The Intertropical Convergence Zone of the Eastern Pacific Region (I)*

Total Page:16

File Type:pdf, Size:1020Kb

The Intertropical Convergence Zone of the Eastern Pacific Region (I)* The Intertropical Convergence Zone of the Eastern Pacific Region (I)* MAJOR LEO ALPERT, A.C. Hq. AAF Weather Service, Asheville, N. C. INTRODUCTION Recently a large number of weather ob- servations have become available from air- ITTLE INFORMATION concerning the craft patrols in the Eastern Pacific Ocean structure and position of the inter- L between 90°W to 95°W Longitude, and 7°S tropical convergence zone in the East- to 14°N Latitude. From December 1941 to ern Pacific Ocean was available prior to the late 1944, hourly weather observations were war. As daily weather reports from ships made daily by patrol aircraft, flying between have never been numerous from this area, the Republic of Guatemala in Central Amer- all attempts to show the position of the ica, the Galapagos Archipelago and the main- intertropical convergence zone based upon land of Ecuador in South America. Data an interpretation of summarized ship re- for the period February 1942 to January ports are open to question. The charts pub- 1944 have been plotted on daily charts and lished in the " Atlas of Climatic Charts of analyzed by the author. the Oceans'n are probably the best of these The grand total of observations available for this region. They are based upon fre- from the aircraft patrols in the area from quencies of true-wind directions determined 10°N to 5°S for the period February 1942 by observing the effect of wind on the sea to January 1944, inclusive, is two to four surface from a moving ship at Greenwich times as great as the grand total of observa- Noon during the period 1885-1933. tions for all months, 1885-1933, from the The limitations of the wind data used in surface ship-reports used in the '1 Atlas." the "Atlas'' may be summarized with spe- However, north of 10°N there are seven cial reference to the area in question:— times as many ships' reports as aircraft a. Observations are scarce, especially south reports. of 10°N Latitude. The wind observations were made mostly b. Wind observations from ships are in- by double-drift methods at altitudes ranging herently inaccurate. from close to sea level to 10,000 feet above c. Observations are confined to sea-level sea level. Every hour in flight the navi- wind directions so that there is no in- gators entered the wind direction (to 36 formation about the winds aloft. points of the compass) and speed in the d. Observations are confined to those Weather Bureau " Aircraft Weather Re- taken at or near Greenwich Noon so port' ' form. Uncorrected altimeter altitudes that any diurnal variations, though were used, the altimeter being set at 29.92 probably small, are neglected. inches of mercury before takeoff. As a rule, e. Compilations are based upon relatively wind observations were taken only when the large unit areas (5° in longitude by 5° plane was flying in the clevar, either with the in latitude), so that details of wind- ocean surface visible below, or the sky visible direction distribution along the meri- above the plane. Thus, wind observations dians are masked. are generally lacking from areas of obscured /. Data for a 48-year period are totalled, ocean surface or sky. smoothing out any large variations of The aircraft wind observations appear to a shorter period. be generally accurate; however, several sources of error in the wind reports are * Published with permission of the War Department. present:— 1 Atlas of Climatic Charts of the Oceans, U. S. Weather Bureau, Washington, 1938. Earlier charts of Maury, Buchan, Koppen and the various 1'Pilot a. The small inaccuracy of the double- Charts" were based on even fewer observations in this drift wind observation. area. Unauthenticated | Downloaded 10/01/21 11:45 PM UTC b. Errors in encoding and decoding the zones are often present which may be associ- reports. ated with heavier clouds and weather than c. Errors in enciphering and deciphering those in the intertropical convergence zone the reports. proper. On these days, the analysis requires d. Errors in radio transmission of the careful interpretation of clouds and weather, reports. and reference to the comments of the navi- e. Errors in plotting the reports. gators in the '1 remarks'' section of the "Aircraft Weather Report'' form and of The weather observations were made daily the pilots in the "weather section" of the and hourly in flight during the hours from "Aircraft Commander's Report." 