Clues to Aquatic Beetle Research in Southeast Asia: a Multitude of Ecological Niches, Microhabitats and Deduced Field Sampling Techniques

Total Page:16

File Type:pdf, Size:1020Kb

Clues to Aquatic Beetle Research in Southeast Asia: a Multitude of Ecological Niches, Microhabitats and Deduced Field Sampling Techniques View metadata, citation and similar papers at core.ac.uk brought to you by CORE Ateneo de Manila University Archīum Ateneo Biology Faculty Publications Biology Department 2015 Clues to Aquatic Beetle Research in Southeast Asia: A Multitude of Ecological Niches, Microhabitats and Deduced Field Sampling Techniques Hendrik Freitag Follow this and additional works at: https://archium.ateneo.edu/biology-faculty-pubs Part of the Biodiversity Commons, Biology Commons, Entomology Commons, and the Zoology Commons & Herpeto gy lo lo gy o : h C it u n r r r Freitag, Entomol Ornithol Herpetol 2015, 4:4 e O n , t y R g e o l DOI: 10.4172/2161-0983.1000166 s o e a m r o c t h n E Entomology, Ornithology & Herpetology : 21610983 ResearchRapid Communication Article OpenOpen Access Access Clues to Aquatic Beetle Research in Southeast Asia: A Multitude of Ecological Niches, Microhabitats and Deduced Field Sampling Techniques Hendrik Freitag* Ateneo de Manila University, School of Science & Engineering, Department of Biology, Science Education Complex-A, Katipunan Ave., Loyola Heights, 1108 Quezon City, Philippines Abstract The basic ecological classification of Southeast Asian beetle families that are associated with aquatic habitats is reviewed. The microhabitat preferences of the taxa are examined on family level with generic examples. Suitable collection methods for quantitative and qualitative sampling are suggested which take into account the different ecological adaptation patterns and microhabitat preferences. Keywords: Coleoptera; Water beetle; Riparian beetle; Southeast Asia; Ecological Classification of Aquatic and Riparian Biodiversity survey; Ecological classification; Microhabitat preference; Coleoptera Collection method In most aquatic insect orders (Odonata, Ephemeroptera, Introduction Plecoptera, Trichoptera), all immature life stages live in water and emerge to the terrestrial habitats as adults. In contrast, various patterns Coleoptera represent the world’s largest taxonomic order in terms of water association in different stages of ontogenesis can be recognized of the number of species. Currently 360,000 – 400,000 described species in aquatic and riparian beetles. are known while more than 1.1 million species can be expected [1]. Less than 2% of them possess a distinct adaption to aquatic habitats, Except for maybe some stygobiontic Coleoptera species, probably based on estimates of total species numbers of the respective ecological all aquatic beetles leave the water temporarily at least for a short period groups by Jäch and Balke [2], plus a presumably similar magnitude of of time during their life (e.g., for pupation or, dispersal flight) [2]. paraquatic/riparian species that are dependent on aquatic habitats in a Nine ecological groups of water -associated beetles were defined by lesser extent. Both, aquatic and riparian taxa are in particular focus of Jäch [6] based on their life history and behaviour. this paper. Facultative water beetles get actively submerged or live neustic Southeast Asia is usually referred to the countries of Cambodia, in aquatic habitats for a limited period of time for certain activities East Timor, Indonesia, Laos, Malaysia, Myanmar, the Philippines, (e.g., foraging) during True Water Beetles are submerged in water, or Singapore, Thailand, and Vietnam. However, this paper refers only dwell at the water surface for the major part of their adult life. Except to the part that belongs to the Oriental Realm. Nevertheless, most for a few families the larvae