Dark Matter: a Particle Physics Approach 4/23/2018 Lecture 23 Extra Credit: Thursday April 26Th 2:00 PM Room 190 Physics and Astronomy

Total Page:16

File Type:pdf, Size:1020Kb

Dark Matter: a Particle Physics Approach 4/23/2018 Lecture 23 Extra Credit: Thursday April 26Th 2:00 PM Room 190 Physics and Astronomy Dark Matter: A particle physics approach 4/23/2018 Lecture 23 Extra Credit: Thursday April 26th 2:00 PM Room 190 Physics and Astronomy • Probing the Cause of Lagging Gaseous Halos with Radio Continuum Observations • Presented by Tim Braun (UNM) Fundamental Forces • Strong nuclear force: • Holds nuclei, protons and neutrons, of atoms together. • Strongest force but works on small distances. • Electromagnetic force: • Binds electrons to protons • Two charges, +/-, most things are electrically neutral, has infinite range • 1000 times weaker than strong force • Weak force: • Changes protons to neutrons • Range 10-18 meters. • 10-16 weaker than strong force • Gravity • Attractive force between objects with mass • Infinite range • 10-41 weaker than strong force The Standard Model of Particle Physics Fundamental Electromagnetic interaction - - - - Light that radiates from a - star - Light being converted into matter anti matter + - Gravity - General Relativity Primary Evidence for Dark Matter The Bullet Cluster Dark matter predicted not to interact with ordinary matter, or itself, except through gravity. Gas clouds, by contrast, can run into each other. A collision of two clusters provides dramatic evidence for dark matter: cluster cluster trajectory trajectory red shows hot gas from two clusters, seen with Chandra X-ray observatory. blue shows inferred distribution The gas clouds have run of cluster mass from gravitational into each other, slowing lensing of background galaxies. each one down The dark matter has gone straight through with no interaction, like the galaxies have. Dark Matter • Dark matter is matter that has been observed to only interact via the gravitational force. • We have definitive proof that dark matter exists when we look at large scale objects (galaxies, globular clusters, etc…). • Dark matter exists as bent space time ( seen from gravitational lensing and rotation curves). • Global scientific effort to find dark matter as a particle. Lambda Cold Dark Matter • ΛCDM is the Standard Model for the Big Bang. It predicts: • the existence and structure of the cosmic microwave background • the large-scale structure in the distribution of galaxies • the abundances of hydrogen and helium • the accelerating expansion of the universe • Cold Dark Matter is postulated in order to explain: • Large-scale structure of galaxies • Flat rotation curves • Gravitational lensing by galaxy clusters • CDM is slow and collision-less: • Axions • Weakly Interacting Massive Particles (WIMPs) Axion • Named after Axion, a brand of laundry detergent, for the notion that the new particle could "clean up" a problem in physics. • 1-100 billion times lighter than a proton, copiously produced in the early universe. • Just like an electron/positron pair, axion/anti-axion pair could be produced from photon. • Why don’t we see this in the lab? • Incredibly rare process ADMX- Axion Dark Matter Experiment • ADMX is an axion antenna, convert dark matter axions to detectable to microwave photons. • Uses a strong magnetic field to “capture” axions and turn there mass into a radio signal. • Prior experiments used the “Shine Light at a Wall” method. • Measuring the cooling rate of white dwarf stars also sets a limit on the axion. WIMPs • Weakly interacting massive particles (WIMPs) best candidate for dark matter • Interact with normal matter through gravity and the weak force. • For every theorist, there are two theories of WIMPs • Incredibly massive: • Clumps around normal matter • 1-1000 times more massive than the proton • Low cross section: • Does not collide with itself or normal matter. • Only will collide with anything in extreme scenarios (black hole accretion disk, supernova) • Detection methods include: • WIMP annihilation • Direct detection • Direct production WIMP Annihilation • What happens when two dark matter particles