen. Additional thanks to all those at ICTE and MICET, who I rarely ever met, but continue to work hard behind the scenes to facilitate our trips and research. Thanks to Toni Lyn Morelli for coordinating the darting during our trip. I’m sure I will never know about all the things she had to take care of to make sure our research all went smoothly. Much appreciation to Patricia iv Wright for working to make Ranomafana a protected National Park and one of the premier research locations in Madagascar. Thanks, also, Pat Wright, Ed Louis, and Randy Junge for help in facilitating my work in Mengavo with Andrea Baden. I cannot thank Freddy Ranaivoarisoa and Ravaka Ramanamahefa enough for their help in Ranomafana, also. Without their assistance coordinating and translating, our data collection would never have happened, and I really enjoyed their companionship in the field. Thanks to Felicia Knightly for her veterinary assistance and consistent doses of humor. It was a delight to get to know Jeff Wyatt and Andrew Winterborn, who were incredible travel companions. In addition to his enthusiasm for students’ research, Jeff goes above and beyond the call in helping to facilitate great experiences for young veterinarians and researchers. Not only did Jeff invite me to the Madagascar fundraiser at the Seneca Park Zoo, but he was such an amazing host while I was there. Jeff also arranged for me to collect data on animals at the Zoo, to which I would not have had access otherwise. It was joy to work with Andrew and, later, to meet his family. Andrew was a trooper in the field and helped me to adjust my methods to work better with the lemurs. Thanks to Andrea Baden who introduced me to Mangevo and let me jump in to do data collection during her project. I am so fortunate to have gotten to know Andrea while working with her in the field. Many thanks to my dissertation committee: Chris Kirk, Deborah Overdorff, Liza Shapiro, Tim Smith, and Nate Dominy. I am very fortunate to have a committee in which each member has made a significant contribution to my graduate career. I would especially like to thank Chris Kirk, my advisor on this dissertation. Chris was a new faculty member when I asked him to take on the responsibility of being my advisor. I am so grateful that he agreed. He has helped me to shape this research from the beginning and been my advocate through the process, even when I was the one resisting. He pushed v me to do the best dissertation I could. This document would have been sorely insufficient without him. Deborah Overdorff has been a role model for me since I became her Masters student way back when. Between my first (never completed) dissertation and the one here, Deborah has helped me with more grant proposals than an advisor should ever have to read for one graduate student. Deborah also took me on my first trip to Madagascar with her daughter, Hannah, then four years old, and introduced me to that wonderful place and the research there. I can’t thank her enough for that introduction. She also encouraged me to go for it when I wanted to change my dissertation by reflecting to me that this work with olfaction and taste is really what curls my anthropological toes. Deborah was always good at seeing the whole person and being an academic mother. She set a good example of living a life rooted in her values. Liza Shapiro has also been on my committees from the beginning. I am so thankful for her help and for the example she sets. She is a rock in our department. In addition to being fair, consistent, forthcoming, and challenging, she is fun-loving, as well. Many thanks to Tim Smith, who has been a wonderful committee member and collaborator. Our conversations between two artists-turned-scientists have been unique. Tim has been encouraging and more than generous in offering collaboration and authorship on projects, in addition to facilitating my own work. It has been a joy to bounce ideas around and to work together with him. Nate Dominy provided my first introduction to sensory ecology and was the first person with whom I discussed this dissertation idea. Without Nate’s help I never would have gotten those first primate tongues to check out. In addition to my committee, I’d like to thank Becca Lewis for her help on statistics and Sam Wilson for being an example of a great academic and leader. His integrity and authenticity has not gone unnoticed. vi My friends and family have been my source of strength