Determinate and Indeterminate Forms

Some limits can be determined by inspection just by looking at the form of the limit – these predictable limit forms are called determinate. Other limits can’t be determined just by looking at the form of the limit and can only be determined after additional work is done – these unpredictable limit forms are called indeterminate.

Determinate Limit Forms:

Assuming that the functions involved in the limit are defined:

a bounded 1. The limit forms , for any number a, and result in a limit of 0.  

2. The limit form  results in a limit of  .

3. The limit form  results in a limit of 0.

4. The limit form a , for 11 a  , results in a limit of 0.

5. The limit form , for a 1, results in a limit of .

6. The limit form a , for a  0, results in a limit of .

7. The limit form a , for a  0, results in a limit of 0.

  8. The limit forms , , and a, for , result in a limit of  . 0 a

 9. The limit forms , , and a, for , result in a limit of . 0 10. The limit forms    and    result in a limit of  .

11. The limit forms   , , and    result in a limit of  .

12. The limit forms a 0, for any number a, and bounded 0 result in a limit of 0.

13. The limit forms   a, for any number a, and   boundedresult in a limit of .

14. The limit form a0 , for a  0, results in a limit of 1. Indeterminate Limit Forms:

1. 1

2 1 x lim 1x  0 x

ln a x lim 1x  a , for a  0 x

2 1 x lim 1x    x

sin x x lim 1x  DNE x

As you can see, this limit form can result in all limits from 0 to  , and even DNE.

0 2. 0

x lim 2   x0 x

ax lim  a , for any number a x0 x

x lim 2  x0 x

x xsin  1  lim  DNE , lim x  DNE x0 x2 x0 x

As you can see, this limit form can result in all limits from  to , and even DNE.

 3. 

x2 lim   x x

ax lim  a , for a  0 x x

x lim 0 x x2

x2 lim  x x

2x xsinx lim  DNE x x

As you can see, this limit form can result in all limits from  to  , and even DNE.

4. 0

2 1 lim x x   x  

a lim xax  , for any number a x

2 1 lim x x   x  

1 lim 2x xsinx   DNE x x

As you can see, this limit form can result in all limits from to , and even DNE.

5. 0

 1  limex ln x  0 x  

 1  1 x x lim  a   a , for 01a x 

1 limx x  1 x

1 lim aax x  , for a 1 x  

1 lim xx x  x  

1 lim 3 sin xx x DNE x 

As you can see, this limit form can result in all limits from 0 to  , and even DNE.

6. 00

  1 limx3 ln x  0 x0

ln a lim xaln x  , for a  0 x0

1 x 1 x2 lim  2   x0 

1 x x 2 1 x lim x DNE , limx sin  x   DNE x0 x0  

As you can see, this limit form can result in all limits from 0 to , and even DNE.

7.   

lim xx2   x  

lim x a  x  a , for any number a x 

lim xx2    x  

limx sin x  x  DNE x 

As you can see, this limit form can result in all limits from  to  , and even DNE. L’Hopital’s Rule Guidelines:

Type of indeterminate form Apply L’Hopital’s Rule to

fx  0 fx   1. lim  or lim  gx  0 gx   fx  lim gx fx  whatever   or lim  gx  

f x   g x  2. limf x g x   0 lim  or lim   11    g x   f x 

ln f x   g x  lim  or lim   11    g x  g x 00 g x g x  ln f x  3. limf x =1 ,lim f x =0 ,lim f x = But remember to exponentiate to get the original limit.

11 4. limf x g x     limg x f x     1 g x f x

1 fx  0 gx  5. lim  lim 1 g x whatever fx 

fx  Warning: If the zeros of gx  accumulate at a, then it might be the case that lim xa gx  f x f x appears to exist, but lim lim . x ag x x a g x

Example:

x cos x sin x  lim has the form , and the limit doesn’t exist. However, x esin x  x cos x sin x 

x cos x sin x 1 sin22xx cos lim lim sinxx 2 2 sin xxsin x   e1 sin x  cos x  cos xe x  cos x sin x e x cos x sin x . 2cos2 x  lim x 2esinxx cos 2 x cos xe sin  x cos x sin x 2cos2 x Since lim 0 , the discontinuities in the 21n  sinxx 2 sin x 2 2e cos x cos xe x cos x sin x 2cos2 x can be removed to yield the 2esinxx cos 2 x cos xe sin  x cos x sin x  2cos x sinxx sin ;cosx  0 2cos x 2e cos x e x cos x sin x    , and limsinxx sin  0.  x 2e cos x e x cos x sin x  0 ;cosx  0 So a careless cancelation of cos x between the numerator and denominator would lead you to x cos x sin x believe that lim 0, when it actually doesn’t exist. x esin x  x cos x sin x