collide? • Do they produce high energy particles we know of? If so, we can look for this. • If two dark matter particles annihilate, they will produce an emission line at a specific energy. • Mechanisms that could create ‘false’ dark matter annihilation signals are not well know. Direct Detection • If WIMPs are weakly interacting, eventually they will collide with normal matter. • If they collide with normal matter, what does that signal look like? • Best experiments use scintillating noble liquids (Xenon, Argon…) • Every experiment is deep underground away from cosmic photons. XENON Dark Matter Experiment Direct Production • Large Hadron Collider (LHC) at CERN used E = mc2 to look for incredibly high mass particles. • By colliding protons together at very high speeds, they try to replicate energies similar to the Big Bang. • The LHC has an incredible ability to track every particle produced from their collisions. • Dark matter particles can not be tracked. • By looking for an absence of particles, we can search for dark matter. Dark Energy • The expanse of the universe is accelerating. • The only way to explain this is to give all of space some energy density (vacuum energy). • Vacuum energy is like the density of the nothing (a vacuum). • Has a negative (repulsive pressure) to explain the acceleration of the universe. • Some models of dark energy predict that the force of dark energy will continue to grow until it dominates all other forces in the universe. Chameleon particle • The chameleon is a hypothetical scalar particle that couples to matter more weakly than gravity, postulated as a dark energy candidate. • It has a variable effective mass which is an increasing function of the ambient energy density • Incredibly massive near other massive objects (like the earth) • Incredibly light in intergalactic space • On Earth it would be so massive that the LHC could not create it. • In intergalactic space, it would be so light, we would not see it with our telescopes. WIMP Results • No definitive results for WIMP detection. Only limits. • What is the point of looking for a dark matter? • If no dark matter is found, the community has developed novel new detectors that can be used for industrial and commercial applications. • Science for science sake is always beneficial..
Recommended publications
  • Book of Abstracts
    The 19th Particles and Nuclei International Conference (PANIC11) Scientific Program Laboratory for Nuclear Science Massachusetts Institute of Technology July 24-29, 2011 Table of Contents Contents Sunday, 24 July 1 Pedagogical Lectures for Students - Kresge Auditorium (09:00-15:45)................. 1 Welcome Reception - Kresge Oval Tent (16:00-19:00) . ................... 1 Monday, 25 July 2 Opening Remarks - Kresge Auditorium (08:30-08:55) . ................... 2 Plenary1 - KresgeAuditorium (08:30-10:05) . ................. 2 Plenary1 - KresgeAuditorium (10:45-12:00) . ................. 2 Parallel 1A - Parity Violating Scattering - W20-307 (MezzanineLounge)(13:30-15:30) . 3 Parallel 1B - Nuclear Effects & Hadronization - W20-306 (20 Chimneys)(13:30-15:30) . 4 Parallel 1C - Recent Baryon Results I - W20-201 (West Lounge) (13:30-15:30). 6 Parallel 1D - Kaonic Atoms and Hypernuclear Physics - 4-149 (13:30-15:30) . 8 Parallel 1E - Neutrino Oscillations I - 4-163 (13:30-15:30) ....................... 10 Parallel 1F - Dark Forces and Dark Matter - 4-153 (13:30-15:30) ................... 12 Parallel 1G - P- and T-violating weak decays - Kresge - RehearsalA(13:30-15:30) . 14 Parallel 1H - Electroweak Cross Sections at the TeV Scale - Kresge - Rehearsal B (13:30-15:30) . 16 Parallel 1I - CKM & CP Violation - Kresge - Little Theatre (13:30-15:30) .............. 17 Parallel 1J - Collider Searches Beyond the Standard Model - Kresge Auditorium (13:30-15:30) . 18 Parallel 1K - Hydrodynamics - W20-407 (13:30-15:30) . ................... 19 Parallel 1L - Heavy Ion Collisions I - W20-491 (13:30-15:30) ...................... 20 Parallel 2A - Generalized Parton Distributions - W20-307 (Mezzanine Lounge) (16:00-17:40). 21 Parallel 2B - Parton Distribution Functions and Fits - W20-306 (20 Chimneys) (16:00-17:40) .