during my graduate career. Thanks to Stacey Tecot, whose enthusiasm about the animals and people with whom she works is contagious. She set a great example for me and helped me to persist in this endeavor. She never failed to gladly step up when I’ve asked for help. Dave Raichlen started this journey with me in my student cohort. He is the person I call when I need advice on academia and I always take his advice to heart. He is a person who I know believes in me unequivocally, and his enduring friendship is invaluable. Along with Stacey and Dave, Amanda Clapp, Rene Uhalde, Damon, Elizabeth, and Stella Rose Waters, all provided me much needed rest and relaxation. I am so grateful that I had them to introduce me to Paradise Island and several other reunion locals since then. Magda Muchlinski wound up being my cohort in the end. She paved the way for my dissertation writing, taught me how to knit so that I would have something to do when I needed a break, and was a resource for dissertation questions of all kinds. Sharon Cohan has been my family in Austin. Sharon has been my running, walking, and swimming partner, and the best unofficial therapist and confidant a girl could have. She has always been here for me and I am so grateful to have her in my life. It is hard to find words with which to thank David Miller; he was my source of hope when I had none. David not only believed in me but also invested in me. I am especially grateful for his talent, empathy, big heart, sense of humor, and the incredible influence he has had on my life. Chris Grassi has been like an advisor and best friend all rolled up in one. She helped me with my master’s thesis, meeting with me in the rock climbing gym to teach me statistics. I learned about dissertation writing during our regular Saturday night dinner dates. It was at those dinners when she told me so many stories about Madagascar that I finally had to go there. Chris helped me get my research approved and completed with the chimpanzees in San Antonio. Much of the data used for this dissertation would not exist were it not for her vii help. Chris always said yes when I requested that she read grant proposals or dissertation chapters, despite the fact that she already had too much on her plate. Without fail, she has been a consistent and empathetic encourager while I completed this dissertation. In the past year, I have gotten to know Deeann, Mark, Samuel, Libby, and Ruthie Regnerus. They have opened up their home and family to me, listened to me on all matters of life, and made me feel heard and loved.
Recommended publications
  • The Evolution of the Lepilemuridae-Cheirogaleidae Clade
    The evolution of the Lepilemuridae-Cheirogaleidae clade By Curswan Allan Andrews Submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY In the Faculty of SCIENCE at the NELSON MANDELA UNIVERSITY Promoters Prof. Judith C. Masters Dr. Fabien G.S. Génin Prof. Graham I.H. Kerley April 2019 1 i Dedication To my mothers’ Cecelia Andrews & Johanna Cloete ii DECLARATION FULL NAME: Curswan Allan Andrews STUDENT NUMBER: 214372952 QUALIFICATION: Doctor of Philosophy DECLARATION: In accordance with Rule G5.6.3, I hereby declare that the above-mentioned thesis is my own work and that it has not previously been submitted for assessment to another University or for another qualification. Signature ________________ Curswan Andrews iii ABSTRACT The Lepilemuridae and the Cheirogaleidae, according to recent molecular reconstructions, share a more recent common ancestor than previously thought. Further phylogenetic reconstructions have indicated that body size evolution in this clade was marked by repeated dwarfing events that coincided with changes in the environment. I aimed to investigate the morphological implications of changes in body size within the Lepilemur-cheirogaleid clade, testing four predictions. Together with Dr. Couette, I collected data on the overall palate shape and predicted that shape is likely to be influenced by several factors including phylogeny, body size and diet. Geometric morphometric analyses revealed that, although a strong phylogenetic signal was detected, diet had the major effect on palate shape. In a similar vein, when examining the arterial circulation patterns in these taxa, I predicted that changes in body size would result in changes and possible reductions in arterial size, particularly the internal carotid artery (ICA) and stapedial artery (SA).