1000 GCT to 2300 GCT. Most of the obser- Four typical daily wind-stream patterns vations, however, cover the period 1300 GCT forming the intertropical convergence zone to 2000 GCT. Since the diurnal variation of are shown in FIGURE 1. The streamlines wind direction is believed to be very small represent only the direction of the wind over the open ocean, the observations have streams; no attempt has been made to been interpreted as the " chance of occur- show the wind speed by the spacing of the rence at any hour." streamlines. The aircraft observations are of particular On March 7, 1943, the pattern was com- interest, as on each day a relatively complete plex but the intertropical convergence zone horizontal and vertical coverage of the area was evidently 3-4 degrees south of the Equa- was obtained—in contrast to the one or two tor at a 90°-180° wind-shift; the northerly surface ships reporting daily in the area current shows some recurvature below the before the War.2 Equator. On June 15, 1942, the zone was far The position of the intertropical con- to the north in Central America; easterly vergence zone was drawn on each daily winds were present in the Caribbean, but the chart; and from these charts the mean posi- convergence line is indistinct over the land, tion, the extreme northern daily position, due to local winds and topographic effects. and the extreme southern daily position for On June 11, 1943, the zone was formed by a each month were determined and entered in sharp 180° wind-shift between southerly and TABLE I. northerly wind streams; there was some cy- The position of the intertropical con- clonic effect in the northerly current causing vergence zone on the daily charts is usually an apparent divergent zone around 95°W, clearly defined by a 90 to 180-degree wind- 7°N. On September 27, 1943, the zone was shift between southeast, south or southwest marked by a 90° wind-shift between south- winds of the Southern Hemisphere air erly and westerly wind streams; a weak cy- stream and east, northeast, north, northwest clonic circulation is noticeable around 10 °N, or west winds of the Northern Hemisphere air stream; however, in the period from the causing a secondary convergence zone. second half of February to the first half of In the mean, the inaccuracies on certain April in 1943 the convergence zone was not daily charts when it was difficult to deter- so easily located, as easterly winds were mine the position of the zone, tend to balance often present on both sides of the conver- each other, and the positions shown in TABLE gence zone with a wind-shift of less than 90 I and FIGURE 2 are, therefore, believed to be degrees. In addition, secondary convergence representative of prevailing conditions. 1. MEAN POSITION OF THE INTERTROPICAL CONVERGENCE ZONE (ICZ) It is apparent from FIGURE 2 that the throughout the year. The mean positions mean monthly positions of the intertropical interpreted from the 1' Atlas of Climatic convergence zone lie north of the Equator Charts of the Ocean" (dotted line) agree 2 See the "Daily Synoptic Series, Historical Weather reasonably well with those of 1942 and 1943 Maps, Northern Hemisphere Sea Level," published by combined (solid line). The analysis of the the U. S. Weather Bureau, for the JMC, 1943-44. Unauthenticated | Downloaded 10/01/21 11:45 PM UTC FIGURE 1. Typical Daily Wind-Stream Patterns Forming the Intertropical Convergence Zone i(Atlas'9 data is therefore apparently reli- in common which also characterize the curve able, except perhaps in February (see below). from the "Atlas'' data: — The curves (FIGURE 2) of the position of a. The ICZ (1942, the dash line and 1943, the ICZ in 1942 and 1943 have three features the dash-dot line) is farthest south in Unauthenticated | Downloaded 10/01/21 11:45 PM UTC FIGURE 2. Mean Monthly Latitudinal Positions of the Intertropical Convergence Zone Between 90°W and 95°W Longitude February-March. However, the curve inter- ward rapidly (about 6 latitude degrees in preted from the ''Atlas'' has a secondary 3-4 months) to a maximum north position in maximum in February, which may be a pe- June-October, with a slight return southward culiarity of certain years.3 These are the during July-August. This is the rainy sea- rainy season months in the Galapagos Archi- son in Central America and the dry season pelago, and the dry season in Central in the Galapagos Archipelago. The slight America. southward movement of the zone in July- b. The ICZ (1942 and 1943) moves north- August results from the westward extension of a ridge from the Bermuda High into the 3 S. B. Jones ("The Weather Element in the Ha- western Caribbean, causing a midsummer waiian Climate," Ann. Assoc. Amer. Geographers, Vol. 29, 1939, pp. 29-57) reported that low February rain- secondary decrease in rainfall in Central fall totals at Eastern Pacific stations were more fre- quent during the present century than before 1900. America. The peculiar "Atlas" position of the ICZ in Feb- c.
