Quantitative Genetic Analysis of Reproduction Traits in Ball Pythons

Total Page:16

File Type:pdf, Size:1020Kb

Quantitative Genetic Analysis of Reproduction Traits in Ball Pythons Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2011 Quantitative Genetic Analysis of Reproduction Traits in Ball Pythons Benson H. Morrill Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Animal Sciences Commons Recommended Citation Morrill, Benson H., "Quantitative Genetic Analysis of Reproduction Traits in Ball Pythons" (2011). All Graduate Theses and Dissertations. 1005. https://digitalcommons.usu.edu/etd/1005 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. QUANTITATIVE GENETIC ANALYSIS OF REPRODUCTION TRAITS IN BALL PYTHONS by Benson H. Morrill A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Animal Science Approved: ______________________________ ______________________________ Lee F. Rickords Thomas D. Bunch Major Professor Committee Member ______________________________ ______________________________ Christopher J. Davies Justin G. Julander Committee Member Committee Member ______________________________ ______________________________ Susannah S. French Kenneth L. White Committee Member ADVS Department Head ______________________________ Mark R. McLellan Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2011 ii Copyright © 2011 All Rights Reserved iii ABSTRACT Quantitative Genetic Analysis of Reproduction Traits in Ball Pythons by Benson Howard Morrill, Doctor of Philosophy Utah State University, 2011 Major Professor: Dr. Lee F. Rickords Department: Animal, Dairy and Veterinary Sciences Although the captive reproduction of non-avian reptiles has increased steadily since the 1970’s, a dearth of information exists on successful management practices for large captive populations of these species. The data reported here come from a captive population of ball pythons ( Python regius ) maintained by a commercial breeding company, The Snake Keeper, Inc. (Spanish Fork, UT). Reproductive data are available for 6,480 eggs from 937 ball python clutches. The data presented suggest that proper management practices should include the use of palpation and/or ultrasound to ensure breeding occurs during the proper time of the female reproductive cycle, and that maintenance of proper humidity during the incubation of eggs is vitally important. Ball python reproduction traits (clutch size, clutch mass, relative clutch mass, egg mass, hatch rate, egg length, egg width, hatchling mass, healthy offspring per clutch, week laid, and days of incubation) were recorded for the clutches laid during this study. For the 937 clutches, the identity of the dam and sire were known for 862 (92%) and 777 iv (83%) of the clutches, respectively. A multivariate model that included nine of the 11 traits listed above was compiled. Heritability and genetic and phenotypic correlations were calculated from the multivariate analysis. The trait that showed the most promise for use in artificial selection to increase reproduction rates was clutch size due to considerable genetic variation, high heritability, and favorable genetic correlations with other reproduction traits. Although large datasets have been published for twinning in avian species, relatively few are available for non-avian reptiles. Reported here are 14 sets of twins produced from 6,480 eggs from 937 ball python clutches. The survival rate for twins during the first 3 months of life in our study was 97%. Interestingly, 11 of the sets of twins were identical in sex and phenotype, and additional genetic data suggested the rate of monozygotic twinning within this captive population of ball pythons was higher than that of dizygotic twinning. Further, using microsatellite analysis we were able to generate data that shows three sets of python twins were genetically identical. (143 pages) v ACKNOWLEDGMENTS I would like to thank my major professor, Dr. Lee Rickords, and my committee members, Dr. Thomas Bunch, Dr. Chris Davies, Dr. Justin Julander, and Dr. Susannah French, for the mentoring and support they provided for me during this process. I would also like to thank Dan and Colette Sutherland of The Snake Keeper, Inc. for their willingness to work with me to gather and prepare the data presented in this work. Well- deserved thanks also go to Dr. Joseph Mendelson, Dr. Michael Pfrender, Dr. Daniel Mulcahy, and Dr. Chris Feldman for the time they spent with me as a high school and undergraduate student to help me attain my first successful experiences in academic research. Marcy Labrum, Kimberly Blanchard, and Davin Larsen provided me with many helpful suggestions during the writing of this dissertation, and frequently gave me friendly support in the form of listening ears when I was confronted with challenges. I would also like to collectively thank Dr. Clay Isom and the students in his lab along with the students in Dr. Davies’ and Dr. White’s labs for their support and friendship. My parents, Howard and Evelynda Morrill, always encouraged me to pursue any interests I had, even if they were associated with creepy-crawly animals. I greatly appreciate their love and encouragement over the years, and for allowing me to keep many rodents and reptiles in their home. My wife’s parents, Daniel and Diana Atkins, have also provided significant love and support to me during the completion of this degree and I have appreciated their thoughts and suggestions during this process. Numerous other family members and friends significantly contributed to my success by helping my wife and children be safe and taken care of during all the time I spent in the lab and writing. vi Perhaps most importantly, I would like to thank my wife, Sarah, for her love and patience through all the long nights and weekends that were sacrificed for me to complete this manuscript. I could not have finished this work without her constant encouragement and support. Lastly, I would like to thank my daughters Jayci, Lilly, and Faye for all the warm smiles and hugs they provided for me as I worked on this dissertation. Benson H. Morrill vii CONTENTS Page ABSTRACT........................................................................................................................iii ACKNOWLEDGMENTS....................................................................................................v LIST OF TABLES..............................................................................................................ix LIST OF FIGURES.............................................................................................................xi LIST OF ABBREVIATIONS............................................................................................xii CHAPTER 1. REVIEW OF LITERATURE...................................................................... 