    [Show full text]
  • Taste and Smell Disorders in Clinical Neurology
    TASTE AND SMELL DISORDERS IN CLINICAL NEUROLOGY OUTLINE A. Anatomy and Physiology of the Taste and Smell System B. Quantifying Chemosensory Disturbances C. Common Neurological and Medical Disorders causing Primary Smell Impairment with Secondary Loss of Food Flavors a. Post Traumatic Anosmia b. Medications (prescribed & over the counter) c. Alcohol Abuse d. Neurodegenerative Disorders e. Multiple Sclerosis f. Migraine g. Chronic Medical Disorders (liver and kidney disease, thyroid deficiency, Diabetes). D. Common Neurological and Medical Disorders Causing a Primary Taste disorder with usually Normal Olfactory Function. a. Medications (prescribed and over the counter), b. Toxins (smoking and Radiation Treatments) c. Chronic medical Disorders ( Liver and Kidney Disease, Hypothyroidism, GERD, Diabetes,) d. Neurological Disorders( Bell’s Palsy, Stroke, MS,) e. Intubation during an emergency or for general anesthesia. E. Abnormal Smells and Tastes (Dysosmia and Dysgeusia): Diagnosis and Treatment F. Morbidity of Smell and Taste Impairment. G. Treatment of Smell and Taste Impairment (Education, Counseling ,Changes in Food Preparation) H. Role of Smell Testing in the Diagnosis of Neurodegenerative Disorders 1 BACKGROUND Disorders of taste and smell play a very important role in many neurological conditions such as; head trauma, facial and trigeminal nerve impairment, and many neurodegenerative disorders such as Alzheimer’s, Parkinson Disorders, Lewy Body Disease and Frontal Temporal Dementia. Impaired smell and taste impairs quality of life such as loss of food enjoyment, weight loss or weight gain, decreased appetite and safety concerns such as inability to smell smoke, gas, spoiled food and one’s body odor. Dysosmia and Dysgeusia are very unpleasant disorders that often accompany smell and taste impairments.
    [Show full text]
  • Oral Cavity Histology Histology > Digestive System > Digestive System
    Oral Cavity Histology Histology > Digestive System > Digestive System Oral Cavity LINGUAL PAPILLAE OF THE TONGUE Lingual papillae cover 2/3rds of its anterior surface; lingual tonsils cover its posterior surface. There are three types of lingual papillae: - Filiform, fungiform, and circumvallate; a 4th type, called foliate papillae, are rudimentary in humans. - Surface comprises stratified squamous epithelia - Core comprises lamina propria (connective tissue and vasculature) - Skeletal muscle lies deep to submucosa; skeletal muscle fibers run in multiple directions, allowing the tongue to move freely. - Taste buds lie within furrows or clefts between papillae; each taste bud comprises precursor, immature, and mature taste receptor cells and opens to the furrow via a taste pore. Distinguishing Features: Filiform papillae • Most numerous papillae • Their role is to provide a rough surface that aids in chewing via their keratinized, stratified squamous epithelia, which forms characteristic spikes. • They do not have taste buds. Fungiform papillae • "Fungi" refers to its rounded, mushroom-like surface, which is covered by stratified squamous epithelium. Circumvallate papillae • Are also rounded, but much larger and more bulbous. • On either side of the circumvallate papillae are wide clefts, aka, furrows or trenches; though not visible in our sample, serous Ebner's glands open into these spaces. DENTITION Comprise layers of calcified tissues surrounding a cavity that houses neurovascular structures. Key Features Regions 1 / 3 • The crown, which lies above the gums • The neck, the constricted area • The root, which lies within the alveoli (aka, sockets) of the jaw bones. • Pulp cavity lies in the center of the tooth, and extends into the root as the root canal.