Recommended publications
  • Link Between the Double-Intertropical Convergence Zone Problem and Cloud Biases Over the Southern Ocean
    Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean Yen-Ting Hwang1 and Dargan M. W. Frierson Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195-1640 Edited by Mark H. Thiemens, University of California at San Diego, La Jolla, CA, and approved February 15, 2013 (received for review August 2, 2012) The double-Intertropical Convergence Zone (ITCZ) problem, in which climate models show that the bias can be reduced by changing excessive precipitation is produced in the Southern Hemisphere aspects of the convection scheme (e.g., refs. 7–9) or changing the tropics, which resembles a Southern Hemisphere counterpart to the surface wind stress formulation (e.g., ref. 10). Given the complex strong Northern Hemisphere ITCZ, is perhaps the most significant feedback processes in the tropics, it is challenging to understand and most persistent bias of global climate models. In this study, we the mechanisms by which the sensitivity experiments listed above look to the extratropics for possible causes of the double-ITCZ improve tropical precipitation. problem by performing a global energetic analysis with historical Recent work in general circulation theory has suggested that simulations from a suite of global climate models and comparing one should not only look within the tropics for features that affect with satellite observations of the Earth’s energy budget. Our results tropical precipitation. A set of idealized experiments showed that show that models with more energy flux into the Southern heating a global climate model exclusively in the extratropics can Hemisphere atmosphere (at the top of the atmosphere and at the lead to tropical rainfall shifts from one side of the tropics to the surface) tend to have a stronger double-ITCZ bias, consistent with other (11).
    [Show full text]
  • Tropical Weather Discussion
    TROPICAL WEATHER DISCUSSION • Purpose The Tropical Weather Discussion describes major synoptic weather features and significant areas of disturbed weather in the tropics. The product is intended to provide current weather information for those who need to know the current state of the atmosphere and expected trends to assist them in their decision making. The product gives significant weather features, areas of disturbed weather, expected trends, the meteorological reasoning behind the forecast, model performance, and in some cases a degree of confidence. • Content The Tropical Weather Discussion is a narrative explaining the current weather conditions across the tropics and the expected short-term changes. The product is divided into four different sections as outline below: 1. SPECIAL FEATURES (event-driven) The special features section includes descriptions of hurricanes, tropical storms, tropical depressions, subtropical cyclones, and any other feature of significance that may develop into a tropical or subtropical cyclone. For active tropical cyclones, this section provides the latest advisory data on the system. Associated middle and upper level interactions as well as significant clouds and convection are discussed with each system. This section is omitted if none of these features is present. 2. TROPICAL WAVES (event-driven) This section provides a description of the strength, position, and movement of all tropical waves analyzed on the surface analysis, from east to west. A brief reason for a wave’s position is usually given, citing surface observations, upper air time sections, satellite imagery, etc. The associated convection is discussed with each tropical wave as well as any potential impacts to landmasses or marine interests.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • ESCI 344 – Tropical Meteorology Lesson 3 – General Circulation of the Tropics