are strictly aquatic. In Southeast Asia, information given will apply to adjacent areas too. The entire region True water beetles occur in the following families: Hydroscaphidae, is dominated by islands and characterized by a complex biogeographic Gyrinidae, Dytiscidae, Noteridae, Haliplidae, Epimetopidae, history [3]. This has led to an overwhelming rate of endemism and Hydraenidae, Hydrochidae, Spercheidae, Hydrophilidae, Elmidae, and thus to a species diversity for which several areas of the region are Dryopidae. Except for Hydrophilidae and Dryopidae, terrestrial taxa recognized as biodiversity hotspots [4]. are exceptional or absent in these families. One Oriental family of True Water Beetles, Torridincolidae (Myxophaga) has never been recorded The United Nations has proclaimed an International Decade from Southeast Asia, but their presence cannot be ruled out. for Action-‘Water for Life’ 2005-2015 with conservation priority for freshwater biodiversity. Nevertheless, threats to the freshwater False water beetles possess larvae that live submerged in water, biodiversity have not diminished and freshwater biodiversity has further while adults are predominantly terrestrial. These include Scirtidae, declined during the last decade. Dudgeon et al. [5] have identified five Psephenidae, Eulichadidae, Lampyridae (some Luciolinae), and categories of major threats for aquatic inland systems: overexploitation, Ptilodactylidae (Cladotominae). pollution, flow modification, destruction or degradation of habitat, and invasion by exotic species. These multiple stressors to the biodiversity are all relevant in a special extent to freshwater habitats of Southeast *Corresponding author: Hendrik Freitag, Ateneo de Manila University, School Asia and its aquatic/riparian beetle fauna. The distributional ranges of of Science & Engineering, Department of Biology, Science Education Complex-A, Katipunan Ave., Loyola Heights, 1108 Quezon City, Philippines, Tel/Fax: +63-2- many taxa are small due to the high degree of natural fragmentation 426-1034; E-mail: [email protected] on the one hand. The anthropogenic impact on inland waters in most Received August 31, 2015; Accepted September 15, 2015; Published September countries of the region is high and further increasing, on the other 28, 2015 hand. Citation: Freitag H (2015) Clues to Aquatic Beetle Research in Southeast Asia: Since taxonomic and ecological interest in aquatic/riparian beetles A Multitude of Ecological Niches, Microhabitats and Deduced Field Sampling Techniques. Entomol Ornithol Herpetol 4: 166. doi:10.4172/2161-0983.1000166 has risen in the last decades in Southeast Asia, this paper is aimed to foster further research by providing an overview of the ecological Copyright: © 2015 Freitag H. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted classification and the respective microhabitats colonized by aquatic use, distribution, and reproduction in any medium, provided the original author and and riparian beetles. source are credited. Entomol Ornithol Herpetol, an open access journal ISSN: 2161-0983 Volume 4 • Issue 4 • 1000166 Citation: Freitag H (2015) Clues to Aquatic Beetle Research in Southeast Asia: A Multitude of Ecological Niches, Microhabitats and Deduced Field Sampling Techniques. Entomol Ornithol Herpetol 4: 166. doi:10.4172/2161-0983.1000166 Page 2 of 6 The larval and/or adult stage. Southeast Asian representatives are common taxa of Southeast Asia. For a more detailed systematic and surely known in the family Nitidulidae (one or few Amphicrossinae), ecological review, the respective chapters of the Handbook of Zoology and Lampyridae (some Luciolinae). However, other species can [10] (second edition forthcoming) provide most helpful information be expected in Carabidae (some Chlaeniinae), Staphylinidae and primary references, same as the