    [Show full text]
  • Description of the Chemical Senses of the Florida Manatee, Trichechus Manatus Latirostris, in Relation to Reproduction
    DESCRIPTION OF THE CHEMICAL SENSES OF THE FLORIDA MANATEE, TRICHECHUS MANATUS LATIROSTRIS, IN RELATION TO REPRODUCTION By MEGHAN LEE BILLS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2011 1 © 2011 Meghan Lee Bills 2 To my best friend and future husband, Diego Barboza: your support, patience and humor throughout this process have meant the world to me 3 ACKNOWLEDGMENTS First I would like to thank my advisors; Dr. Iskande Larkin and Dr. Don Samuelson. You showed great confidence in me with this project and allowed me to explore an area outside of your expertise and for that I thank you. I also owe thanks to my committee members all of whom have provided valuable feedback and advice; Dr. Roger Reep, Dr. David Powell and Dr. Bruce Schulte. Thank you to Patricia Lewis for her histological expertise. The Marine Mammal Pathobiology Laboratory staff especially Drs. Martine deWit and Chris Torno for sample collection. Thank you to Dr. Lisa Farina who observed the anal glands for the first time during a manatee necropsy. Thank you to Astrid Grosch for translating Dr. Vosseler‟s article from German to English. Also, thanks go to Mike Sapper, Julie Sheldon, Kelly Evans, Kelly Cuthbert, Allison Gopaul, and Delphine Merle for help with various parts of the research. I also wish to thank Noelle Elliot for the chemical analysis. Thank you to the Aquatic Animal Health Program and specifically: Patrick Thompson and Drs. Ruth Francis-Floyd, Nicole Stacy, Mike Walsh, Brian Stacy, and Jim Wellehan for their advice throughout this process.
    [Show full text]
  • 14 'The R. M. Johnston Memorial Lecture, 1925. The
    I _...-, ·-~· ) \_ 14 DY PROFESSOR F. \VOOD JOXES, D.S~ F.R.S. 15 in this office, Professor Sir Edgeworth Dav~d, delivered what might be termed the R. M. Johnston Memorial Lecture. There is no man who might be better trusted to place an appropriate verbal wreath upon the tomb of a scientific 'THE R. M. JOHNSTON MEMORIAL LECTURE, 1925. ioneer; no man who could better strew the pathway of THE MAMMALIAN TOILET AND SOME CON. ~ emory with the petals of well merited praise than Sir SIDERATIONS ARISING FROM IT. Edcreworth1 David. It might be said that, as a memorial has left this office a barren one ·by virtue of his ), By lect'ure, he -own tribute. FREDERIC WooD JoNES, D.Sc., F.R.S., I feel, therefore, that I am absolved from attempting a Elder Professor of Anatomy in the University of Adelaide. task such as Sir Edgeworth David accomplished. But I With 23 Text Figures. feel also that Sir Edgeworth's tribute is only one aspect of a memorial lecture; the other is to offer up, in memory of (Read 7th May, 1925.) a great man, that which in one's present occupation seems Few ways of honouring a departed pioneer in science most fitted to constitute a subject for philosophical reflection could be conceived as more appropriate than the establish~ and for possible suggestion as to future lines of research. ment of a memorial lecture. Among the memorial lectures I shall, therefore, elect, as the R. M. Johnston Memorial that have been founded the world over to commemorate the Lecturer for 1925, to pay my homage rather in the form of life and work of outstanding men in the realm of Science, a lecture which introduces certain matters for homely con­ the R.