    [Show full text]
  • Wimps and Machos ENCYCLOPEDIA of ASTRONOMY and ASTROPHYSICS
    WIMPs and MACHOs ENCYCLOPEDIA OF ASTRONOMY AND ASTROPHYSICS WIMPs and MACHOs objects that could be the dark matter and still escape detection. For example, if the Galactic halo were filled –3 . WIMP is an acronym for weakly interacting massive par- with Jupiter mass objects (10 Mo) they would not have ticle and MACHO is an acronym for massive (astrophys- been detected by emission or absorption of light. Brown . ical) compact halo object. WIMPs and MACHOs are two dwarf stars with masses below 0.08Mo or the black hole of the most popular DARK MATTER candidates. They repre- remnants of an early generation of stars would be simi- sent two very different but reasonable possibilities of larly invisible. Thus these objects are examples of what the dominant component of the universe may be. MACHOs. Other examples of this class of dark matter It is well established that somewhere between 90% candidates include primordial black holes created during and 99% of the material in the universe is in some as yet the big bang, neutron stars, white dwarf stars and vari- undiscovered form. This material is the gravitational ous exotic stable configurations of quantum fields, such glue that holds together galaxies and clusters of galaxies as non-topological solitons. and plays an important role in the history and fate of the An important difference between WIMPs and universe. Yet this material has not been directly detected. MACHOs is that WIMPs are non-baryonic and Since extensive searches have been done, this means that MACHOS are typically (but not always) formed from this mysterious material must not emit or absorb appre- baryonic material.
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • Tests of Chameleon Gravity
    Tests of Chameleon Gravity Clare Burrage,a;∗ and Jeremy Saksteinb;y aSchool of Physics and Astronomy University of Nottingham, Nottingham, NG7 2RD, UK bCenter for Particle Cosmology, Department of Physics and Astronomy University of Pennsylvania, Philadelphia, PA 19104, USA Abstract Theories of modified gravity where light scalars with non-trivial self-interactions and non-minimal couplings to matter|chameleon and symmetron theories|dynamically sup- press deviations from general relativity in the solar system. On other scales, the environ- mental nature of the screening means that such scalars may be relevant. The highly- nonlinear nature of screening mechanisms means that they evade classical fifth-force searches, and there has been an intense effort towards designing new and novel tests to probe them, both in the laboratory and using astrophysical objects, and by reinter- preting existing datasets. The results of these searches are often presented using different parametrizations, which can make it difficult to compare constraints coming from dif- ferent probes. The purpose of this review is to summarize the present state-of-the-art searches for screened scalars coupled to matter, and to translate the current bounds into a single parametrization to survey the state of the models. Presently, commonly studied chameleon models are well-constrained but less commonly studied models have large re- gions of parameter space that are still viable. Symmetron models are constrained well by astrophysical and laboratory tests, but there is a desert separating the two scales where the model is unconstrained. The coupling of chameleons to photons is tightly constrained but the symmetron coupling has yet to be explored.
    [Show full text]
  • Arxiv:1603.06587V1 [Astro-Ph.CO] 21 Mar 2016 Nevertheless They Have Managed to Escape Detection (Thus Far) Through So-Called Screening Mech- Anisms
    Chameleon Dark Energy and Atom Interferometry Benjamin Elder1, Justin Khoury1, Philipp Haslinger3, Matt Jaffe3, Holger M¨uller3;4, Paul Hamilton2 1Center for Particle Cosmology, Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 2Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 3Department of Physics, University of California, Berkeley, CA 94720 4Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 Abstract Atom interferometry experiments are searching for evidence of chameleon scalar fields with ever-increasing precision. As experiments become more precise, so too must theoretical predictions. Previous work has made numerous approximations to simplify the calculation, which in general requires solving a 3-dimensional nonlinear partial differential equation (PDE). In this paper, we introduce a new technique for calculating the chameleonic force, using a numerical relaxation scheme on a uniform grid. This technique is more general than previous work, which assumed spherical symmetry to reduce the PDE to a 1-dimensional ordinary differential equation (ODE). We examine the effects of approximations made in previous efforts on this subject, and calculate the chameleonic force in a set-up that closely mimics the recent experiment of Hamilton et al. Specifically, we simulate the vacuum chamber as a cylinder with dimensions matching those of the experiment, taking into account the backreaction of the source mass, its offset from the center, and the effects of the chamber walls. Remarkably, the acceleration on a test atomic particle is found to differ by only 20% from the approximate analytical treatment. These results allow us to place rigorous constraints on the parameter space of chameleon field theories, although ultimately the constraint we find is the same as the one we reported in Hamilton et al.