cataogues which are available for (some Omaliinae, Staphylininae and Steninae), Scarabaeidae (few the following families: Dytiscidae [11]; Elmidae [12]; Epimetopidae Dynastinae), and Monotomidae (some Rhizophaginae). [13]; Georissidae [13]; Haliplidae [14]; Hydraenidae [15]; Hydrochidae Shore Beetles, also commonly called riparian beetles, live in the [13]; Hydrophilidae [13]; Lamypridae [16]; Limnichidae [17]; limnic littoral zone during all developmental stages, but do usually Noteridae [18]; Spercheidae [13]. not enter the water voluntarily. Heteroceridae and Georissidae are Natural running waters, even torrential mountain streams, are typical Shore Beetles. However, numerous other families are known never entirely lotic systems. They are rather a repeated consecution of to have riparian representatives: e.g., Sphaeriusidae, Carabidae, turbulent water flow (riffle), laminar, non-turbulent flow (run), and Helophoridae, Hydrophilidae, Histeridae, Hydraenidae, Ptiliidae, calm zones (pool); which might be additionally interrupted by falls. Leiodidae, Staphylinidae, Scarabaeidae, Dryopidae, Limnichidae, Elateridae, Lampyridae, Phycosecidae, Monotomidae, Tenebrionidae, Waterfalls are only colonized by a few species (larvae of Salpingidae, Anthicidae. Psephenidae, imagines and larvae of Elmidae) due to the extreme Phytophilous water beetles live on or in submerged plants during at hydraulic stress. Such taxa can be found in crevices of the rock surfaces. least one developmental stage. Donacia Fabricius (Chrysomelidae) and Waterfall associated microhabitats such as sprayzones and hygropetric Bagous Germar (Curculionidae) occur in Southeast Asia. rocks (Figure 1) accommodate some Hydraenidae (Hydraena Kugelann, Limnebius Leach), Hydrophilidae (some Hydrophilinae, Sphaeridiinae), Parasitic Water Beetles are associated with animal hosts in aquatic Hydroscapha LeConte (Hydroscaphidae), and Limnichidae. habitats during at least one developmental stage. There are no records yet from the Southeast Asia. Riffle and run sections of creeks and rivers are typically occupied by Elmidae, Dyropidae,
Recommended publications
  • Beetle Appreciation Diversity and Classification of Common Beetle Families Christopher E
    Beetle Appreciation Diversity and Classification of Common Beetle Families Christopher E. Carlton Louisiana State Arthropod Museum Coleoptera Families Everyone Should Know (Checklist) Suborder Adephaga Suborder Polyphaga, cont. •Carabidae Superfamily Scarabaeoidea •Dytiscidae •Lucanidae •Gyrinidae •Passalidae Suborder Polyphaga •Scarabaeidae Superfamily Staphylinoidea Superfamily Buprestoidea •Ptiliidae •Buprestidae •Silphidae Superfamily Byrroidea •Staphylinidae •Heteroceridae Superfamily Hydrophiloidea •Dryopidae •Hydrophilidae •Elmidae •Histeridae Superfamily Elateroidea •Elateridae Coleoptera Families Everyone Should Know (Checklist, cont.) Suborder Polyphaga, cont. Suborder Polyphaga, cont. Superfamily Cantharoidea Superfamily Cucujoidea •Lycidae •Nitidulidae •Cantharidae •Silvanidae •Lampyridae •Cucujidae Superfamily Bostrichoidea •Erotylidae •Dermestidae •Coccinellidae Bostrichidae Superfamily Tenebrionoidea •Anobiidae •Tenebrionidae Superfamily Cleroidea •Mordellidae •Cleridae •Meloidae •Anthicidae Coleoptera Families Everyone Should Know (Checklist, cont.) Suborder Polyphaga, cont. Superfamily Chrysomeloidea •Chrysomelidae •Cerambycidae Superfamily Curculionoidea •Brentidae •Curculionidae Total: 35 families of 131 in the U.S. Suborder Adephaga Family Carabidae “Ground and Tiger Beetles” Terrestrial predators or herbivores (few). 2600 N. A. spp. Suborder Adephaga Family Dytiscidae “Predacious diving beetles” Adults and larvae aquatic predators. 500 N. A. spp. Suborder Adephaga Family Gyrindae “Whirligig beetles” Aquatic, on water
    [Show full text]