    ESCI 344 – Tropical Meteorology Lesson 3 – General Circulation of the Tropics References: Forecaster’s Guide to Tropical Meteorology (updated), Ramage Climate Dynamics of the Tropics, Hastenrath Tropical Climatology (2nd ed), McGregor and Nieuwolt Tropical Meteorology, Tarakanov Climate and Weather in the Tropics, Riehl General Circulation of the Tropical Atmosphere, Vol II, Newell et al. “The South Pacific Convergence Zone (SPCZ): A Review”, Vincent, Mon.Wea. Rev., 122, 1949-1970, 1994 “The Central Pacific Near-Equatorial Convergence Zone”, Ramage, J. Geophys. Res., 86, 6580-6598 Reading: Introduction to the Meteorology and Climate of the Tropics, Chapter 3 Vincent, “The SPCZ: A Review” Lau and Yang, “Walker Circulation” James, “Hadley Circulation” Waliser, “Intertropical Convergence Zones” Hastenrath, “Tropical Climates” Madden, “Intraseasonal Oscillation (MJO)” TERMINOLOGY Boreal refers to the Northern Hemisphere Austral refers to the Southern Hemisphere LATITUDINAL HEAT IMBALANCE Net radiation flux is defined as the difference in incoming radiation flux and outgoing radiation flux. A positive net radiation flux indicates a surplus of energy, while a negative net radiation flux indicates a deficit. This figure shows the longitudinally-averaged, annual-mean radiation fluxes at the top of the atmosphere. Outgoing shortwave is due to scattering and reflection. Net shortwave is the difference between the incoming and outgoing shortwave radiation. When the earth-atmosphere system is considered as a whole, there is a positive net radiation flux between about 40N and 40S, while there is a negative net radiation flux poleward of 40 in both hemispheres. In order for a steady-state temperature to be achieved, there must be transport of heat from the earth’s surface to the atmosphere, and from the tropics to the polar regions.
    [Show full text]
  • Synoptic Meteorology
    Lecture Notes on Synoptic Meteorology For Integrated Meteorological Training Course By Dr. Prakash Khare Scientist E India Meteorological Department Meteorological Training Institute Pashan,Pune-8 186 IMTC SYLLABUS OF SYNOPTIC METEOROLOGY (FOR DIRECT RECRUITED S.A’S OF IMD) Theory (25 Periods) ❖ Scales of weather systems; Network of Observatories; Surface, upper air; special observations (satellite, radar, aircraft etc.); analysis of fields of meteorological elements on synoptic charts; Vertical time / cross sections and their analysis. ❖ Wind and pressure analysis: Isobars on level surface and contours on constant pressure surface. Isotherms, thickness field; examples of geostrophic, gradient and thermal winds: slope of pressure system, streamline and Isotachs analysis. ❖ Western disturbance and its structure and associated weather, Waves in mid-latitude westerlies. ❖ Thunderstorm and severe local storm, synoptic conditions favourable for thunderstorm, concepts of triggering mechanism, conditional instability; Norwesters, dust storm, hail storm. Squall, tornado, microburst/cloudburst, landslide. ❖ Indian summer monsoon; S.W. Monsoon onset: semi permanent systems, Active and break monsoon, Monsoon depressions: MTC; Offshore troughs/vortices. Influence of extra tropical troughs and typhoons in northwest Pacific; withdrawal of S.W. Monsoon, Northeast monsoon, ❖ Tropical Cyclone: Life cycle, vertical and horizontal structure of TC, Its movement and intensification. Weather associated with TC. Easterly wave and its structure and associated weather. ❖ Jet Streams – WMO definition of Jet stream, different jet streams around the globe, Jet streams and weather ❖ Meso-scale meteorology, sea and land breezes, mountain/valley winds, mountain wave. ❖ Short range weather forecasting (Elementary ideas only); persistence, climatology and steering methods, movement and development of synoptic scale systems; Analogue techniques- prediction of individual weather elements, visibility, surface and upper level winds, convective phenomena.