    [Show full text]
  • UC Davis Dermatology Online Journal
    UC Davis Dermatology Online Journal Title Goodness, gracious, great balls of fire: A case of transient lingual papillitis following consumption of an Atomic Fireball Permalink https://escholarship.org/uc/item/91j9n0kt Journal Dermatology Online Journal, 22(5) Authors Raji, Kehinde Ranario, Jennifer Ogunmakin, Kehinde Publication Date 2016 DOI 10.5070/D3225030941 License https://creativecommons.org/licenses/by-nc-nd/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Volume 22 Number 5 May 2016 Case Report Goodness, gracious, great balls of fire: A case of transient lingual papillitis following consumption of an Atomic Fireball. Kehinde Raji MD MPH, 1 Jennifer Ranario MD,2 Kehinde Ogunmakin MD2 Dermatology Online Journal 22 (5): 3 1 Scripps Clinic/Scripps Green Hospital, Department of Medicine, San Diego, CA 2 Texas Tech University Health Sciences Center, Department of Dermatology, Lubbock TX Correspondence: Kehinde Raji, MD MPH. Scripps Green Hospital 10666 North Torrey Pines Rd San Diego, CA 92037. Tel. +1 (858)-554-3236. Fax. +1 (858)-554-3232 Email: [email protected] Abstract Transient lingual papillitis is a benign condition characterized by the inflammation of one or more fungiform papillae on the dorsolateral tongue. Although it is a common condition that affects more than half of the population, few cases have been reported in the dermatological literature. Therefore, it is a condition uncommonly recognized by dermatologists though it has a distinct clinical presentation that may be easily diagnosed by clinicians familiar with the entity. We report an interesting case of transient lingual papillitis in a 27 year-old healthy woman following the consumption of the hard candy, Atomic Fireball.
    [Show full text]
  • Tongue Anatomy 25/03/13 11:05
    Tongue Anatomy 25/03/13 11:05 Medscape Reference Reference News Reference Education MEDLINE Tongue Anatomy Author: Eelam Aalia Adil, MD, MBA; Chief Editor: Arlen D Meyers, MD, MBA more... Updated: Jun 29, 2011 Overview The tongue is basically a mass of muscle that is almost completely covered by a mucous membrane. It occupies most of the oral cavity and oropharynx. It is known for its role in taste, but it also assists with mastication (chewing), deglutition (swallowing), articulation (speech), and oral cleaning. Five cranial nerves contribute to the complex innervation of this multifunctional organ. The embryologic origins of the tongue first appear at 4 weeks' gestation.[1] The body of the tongue forms from derivatives of the first branchial arch. This gives rise to 2 lateral lingual swellings and 1 median swelling (known as the tuberculum impar). The lateral lingual swellings slowly grow over the tuberculum impar and merge, forming the anterior two thirds of the tongue. Parts of the second, third, and fourth branchial arches give rise to the base of the tongue. Occipital somites give rise to myoblasts, which form the intrinsic tongue musculature. Gross Anatomy From anterior to posterior, the tongue has 3 surfaces: tip, body, and base. The tip is the highly mobile, pointed anterior portion of the tongue. Posterior to the tip lies the body of the tongue, which has dorsal (superior) and ventral (inferior) surfaces (see the image and the video below). Tongue, dorsal view. View of ventral (top) and dorsal (bottom) surfaces of tongue. On dorsal surface, taste buds (vallate papillae) are visible along junction of anterior two thirds and posterior one third of the tongue.
    [Show full text]
  • Pygmy Lorises (Nycticebus Pygmaeus) Without Sublingua Về Những Các Thể Cu Li Nhỏ (Nycticebus Pygmaeus) Không Có Lư
    Vietnamese Journal of Primatology (2013) vol. 2(2), 83-86 Pygmy lorises ( Nycticebus pygmaeus ) without sublingua Tilo Nadler 1, Elke Schwierz 2 and Ulrike Streicher 3 1 Endangered Primate Rescue Center, Cuc Phuong National Park, Nho Quan District, Ninh Binh Province, Vietnam. <[email protected]> 2 Zoo Leipzig, Pfaffendorfer Straße 29, 04105 Leipzig, Germany. <[email protected]> 3 Wildlife Management Consultant, Danang, Vietnam. <[email protected]> Key words: Pygmy loris, Nycticebus pygmaeus , sublingua. Summary Since establishment of the Endangered Primate Rescue Center (EPRC) in 1993 the center received a total of 89 pygmy lorises ( Nycticebus pygmaeus ) and 9 northern slow lorises (Nycticebus bengalensis ). The animals are mostly confiscated from Forest Protection Departments in cooperation with the EPRC or through activities of the organization Education for Nature Vietnam (ENV). Some animals also donated from private persons after they realize that it is illegal to keep the lorises, or they are donated from tourists which bought the animals from hunters, traders or in an illegal market with the intention to rescue the animals but unaware that buying protecting animals is an illegal and criminal act. On arrival at the EPRC all animals undergo a health check and are quarantined for a six week period. During these routine health checks, we accidentally discovered that two pygmy lorises did not have a sublingua, which is a special morphological feature of some mammals, including lorises. We have only just started to look systematically for this feature and can to date not determine how many of the pygmy lorises kept at the EPRC do lack a sublinga and it what the ecological implications of the lack of this feature are.