  • First Record of a Minute Mud-Loving Beetle of the Family Georissidae (Insecta: Coleoptera: Hydrophiloidea) in Thailand
    NAT. HIST. BULL. SIAM SOC. 61(2): 131–133, 2016 First Record of a Minute Mud-loving Beetle of the Family Georissidae (Insecta: Coleoptera: Hydrophiloidea) in Thailand William D. Shepard1 and Robert W. Sites2* The family Georissidae (minute mud-loving beetles) is represented by a single genus, Georissus, which occurs on all continents except Antarctica. However, country records of species of Georissus are scattered. The genus comprises three subgenera (Georissus [Georissus], Georissus [Neogeorissus], and Georissus [Nipponogeorissus]), 80 species, and 2 subspecies (+$16(1/,729.,1 ),.Éÿ(. 2011). Various authors have considered the family as a subfamily within Hydrophilidae; however, current opinion retains family status (6+257 ),.Éÿ(. 2013). Larval, pupal, and adult Georissus are found on damp, sandy shores of lakes and rivers (SHEPARD, 6RPHDGXOWVFDPRXÁDJHWKHPVHOYHVZLWKDFRYHULQJ of sand grains glued to their dorsum (BAMEUL, 1989). Most descriptions of adults are of the external morphology and only a few included a description or illustration of the aedeagus. Larvae have been described by VAN EMDEN (1956), BERTRAND (1972), SPANGLER (1991) and $5&+$1*(/6.< (1997); pupae have been described by BERTRAND (1972) and SHEPARD (2003). The chromosomal karyotype of Georissus crenulatus (Rossi) has been described and illustrated by SHAARAWI & ANGUS (1992), and the life cycle of Georissus californicus LeConte) has been described by SHEPARD (2003). This family is little known because of their small size (many less than 2 mm) and the adults of some taxa conceal themselves with sand and remain still upon disturbance. Although most species are described from a limited number of adults, if a collector takes the time to closely examine sandy shores, the adults can be found.
    [Show full text]
  • The Phylogeny of Ptiliidae (Coleoptera: Staphylinoidea) – the Smallest Beetles and Their Evolutionary Transformations
    77 (3): 433 – 455 2019 © Senckenberg Gesellschaft für Naturforschung, 2019. The phylogeny of Ptiliidae (Coleoptera: Staphylinoidea) – the smallest beetles and their evolutionary transformations ,1, 2 3 4 Alexey A. Polilov* , Ignacio Ribera , Margarita I. Yavorskaya , Anabela Cardoso 3, Vasily V. Grebennikov 5 & Rolf G. Beutel 4 1 Department of Entomology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia; Alexey A. Polilov * [polilov@gmail. com] — 2 Joint Russian-Vietnamese Tropical Research and Technological Center, Hanoi, Vietnam — 3 Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain; Ignacio Ribera [[email protected]]; Anabela Cardoso [[email protected]] — 4 Institut für Zoologie und Evolutionsforschung, FSU Jena, Jena, Germany; Margarita I. Yavorskaya [[email protected]]; Rolf G. Beutel [[email protected]] — 5 Canadian Food Inspection Agency, Ottawa, Canada; Vasily V. Grebennikov [[email protected]] — * Cor- responding author Accepted on November 13, 2019. Published online at www.senckenberg.de/arthropod-systematics on December 06, 2019. Published in print on December 20, 2019. Editors in charge: Martin Fikáček & Klaus-Dieter Klass. Abstract. The smallest beetles and the smallest non-parasitic insects belong to the staphylinoid family Ptiliidae. Their adult body length can be as small as 0.325 mm and is generally smaller than 1 mm. Here we address the phylogenetic relationships within the family using formal analyses of adult morphological characters and molecular data, and also a combination of both for the frst time. Strongly supported clades are Ptiliidae + Hydraenidae, Ptiliidae, Ptiliidae excl. Nossidium, Motschulskium and Sindosium, Nanosellini, and a clade comprising Acrotrichis, Smicrus, Nephanes and Baeocrara. A group comprising Actidium, Oligella and Micridium + Ptilium is also likely monophy- letic.