    [Show full text]
  • BASIC WEATHER CONCEPTS CHAPTER TWO WIND, PRESSURE • Be Familiar with Global Wind Patterns
    LLI BASIC WEATHER CONCEPTS CHAPTER TWO WIND, PRESSURE • Be familiar with global wind patterns. • Understand barometric pressure. • Know the factors that affect the wind. • Predict the circulation of winds around highs and lows. • Determine the direction to a low. • Understand winds aloft and how they differ from surface winds. 1 EquatorPole Air Flow warm equatorial air rises, then moves to cooler mid-latitude regions then sinks 2 Mid-latitude High note each higher latitude region is colder until Pole is reached 3 What is a Hadley Cell? The Hadley cell, named after George Hadley, is a global scale tropical atmospheric circulation that features air rising near the equator, flowing poleward at 10–15 kilometers above the surface, descending in the subtropics, and then returning equatorward near the surface. This process maintains the Global Energy Balance preventing the equator from becoming hotter and polar regions becoming colder. 4 Global Highs and Lows 5 Global Winds 6 Video of Atmospheric Circulation • Global Atmospheric Circulation 1:54 mins. • https://www.youtube.com/watch?v=DHrapzH PCSA 7 European Explorers used Tradewinds St. Augustine >30˚ N > 30˚ S 9 Land Masses Modify Global Pattern 10 Key Points to Remember about Heat and Pressure • Heat: energy (heat) is always transferred from WARM to COLD • Pressure: pressure always flows from HIGH to LOW 11 Pressure Differences – HIGH pressure areas – like Hills – LOW pressure areas – like valleys Earth’s rotation causes winds to turn rather than travel straight from high to low 12 Winds around Highs and Lows highs-clockwise, lows counterclockwise 13 Movement of Air in Low Pressure and High Pressure Regions • Air molecules* move counterclockwise (in the Northern Hemisphere) and rise in a low pressure area.
    [Show full text]
  • Two Phases of the Holocene East African Humid Period: Inferred From
    Earth and Planetary Science Letters 460 (2017) 123–134 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Two phases of the Holocene East African Humid Period: Inferred from a high-resolution geochemical record off Tanzania ∗ Xiting Liu a,b, , Rebecca Rendle-Bühring b, Holger Kuhlmann b, Anchun Li a a Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China b MARUM – Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, D-28359 Bremen, Germany a r t i c l e i n f o a b s t r a c t Article history: During the Holocene, the most notably climatic change across the African continent is the African Received 10 August 2016 Humid Period (AHP), however the pace and primary forcing for this pluvial condition is still ambiguous, Received in revised form 2 December 2016 particularly in East Africa. We present a high-resolution marine sediment record off Tanzania to provide Accepted 11 December 2016 insights into the climatic conditions of inland East Africa during the Holocene. Major element ratios Available online xxxx (i.e., log-ratios of Fe/Ca and Ti/Ca), derived from X-Ray Fluorescence scanning, have been employed to Editor: M. Frank document variations in humidity in East Africa. Our results show that the AHP is represented by two Keywords: humid phases: an intense humid period from the beginning of the Holocene to 8ka (AHP I); and a African Humid Period moderate humid period spanning from 8 to 5.5 ka (AHP II).
    [Show full text]
  • How Does Intertropical Convergence Zone Variation Impact on Tropical Cyclone in the Northern Hemisphere?
    Geophysical Research Abstracts Vol. 19, EGU2017-16196, 2017 EGU General Assembly 2017 © Author(s) 2017. CC Attribution 3.0 License. How Does Intertropical Convergence Zone Variation Impact on Tropical Cyclone in the Northern Hemisphere? Liping Ma (1,2) and Richard Williams (2) (1) Chinese Academy of Meteorological Sciences, Beijing, China, (2) University of Liverpool, Department of Earth, Ocean & Ecological Sciences, School of Environmental Sciences, Liverpool, UK Enhanced sea surface temperature is expected to be favourable for more tropical cyclone formation. However, a surprising result emerges from the analysis of the frequency of tropical cyclones in the global tropical oceans in the northern hemisphere. The frequency of tropical cyclones positively correlates with a strengthening and northward movement of the Intertropical Convergence Zone (ITCZ hereafter). There is a different regional character for the tropical cyclones activity: in the Western North Pacific, the number of tropical cyclones has been decreasing since 1960s, whereas in the Eastern North Pacific and North Atlantic, the number of tropical cyclones has been increasing since 1949 and 1984 respectively. Most of the tropical cyclones in the tropical oceans are generated within the ITCZ (called the monsoon trough in the Western North Pacific, and the easterly wave in the Eastern North Pacific and North Atlantic). At the same time, there are changes in the strength and position of the ITCZ. In the Western North Pacific, ITCZ strength has been weakening and its position has been moving equatorward since the 1960s when the tropical cyclones frequency decreased. In the Eastern North Pacific, the ITCZ has been strengthening and moving northward where the tropical cyclone frequency has been increasing since 1949.