    [Show full text]
  • The Gammev-CHASE Search for Couplings Between Light and Chameleon Dark Energy
    How Dark Is Dark Energy? The GammeV-CHASE Search for Couplings between Light and Chameleon Dark Energy Jason Steffen, FNAL; Amol Upadhye, T-2; Over the past decade, evidence has continued to mount for an astonishing astrophysical phenomenon Alan Baumbaugh, Aaron S. Chou, Peter O. Mazur, known as the cosmic acceleration. The universe appears to be expanding increasingly rapidly; distant ob- Raymond Tomlin, FNAL; A. Weltman, Cape Town; jects are receding faster and faster. If the universe consisted entirely of ordinary matter, and if gravity were William Wester, FNAL well-described by Einstein’s General Relativity, then the expansion of the universe would slow down due to attractive gravitational forces. Thus, the cosmic acceleration demands a significant change to one of our two most fundamental theories. Either General Relativity breaks down on cosmological scales, or a new type of particle must be added to the Standard Model of particle physics, the quantum theory describing all known particles. Since particle physicists have known for some time that General Relativity cannot be incorporated directly into a quantum theory such as the Standard Model, the cosmic acceleration may give some insight into a more fundamental theory unifying gravity and quantum mechanics. he simplest theoretical modification that could explain the theories consistent with current observations are “chameleon” theories, acceleration is the “cosmological constant,” a constant vacuum which “hide” fifth forces and variations in fundamental constants by Tenergy density, which Einstein noted could be added to the equations of becoming massive in high-density regions of the universe. Since massive General Relativity. The contribution of Standard Model fields to the fields give rise to very short-range forces, chameleon dark energies are cosmological constant is approximately 120 orders of magnitude greater notoriously difficult to detect.
    [Show full text]
  • The Time of Perihelion Passage and the Longitude of Perihelion of Nemesis
    The Time of Perihelion Passage and the Longitude of Perihelion of Nemesis Glen W. Deen 820 Baxter Drive, Plano, TX 75025 phone (972) 517-6980, e-mail [email protected] Natural Philosophy Alliance Conference Albuquerque, N.M., April 9, 2008 Abstract If Nemesis, a hypothetical solar companion star, periodically passes through the asteroid belt, it should have perturbed the orbits of the planets substantially, especially near times of perihelion passage. Yet almost no such perturbations have been detected. This can be explained if Nemesis is comprised of two stars with complementary orbits such that their perturbing accelerations tend to cancel at the Sun. If these orbits are also inclined by 90° to the ecliptic plane, the planet orbit perturbations could have been minimal even if acceleration cancellation was not perfect. This would be especially true for planets that were all on the opposite side of the Sun from Nemesis during the passage. With this in mind, a search was made for significant planet alignments. On July 5, 2079 Mercury, Earth, Mars+180°, and Jupiter will align with each other at a mean polar longitude of 102.161°±0.206°. Nemesis A, a brown dwarf star, is expected to approach from the south and arrive 180° away at a perihelion longitude of 282.161°±0.206° and at a perihelion distance of 3.971 AU, the 3/2 resonance with Jupiter at that time. On July 13, 2079 Saturn, Uranus, and Neptune+180° will align at a mean polar longitude of 299.155°±0.008°. Nemesis B, a white dwarf star, is expected to approach from the north and arrive at that same longitude and at a perihelion distance of 67.25 AU, outside the Kuiper Belt.