    [Show full text]
  • The Evolution of Grooming and Hand Use in Primates: an Interdisciplinary Perspective
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 September 2019 doi:10.20944/preprints201909.0233.v1 1 The evolution of grooming and hand use in primates: an interdisciplinary 2 perspective 3 4 Alexander R. Dunkel1 5 6 1 Unaffiliated, Thousand Oaks, CA, USA 7 Email: [email protected] 8 9 The evolution of manual grooming and its implications have received little attention in 10 the quest to understand the origins of simian primates and their social and technical 11 intelligence. All simians groom manually, whereas prosimians groom orally despite 12 comparable manual dexterity between some members of the two groups. Simians also 13 exhibit a variable propensity for the manipulation of inanimate, non-food objects, which 14 has culminated in tool making and tool use in some species. However, lemuriform 15 primates also seem capable of tool use with training. Furthermore, lemuriforms appear to 16 understand the concept of a tool and use their own body parts as “tools”, despite not 17 using inanimate objects. This suggests that prosimian primates are pre-adapted for 18 proprioceptive object manipulation and tool use, but do not express these cognitive 19 abilities by default. This essay explores the paleontological, anatomical, cognitive, 20 ethological, and neurological roots of these abilities and attempts to explain this 21 behavioural divide between simians and prosimians. Common misconceptions about 22 early primate evolution and captive behaviours are addressed, and chronological © 2019 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 September 2019 doi:10.20944/preprints201909.0233.v1 23 inconsistencies with Machiavellian Intelligence are examined.
    [Show full text]
  • Evolutionary History of Lorisiform Primates
    Evolution: Reviewed Article Folia Primatol 1998;69(suppl 1):250–285 oooooooooooooooooooooooooooooooo Evolutionary History of Lorisiform Primates D. Tab Rasmussen, Kimberley A. Nekaris Department of Anthropology, Washington University, St. Louis, Mo., USA Key Words Lorisidae · Strepsirhini · Plesiopithecus · Mioeuoticus · Progalago · Galago · Vertebrate paleontology · Phylogeny · Primate adaptation Abstract We integrate information from the fossil record, morphology, behavior and mo- lecular studies to provide a current overview of lorisoid evolution. Several Eocene prosimians of the northern continents, including both omomyids and adapoids, have been suggested as possible lorisoid ancestors, but these cannot be substantiated as true strepsirhines. A small-bodied primate, Anchomomys, of the middle Eocene of Europe may be the best candidate among putative adapoids for status as a true strepsirhine. Recent finds of Eocene primates in Africa have revealed new prosimian taxa that are also viable contenders for strepsirhine status. Plesiopithecus teras is a Nycticebus- sized, nocturnal prosimian from the late Eocene, Fayum, Egypt, that shares cranial specializations with lorisoids, but it also retains primitive features (e.g. four premo- lars) and has unique specializations of the anterior teeth excluding it from direct lorisi- form ancestry. Another unnamed Fayum primate resembles modern cheirogaleids in dental structure and body size. Two genera from Oman, Omanodon and Shizarodon, also reveal a mix of similarities to both cheirogaleids and anchomomyin adapoids. Resolving the phylogenetic position of these Africa primates of the early Tertiary will surely require more and better fossils. By the early to middle Miocene, lorisoids were well established in East Africa, and the debate about whether these represent lorisines or galagines is reviewed.