    [Show full text]
  • Water Beetles
    Ireland Red List No. 1 Water beetles Ireland Red List No. 1: Water beetles G.N. Foster1, B.H. Nelson2 & Á. O Connor3 1 3 Eglinton Terrace, Ayr KA7 1JJ 2 Department of Natural Sciences, National Museums Northern Ireland 3 National Parks & Wildlife Service, Department of Environment, Heritage & Local Government Citation: Foster, G. N., Nelson, B. H. & O Connor, Á. (2009) Ireland Red List No. 1 – Water beetles. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Cover images from top: Dryops similaris (© Roy Anderson); Gyrinus urinator, Hygrotus decoratus, Berosus signaticollis & Platambus maculatus (all © Jonty Denton) Ireland Red List Series Editors: N. Kingston & F. Marnell © National Parks and Wildlife Service 2009 ISSN 2009‐2016 Red list of Irish Water beetles 2009 ____________________________ CONTENTS ACKNOWLEDGEMENTS .................................................................................................................................... 1 EXECUTIVE SUMMARY...................................................................................................................................... 2 INTRODUCTION................................................................................................................................................ 3 NOMENCLATURE AND THE IRISH CHECKLIST................................................................................................ 3 COVERAGE .......................................................................................................................................................
    [Show full text]
  • An Annotated Checklist of Wisconsin Mordellidae (Coleoptera)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida September 2003 An annotated checklist of Wisconsin Mordellidae (Coleoptera) Anneke E. Lisberg University of Wisconsin-Madison Daniel K. Young University of Wisconsin-Madison Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Lisberg, Anneke E. and Young, Daniel K., "An annotated checklist of Wisconsin Mordellidae (Coleoptera)" (2003). Insecta Mundi. 39. https://digitalcommons.unl.edu/insectamundi/39 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI, Vol. 17, No. 3-4, September-December, 2003 195 An annotated checklist of Wisconsin Mordellidae (Coleoptera) Anneke E. Lisberg and Daniel K. Young Department of Entomology University of Wisconsin-Madison 445 Russell Labs 1630 Linden Dr. Madison, WI 53706, U.S.A. Abstract: A three-year survey of Wisconsin Mordellidae (Coleoptera) encompassing a compilation of data from literature records and local collections as well as field work including trapping, hand-collecting, and rearing yielded 68 species comprising 14 genera in three tribes. Sixty-three species (92% of Wisconsin fauna) represent new state species records, not previously recorded from the state in the literature. Plant-associations and state- specific temporal and spatial distribution data for larvae and adults are noted as available. Distributional records suggest 16 additional species and one additional genus are likely to occur in Wisconsin.
    [Show full text]
  • ACTA ENTOMOLOGICA 59(1): 253–272 MUSEI NATIONALIS PRAGAE Doi: 10.2478/Aemnp-2019-0021
    2019 ACTA ENTOMOLOGICA 59(1): 253–272 MUSEI NATIONALIS PRAGAE doi: 10.2478/aemnp-2019-0021 ISSN 1804-6487 (online) – 0374-1036 (print) www.aemnp.eu RESEARCH PAPER Aquatic Coleoptera of North Oman, with description of new species of Hydraenidae and Hydrophilidae Ignacio RIBERA1), Carles HERNANDO2) & Alexandra CIESLAK1) 1) Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta 37, E-08003 Barcelona, Spain; e-mails: [email protected], [email protected] 2) P.O. box 118, E-08911 Badalona, Catalonia, Spain; e-mail: [email protected] Accepted: Abstract. We report the aquatic Coleoptera (families Dryopidae, Dytiscidae, Georissidae, 10th June 2019 Gyrinidae, Heteroceridae, Hydraenidae, Hydrophilidae and Limnichidae) from North Oman, Published online: mostly based on the captures of fourteen localities sampled by the authors in 2010. Four 24th June 2019 species are described as new, all from the Al Hajar mountains, three in family Hydraenidae, Hydraena (Hydraena) naja sp. nov., Ochthebius (Ochthebius) alhajarensis sp. nov. (O. punc- tatus species group) and O. (O.) bernard sp. nov. (O. metallescens species group); and one in family Hydrophilidae, Agraphydrus elongatus sp. nov. Three of the recorded species are new to the Arabian Peninsula, Hydroglyphus farquharensis (Scott, 1912) (Dytiscidae), Hydraena (Hydraenopsis) quadricollis Wollaston, 1864 (Hydraenidae) and Enochrus (Lumetus) cf. quadrinotatus (Guillebeau, 1896) (Hydrophilidae). Ten species already known from the Arabian Peninsula are newly recorded from Oman: Cybister tripunctatus lateralis (Fabricius, 1798) (Dytiscidae), Hydraena (Hydraena) gattolliati Jäch & Delgado, 2010, Ochthebius (Ochthebius) monseti Jä ch & Delgado 2010, Ochthebius (Ochthebius) wurayah Jäch & Delgado, 2010 (all Hydraenidae), Georissus (Neogeorissus) chameleo Fikáč ek & Trávní č ek, 2009 (Georissidae), Enochrus (Methydrus) cf.