    [Show full text]
  • A Climate Network Perspective of the Intertropical Convergence Zone Frederik Wolf1,2, Aiko Voigt3,4, and Reik V
    https://doi.org/10.5194/esd-2020-81 Preprint. Discussion started: 6 November 2020 c Author(s) 2020. CC BY 4.0 License. A climate network perspective of the intertropical convergence zone Frederik Wolf1,2, Aiko Voigt3,4, and Reik V. Donner1,5 1Research Domain IV - Complexity Science, Potsdam Institute for Climate Impact Research (PIK) – Member of the Leibniz Association, Potsdam, Germany 2Department of Physics, Humboldt University, Berlin, Germany 3Institute of Meteorology and Climate Research, Department Troposphere Research, Karlsruhe Institute of Technology, Karlsruhe, Germany 4Lamont-Doherty Earth Observatory, Columbia University in the City of New York, NY, USA 5Department of Water, Environment, Construction and Safety, Magdeburg–Stendal University of Applied Sciences, Magdeburg, Germany Correspondence: Frederik Wolf ([email protected]) Abstract. The intertropical convergence zone (ITCZ) is an important component of the tropical rain belt. Climate models continue to struggle to adequately represent the ITCZ and differ substantially in its simulated response to climate change. Here we employ complex network approaches, which extract spatio-temporal variability patterns from climate data, to better understand differences in the dynamics of the ITCZ in state-of-the-art global circulation models (GCMs). For this purpose, 5 we study simulations with 14 GCMs in an idealized slab-ocean aquaplanet setup from TRACMIP – the Tropical Rain belts with an Annual cycle and a Continent Model Intercomparison Project. We construct network representations based on the spatial correlation pattern of monthly surface temperature anomalies and study the zonal mean patterns of different topological and spatial network characteristics. Specifically, we cluster the GCMs by means of their zonal network measure distribution utilizing hierarchical clustering.
    [Show full text]
  • Early Holocene Greening of the Sahara Requires Mediterranean Winter Rainfall
    Early Holocene greening of the Sahara requires Mediterranean winter rainfall Rachid Cheddadia,1,2, Matthieu Carréb,c,1, Majda Nourelbaitd, Louis Françoise,1, Ali Rhoujjatif, Roger Manayc, Diana Ochoac, and Enno Schefußg,1 aInstitut des Sciences de l’Évolution de Montpellier, CNRS, Institut de Recherche pour le Développement, University of Montpellier, 34000 Montpellier, France; bInstitut Pierre-Simon Laplace-Laboratoire d’Océanographie et du Climat: Expérimentations et approches numériques, CNRS, Institut de Recherche pour le Développement, Muséum National d’Histoire naturelle, Sorbonne Université (Pierre and Marie Curie University), 75006 Paris, France; cCentro de Investigaciòn Para el Desarrollo Integral y Sostenible, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; dLGMSS, URAC45, University Chouaib Doukkali, El Jadida 24000, Morocco; eUR-SPHERES, University of Liège, 4000 Liège, Belgium; fLaboratoire Géoressources, URAC42, Université Cadi Ayyad, Marrakech 40000, Morocco; and gMARUM - Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany Edited by Francesco S. R. Pausata, University of Quebec in Montreal, Montreal, Canada, and accepted by Editorial Board Member Donald R. Ort April 20, 2021 (received for review December 17, 2020) The greening of the Sahara, associated with the African Humid the land surface (19–22). Reproducing the green Sahara has posed Period (AHP) between ca. 14,500 and 5,000 y ago, is arguably the a lasting challenge for climate modelers. The influence of the Af- largest climate-induced environmental change in the Holocene; it rican monsoon extends only to ∼24° N (with or without interactive is usually explained by the strengthening and northward expan- vegetation) in most Middle Holocene simulations, which is insuf- sion of the African monsoon in response to orbital forcing.