    [Show full text]
  • The LATIN LANGUAGE and Bases of Medical Terminology
    The LATIN LANGUAGE and Bases of Medical Terminology The LATIN LANGUAGE and Bases of Medical Terminology ОДЕСЬКИЙ ДЕРЖАВНИЙ МЕДИЧНИЙ УНІВЕРСИТЕТ THE ODESSA STATE MEDICAL UNIVERSITY Áiáëiîòåêà ñòóäåíòà-ìåäèêà Medical Student’s Library Започатковано 1999 р. на честь 100-річчя Одеського державного медичного університету (1900–2000 рр.) Initiated in 1999 to mark the Centenary of the Odessa State Medical University (1900–2000) 2 THE LATIN LANGUAGE AND BASES OF MEDICAL TERMINOLOGY Practical course Recommended by the Central Methodical Committee for Higher Medical Education of the Ministry of Health of Ukraine as a manual for students of higher medical educational establishments of the IV level of accreditation using English Odessa The Odessa State Medical University 2008 3 BBC 81.461я73 UDC 811.124(075.8)61:001.4 Authors: G. G. Yeryomkina, T. F. Skuratova, N. S. Ivashchuk, Yu. O. Kravtsova Reviewers: V. K. Zernova, doctor of philological sciences, professor of the Foreign Languages Department of the Ukrainian Medical Stomatological Academy L. M. Kim, candidate of philological sciences, assistant professor, the head of the Department of Foreign Languages, Latin Language and Bases of Medical Terminology of the Vinnitsa State Medical University named after M. I. Pyrogov The manual is composed according to the curriculum of the Latin lan- guage and bases of medical terminology for medical higher schools. Designed to study the bases of general medical and clinical terminology, it contains train- ing exercises for the class-work, control questions and exercises for indivi- dual student’s work and the Latin-English and English-Latin vocabularies (over 2,600 terms). For the use of English speaking students of the first year of study at higher medical schools of IV accreditation level.
    [Show full text]
  • 17. Morphology and Physiology of the Metatheria
    FAUNA of AUSTRALIA 17. MORPHOLOGY AND PHYSIOLOGY OF THE METATHERIA T.J. DAWSON, E. FINCH, L. FREEDMAN, I.D. HUME, MARILYN B. RENFREE & P.D. TEMPLE-SMITH 1 17. MORPHOLOGY AND PHYSIOLOGY OF THE METATHERIA 2 17. MORPHOLOGY AND PHYSIOLOGY OF THE METATHERIA EXTERNAL CHARACTERISTICS The Metatheria, comprising a single order, Marsupialia, is a large and diverse group of animals and exhibits a considerable range of variation in external features. The variation found is intimately related to the animals' habits and, in most instances, parallels that are found in the Eutheria. Useful general references to external characteristics include Pocock (1921), Jones (1923a, 1924), Grassé (1955), Frith & Calaby (1969), Ride (1970) and Strahan (1983). Body form In size, the marsupials range upwards from the Long-tailed Planigale, Planigale ingrami, a small, mouse-like animal weighing only around 4.2 g, with a head- body length of 59 mm and a tail 55 mm long. At the other extreme, there are large kangaroos, such as the Red Kangaroo, Macropus rufus, in which the males may weigh as much as 85 kg and attain a head-body length of 1400 mm and a tail of 1000 mm. Body shape also varies greatly. The primarily carnivorous marsupials, the dasyurids (for example, antechinuses, dunnarts, quolls, planigales and others), are small to medium sized quadrupeds with subequal limbs. The tail is relatively slender and generally about half the length of the body. The omnivorous peramelids show increased development of the hind limbs in keeping with their rapid bounding locomotion. Saltatory or hopping forms (for example kangaroos and wallabies), carry the hind limb specialisation to an extreme, with a concomitant reduction of the forelimbs (Fig.
    [Show full text]