    [Show full text]
  • The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
    INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al.
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • Ant-Like Flower Beetles (Coleoptera: Anthicidae) of the Uk, Ireland and Channel Isles
    BR. J. ENT. NAT. HIST., 23: 2010 99 ANT-LIKE FLOWER BEETLES (COLEOPTERA: ANTHICIDAE) OF THE UK, IRELAND AND CHANNEL ISLES DMITRY TELNOV Stopinu novads, Darza iela 10, LV-2130, Dzidrinas, Latvia; E-mail: [email protected] ABSTRACT The Anthicidae or ant-like flower beetles of the UK, Ireland and Channel Isles are reviewed. A species list, identification key, short diagnoses and illustrations of all taxa are given. Brief information on known ecological preferences of species is given. Key words: identification, distribution, key, United Kingdom, Ireland, fauna, ecology. INTRODUCTION Anthicidae are a cosmopolitan family of small to medium-sized, fast-moving beetles of the superfamily Tenebrionoidea. Anthicidae are represented in the World fauna by approximately 100 genera, and about 3500 species (Chandler, 2010). Only a few species are known from the fossil record. The last revision of the British Anthicidae was published by F. D. Buck (1954) in the well-known series Handbooks for the Identification of British Insects. Since then, there have been numerous nomenclatural changes within Anthicidae, and some additional species (introduced) have been recorded from the UK, making Buck’s key out of date. During 2004 and 2005 a total of 3356 specimens of Anthicidae from the UK and Ireland were examined by the author, mainly from the collections of The Natural History Museum (London), Oxford University Museum of Natural History and National Museum of Ireland. Additional data for more than 2100 specimens were received from other British museums and private collections between 2005 and 2007. A new key and short diagnoses for the genera are presented, as well as data on habitats and general distribution of species.
    [Show full text]
  • Metacommunities and Biodiversity Patterns in Mediterranean Temporary Ponds: the Role of Pond Size, Network Connectivity and Dispersal Mode
    METACOMMUNITIES AND BIODIVERSITY PATTERNS IN MEDITERRANEAN TEMPORARY PONDS: THE ROLE OF POND SIZE, NETWORK CONNECTIVITY AND DISPERSAL MODE Irene Tornero Pinilla Per citar o enllaçar aquest document: Para citar o enlazar este documento: Use this url to cite or link to this publication: http://www.tdx.cat/handle/10803/670096 http://creativecommons.org/licenses/by-nc/4.0/deed.ca Aquesta obra està subjecta a una llicència Creative Commons Reconeixement- NoComercial Esta obra está bajo una licencia Creative Commons Reconocimiento-NoComercial This work is licensed under a Creative Commons Attribution-NonCommercial licence DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode Irene Tornero Pinilla 2020 DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode IRENE TORNERO PINILLA 2020 DOCTORAL PROGRAMME IN WATER SCIENCE AND TECHNOLOGY SUPERVISED BY DR DANI BOIX MASAFRET DR STÉPHANIE GASCÓN GARCIA Thesis submitted in fulfilment of the requirements to obtain the Degree of Doctor at the University of Girona Dr Dani Boix Masafret and Dr Stéphanie Gascón Garcia, from the University of Girona, DECLARE: That the thesis entitled Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode submitted by Irene Tornero Pinilla to obtain a doctoral degree has been completed under our supervision. In witness thereof, we hereby sign this document. Dr Dani Boix Masafret Dr Stéphanie Gascón Garcia Girona, 22nd November 2019 A mi familia Caminante, son tus huellas el camino y nada más; Caminante, no hay camino, se hace camino al andar.