    [Show full text]
  • 27. Dark Matter
    1 27. Dark Matter 27. Dark Matter Written August 2019 by L. Baudis (Zurich U.) and S. Profumo (UC Santa Cruz). 27.1 The case for dark matter Modern cosmological models invariably include an electromagnetically close-to-neutral, non- baryonic matter species with negligible velocity from the standpoint of structure formation, gener- ically referred to as “cold dark matter” (CDM; see The Big-Bang Cosmology—Sec. 22 of this Re- view). For the benchmark ΛCDM cosmology adopted in the Cosmological Parameters—Sec. 25.1 of this Review, the DM accounts for 26.4% of the critical density in the universe, or 84.4% of the total matter density. The nature of only a small fraction, between at least 0.5% (given neutrino os- cillations) and at most 1.6% (from combined cosmological constraints), of the non-baryonic matter content of the universe is known: the three Standard Model neutrinos (see the Neutrino Masses, Mixing, and Oscillations—Sec. 14 of this Review) ). The fundamental makeup of the large majority of the DM is, as of yet, unknown. Assuming the validity of General Relativity, DM is observed to be ubiquitous in gravitation- ally collapsed structures of size ranging from the smallest known galaxies [1] to galaxies of size comparable to the Milky Way [2], to groups and clusters of galaxies [3]. The mass-to-light ratio is observed to saturate at the largest collapsed scales to a value indicative, and close to, what inferred from other cosmological observations for the universe as a whole [4]. In such collapsed structures, the existence of DM is inferred directly using tracers of mass enclosed within a certain radius such as stellar velocity dispersion, rotation curves in axisymmetric systems, the virial theorem, gravitational lensing, and measures of the amount of non-dark, i.e.
    [Show full text]
  • Detection of Intermediate-Mass Black Holes in Globular Clusters Using
    Detection of Intermediate-Mass Black Holes in Globular Clusters Using Gravitational Lensing Takayuki Tatekawa Department of Social Design Engineering, National Institute of Technology, Kochi College, 200-1 Monobe Otsu, Nankoku, Kochi, 783-8508, Japan Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan [email protected] and Yuuki Okamura Department of Electrical Engineering and Information Science, National Institute of Technology, Kochi College, 200-1 Monobe Otsu, Nankoku, Kochi, 783-8508, Japan (Received ; accepted ) Abstract Recent observations suggest the presence of supermassive black holes at the centers of many galaxies. The existence of intermediate-mass black holes (IMBHs) in globu- lar clusters has also been predicted. We focus on gravitational lensing as a new way to explore these entities. It is known that the mass distribution of a self-gravitating system such as a globular cluster changes greatly depending on the presence or ab- sence of a central massive object. After considering possible mass distributions for a globular cluster belonging to the Milky Way galaxy, we estimate that the effect on the arXiv:2012.14703v1 [astro-ph.GA] 29 Dec 2020 separation angle of gravitational lensing due to an IMBH would be of milliarcsecond order. Key words: Gravitational lensing: IMBH: globular clusters 1. Introduction The existence of supermassive black holes (SMBHs) at the centers of galaxies has been made evident by recent observations. For example, the shadow of the SMBH in the center 1 of M87 was directly observed by the Event Horizon Telescope (EHT) (The Event Horizon Telescope Collaboration 2019).
    [Show full text]
  • Standard Electroweak Interactions in Gravitational Theory with Chameleon Field and Torsion
    Standard Electroweak Interactions in Gravitational Theory with Chameleon Field and Torsion A. N. Ivanov1, ∗ and M. Wellenzohn1,2, † 1Atominstitut, Technische Universit¨at Wien, Stadionallee 2, A-1020 Wien, Austria 2FH Campus Wien, University of Applied Sciences, Favoritenstraße 226, 1100 Wien, Austria (Dated: June 14, 2021) We propose a version of a gravitational theory with the torsion field, induced by the chameleon field. Following Hojman et al. Phys. Rev. D 17, 3141 (1976) the results, obtained in Phys. Rev. D 90, 045040 (2014), are generalised by extending the Einstein gravity to the Einstein–Cartan gravity with the torsion field as a gradient of the chameleon field through a modification of local gauge invariance of minimal coupling in the Weinberg–Salam electroweak model. The contributions of the chameleon (torsion) field to the observables of electromagnetic and weak processes are calculated. Since in our approach the chameleon–photon coupling constant βγ is equal to the chameleon– matter coupling constant β, i.e. βγ = β, the experimental constraints on β, obtained in terrestrial laboratories by T. Jenke et al. (Phys. Rev. Lett. 112, 115105 (2014)) and by H. Lemmel et al. (Phys. Lett. B 743, 310 (2015)), can be used for the analysis of astrophysical sources of chameleons, proposed by C. Burrage et al. (Phys. Rev. D 79, 044028 (2009)), A.-Ch. Davis et al. (Phys. Rev. D 80, 064016 (2009) and in references therein, where chameleons induce photons because of direct chameleon–photon transitions in the magnetic fields. PACS numbers: 03.65.Pm, 04.62.+v, 13.15.+g, 23.40.Bw I.