    [Show full text]
  • Interaction Between a Shear Line and the Inter Tropical Convergence Zone in the Northwestern Coast of Venezuela
    Interaction between a shear line and the Inter Tropical Convergence Zone in the Northwestern Coast of Venezuela. 25 November 2010 Heavy Rainfall Event Julio Cabanerit, INAMEH, Venezuela NCEP, College Park, MD, July 2016 This work describes the interaction between a shear line and the Inter Tropical Convergence Zone that produced heavy rains in a usually dry region of the northern coast of Venezuela. The event occurred during 25-30 November 2010 producing rainfall totals near 80% of the annual total in only six days. This generated severe flooding in the Coro, Falcon region in Venezuela. The short case study was conducted by Julio Cabanerit from INAMEH (Instituto Nacional de Meteorologia e Hidrología) as part of the WPC Tropical Desk Training carried out during the April-July 2016 period. Heavy rainfall events in the Northern Coast of Venezuela are rare. Climatologically, this region of the Caribbean is characterized by a persistent low-level divergent wind pattern in association with the entrance of the South Caribbean Low-Level jet. This jet also provides enhanced low-level shear that often disintegrates deep convective structures rather than enhancing them. Active deep convection over the continent usually leads to subsidence along the southern Caribbean, which further limits the development of deep convection and large rainfall accumulations. The image presented in this slide is a Multisatellite Precipitation Analysis produced at NASA’s Goddard Space Flight Center using data from the TRMM (Tropical Rainfall Measuring Mission) satellite. It shows rainfall totals of 200-350mm in the northern coast of Venezuela over the 25-30 November 2010 period.
    [Show full text]
  • African Humid Period'' and the Record of Marine Upwelling from Excess Th
    PALEOCEANOGRAPHY, VOL. 21, PA4203, doi:10.1029/2005PA001200, 2006 Click Here for Full Article The ‘‘African humid period’’ and the record of marine upwelling from excess 230Th in Ocean Drilling Program Hole 658C Jess Adkins,1 Peter deMenocal,2 and Gidon Eshel3 Received 26 August 2005; revised 4 February 2006; accepted 13 June 2006; published 20 October 2006. 230 [1] Using a high-resolution Th normalized record of sediment flux, we document the deglacial and Holocene history of North African aridity and coastal upwelling at Ocean Drilling Program Hole 658C. At both the end of the Younger Dryas and after the 8.2 ka event, there are significant drops in terrigenous accumulation at our site, indicating an increase in the monsoon moisture flux over Africa at this time. At 5.5 ka, there is an abrupt end to the ‘‘African humid period’’ and a return to stronger upwelling conditions. For carbonate and opal fluxes the 230Th normalization completely changes the shape of each record based on percentage variations alone. This site is a clear example of how variations in one sediment component can obscure changes in the others, and it demonstrates the need for radionuclide measurements more generally in paleoceanography. By taking our new records and a large amount of previous data from this site we conclude that increases in African moisture are tightly coupled to decreases in coastal upwelling intensity. Citation: Adkins, J., P. deMenocal, and G. Eshel (2006), The ‘‘African humid period’’ and the record of marine upwelling from excess 230Th in Ocean Drilling Program Hole 658C, Paleoceanography, 21, PA4203, doi:10.1029/2005PA001200.
    [Show full text]