    [Show full text]
  • Phylogeny of Psephenidae (Coleoptera: Byrrhoidea) Based on Larval, Pupal and Adult Characters
    Systematic Entomology (2007), 32, 502–538 DOI: 10.1111/j.1365-3113.2006.00374.x Phylogeny of Psephenidae (Coleoptera: Byrrhoidea) based on larval, pupal and adult characters CHI-FENG LEE1 , MASATAKA SATOˆ2 , WILLIAM D. SHEPARD3 and M A N F R E D A . J A¨CH4 1Institute of Biodiversity, National Cheng Kung University, Tainan 701, Taiwan, 2Dia Cuore 306, Kamegahora 3-1404, Midoriku, Nagoya, 458-0804, Japan, 3Essig Museum of Entomology, 201 Wellman Hall, University of California, Berkeley, CA 94720, U.S.A., and 4Natural History Museum, Burgring 7, A-1010 Wien, Austria Abstract. We conducted the first comprehensive phylogenetic analysis of Pse- phenidae, based on 143 morphological characters of adults, larvae and pupae and coded for 34 taxa, representing three outgroups and 31 psephenid genera, including four undescribed ones. A strict consensus tree calculated (439 steps, consistency index ¼ 0.45, retention index ¼ 0.75) from the two most-parsimonious cladograms indicated that the monophyly of the family and subfamilies is supported, with the exception of Eubriinae, which is paraphyletic when including Afroeubria. Here a new subfamily, Afroeubriinae (subfam.n.), is formally estab- lished for Afroeubria. The analysis also indicated that the ‘streamlined’ larva is a derived adaptive radiation. Here, suprageneric taxonomy and the evolution of some significant characters are discussed. Keys are provided to the subfamilies and genera of Psephenidae considering larvae, adults and pupae. Introduction type specimens and the association of adults and immature stages by rearing, five new genera were proposed for Ori- Psephenidae, the ‘water penny’ beetles, are characterized by ental taxa and a well-resolved phylogenetic tree was ob- the peculiar larval body shape (Figs 4–7).
    [Show full text]
  • Current Classification of the Families of Coleoptera
    The Great Lakes Entomologist Volume 8 Number 3 - Fall 1975 Number 3 - Fall 1975 Article 4 October 1975 Current Classification of the amiliesF of Coleoptera M G. de Viedma University of Madrid M L. Nelson Wayne State University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation de Viedma, M G. and Nelson, M L. 1975. "Current Classification of the amiliesF of Coleoptera," The Great Lakes Entomologist, vol 8 (3) Available at: https://scholar.valpo.edu/tgle/vol8/iss3/4 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. de Viedma and Nelson: Current Classification of the Families of Coleoptera THE GREAT LAKES ENTOMOLOGIST CURRENT CLASSIFICATION OF THE FAMILIES OF COLEOPTERA M. G. de viedmal and M. L. els son' Several works on the order Coleoptera have appeared in recent years, some of them creating new superfamilies, others modifying the constitution of these or creating new families, finally others are genera1 revisions of the order. The authors believe that the current classification of this order, incorporating these changes would prove useful. The following outline is based mainly on Crowson (1960, 1964, 1966, 1967, 1971, 1972, 1973) and Crowson and Viedma (1964). For characters used on classification see Viedma (1972) and for family synonyms Abdullah (1969). Major features of this conspectus are the rejection of the two sections of Adephaga (Geadephaga and Hydradephaga), based on Bell (1966) and the new sequence of Heteromera, based mainly on Crowson (1966), with adaptations.
    [Show full text]