    [Show full text]
  • Multimessenger Probes for New Physics in Light of A. Sakharov's Legacy in Cosmoparticle Physics
    universe Article Multimessenger Probes for New Physics in Light of A. Sakharov’s Legacy in Cosmoparticle Physics † Maxim Khlopov 1,2,3 1 Institute of Physics, Southern Federal University, Stachki 194, 344090 Rostov on Don, Russia; [email protected]; Tel.: +33-676-380-567 2 Virtual Institute of Adtroparticle Physics, Université de Paris, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France 3 Center for Cosmoaprticle Physics Cosmion, Moscow State Engineering Physics Institute, National Research Nuclear University “MEPHI”, 31 Kashirskoe Chaussee, 115409 Moscow, Russia † This paper is an extended version from the proceeding paper: Khlopov, M. Multimessenger Probes for New Physics in the Light of A. Sakharov’s Legacy in Cosmoparticle Physics. In Proceedings of the 1st Electronic Conference on Universe, Online, 22–28 February 2021. Abstract: A.D. Sakharov’s legacy in now standard model of the Universe is not reduced to baryosyn- thesis but extends to the foundation of cosmoparticle physics, which studies the fundamental relationship of cosmology and particle physics. Development of cosmoparticle physics involves cross-disciplinary physical, astrophysical and cosmological studies of physics Beyond the Standard model (BSM) of elementary particles. To probe physical models for inflation, baryosynthesis and dark matter cosmoparticle physics pays special attention to model dependent messengers of the Citation: Khlopov, M. corresponding models, making their tests possible. Positive evidence for such exotic phenomena as Multimessenger Probes for New nuclear interacting dark atoms, primordial black holes or antimatter globular cluster in our galaxy Physics in Light of A. Sakharov’s would provide the selection of viable BSM models determination of their parameters.
    [Show full text]
  • Arxiv:1201.6526V1 [Astro-Ph.SR]
    Noname manuscript No. (will be inserted by the editor) Multiple populations in globular clusters Lessons learned from the Milky Way globular clusters Raffaele G. Gratton · Eugenio Carretta · Angela Bragaglia Received: date / Accepted: date Abstract Recent progress in studies of globular clusters has shown that they are not simple stellar populations, being rather made of multiple generations. Evidence stems both from photometry and spectroscopy. A new paradigm is then arising for the formation of massive star clusters, which includes sev- eral episodes of star formation. While this provides an explanation for several features of globular clusters, including the second parameter problem, it also opens new perspectives about the relation between globular clusters and the halo of our Galaxy, and by extension of all populations with a high specific frequency of globular clusters, such as, e.g., giant elliptical galaxies. We review progress in this area, focusing on the most recent studies. Several points re- main to be properly understood, in particular those concerning the nature of the polluters producing the abundance pattern in the clusters and the typical timescale, the range of cluster masses where this phenomenon is active, and the relation between globular clusters and other satellites of our Galaxy. Keywords Galaxy: general · Globular Clusters · halo · Stars: abundances · Hertzsprung-Russell and C-M diagrams R.G. Gratton INAF - Osservatorio Astronomico di Padova Phone: +39-049-8293442 Fax: +39-049-8759840 E-mail: raff[email protected] E. Carretta INAF - Osservatorio Astronomico di Bologna Phone: +39-051-2095776 E-mail: eugenio [email protected] A. Bragaglia arXiv:1201.6526v1 [astro-ph.SR] 31 Jan 2012 INAF - Osservatorio Astronomico di Bologna Phone: +39-051-2095770 E-mail: [email protected] 2 R.G.
    [Show full text]