1 Taxonomic History of Python regius ........................................................... 2 Ball Pythons in the Wild: Natural History and Reproduction......................4 Ball Pythons in Captivity: History of Husbandry and Reproduction.......................................................................................... 8 History of Quantitative Genetic Studies on Reptile Reproduction Traits.................................................................................................... 16 Use of Restricted Maximum Likelihood in Animal Breeding Genetics................................................................................................19 History of Reptilian Twinning Studies...................................................... 21 Summary.................................................................................................... 24 Research Goals and Possible Applications of Project............................... 25 References.................................................................................................. 28 2. EFFECTS OF CAPTIVITY ON FEMALE REPRODUCTIVE CYCLES AND EGG INCUBATION IN BALL PYTHONS (PYTHON REGIUS )................................................................................. 46 Introduction................................................................................................ 46 Materials and Methods............................................................................... 47 Results........................................................................................................ 50 Discussion.................................................................................................. 54 References.................................................................................................. 61 3. QUANTITATIVE GENETIC ANALYSIS OF BALL PYTHON (PYTHON REGIUS ) REPRODUCTION TRAITS.................................. 65 viii Abstract..................................................................................................... 65 Introduction................................................................................................ 66 Materials and Methods............................................................................... 68 Results........................................................................................................ 76 Discussion.................................................................................................
Recommended publications
  • Biotic and Abiotic Influences on Activity Patterns Of
    Biological Conservation 97 (2001) 387±398 www.elsevier.com/locate/biocon Biotic and abiotic in¯uences on activity patterns of insular pit-vipers (Gloydius shedaoensis, Viperidae) from north-eastern China Li-xin Sun a, Richard Shine b,*, Zhao Debi a, Tang Zhengren a aSnake Island Protection District, Lushun, People's Republic of China bBiological Sciences A08, University of Sydney, NSW 2006, Australia Received 3 May 2000; received in revised form 18 July 2000; accepted 19 July 2000 Abstract In order to use counts of active animals to estimate population parameters (abundance, sex ratio, age structure), we need to understand the factors that bias such counts. For many taxa, the main problems involve behavioural dierences among age/sex classes, and the eects of local conditions on activity levels. A unique opportunity to quantify such eects on snakes occurs on Shedao, a small island in the Bohai Sea o north-eastern China. The island contains an extraordinary density of endemic pit-vipers (Gloydius shedaoensis), that feed primarily on migrating passerine birds. Over an 8-year period we walked the same 540-m path on 936 mornings during bird-migration periods, counted all pit-vipers within a 3-m-wide transect, and recorded the animals' sex and age class (adult vs juvenile). Total numbers of snakes averaged 40.6 per survey (0.31 per m): thus, the data set contains 37,980 records of sightings of snakes. The total numbers and the composition (sex ratio, age structure) of snakes seen in a morning diered among segments of the path, diered between seasons (spring versus autumn), diered with time within each season, and were in¯uenced by weather conditions (temperature, wind speed, relative humidity).
    [Show full text]
  • (EU) 2015/56 Оd 15
    16.1.2015. HR Službeni list Europske unije L 10/1 II. (Nezakonodavni akti) UREDBE UREDBA KOMISIJE (EU) 2015/56 оd 15. siječnja 2015. o izmjeni, u odnosu na trgovinu vrstama divlje faune i flore, Uredbe (EZ) br. 865/2006 o utvrđivanju detaljnih pravila o provedbi Uredbe Vijeća (EZ) br. 338/97 EUROPSKA KOMISIJA, uzimajući u obzir Ugovor o funkcioniranju Europske unije, uzimajući u obzir Uredbu Vijeća (EZ) br. 338/97 od 9. prosinca 1996. o zaštiti vrsta divlje faune i flore uređenjem trgovine njima (1), a posebno njezin članak 19. stavke 2., 3. i 4., budući da: (1) Za provedbu određenih rezolucija donesenih na šesnaestom sastanku Konferencije potpisnica Konvencije o međunarodnoj trgovini ugroženim vrstama divlje faune i flore (CITES) (3. – 14. ožujka 2013.), u daljnjem tekstu „Konvencija”, neke odredbe treba izmijeniti, a daljnje odredbe treba dodati Uredbi Komisije (EZ) br. 865/2006 (2). (2) Posebno, u skladu s Rezolucijom Konferencije potpisnica CITES-a 16.8, treba umetnuti posebne odredbe namijenjene pojednostavljenju nekomercijalnog prekograničnog prometa glazbenih instrumenata. (3) Iskustvo stečeno provedbom Uredbe (EZ) br. 865/2006, u vezi s Provedbenom uredbom Komisije (EU) br. 792/2012 (3), pokazalo je da neke njezine odredbe treba izmijeniti kako bi se osigurala usklađena i učinkovita provedba Uredbe unutar Unije. To je posebno slučaj kod prvog unošenja u Uniju lovačkih trofeja primjeraka nekih vrsta ili populacija navedenih u Prilogu B Uredbi (EZ) br. 338/97, za koje postoji zabrinutost u pogledu održivosti trgovine lovačkim trofejima ili za koje postoje naznake značajne nezakonite trgovine. U takvim je slučajevima potreban stroži nadzor uvoza u Uniju, a odstupanje utvrđeno člankom 7.
    [Show full text]
  • Aberrant Colourations in Wild Snakes: Case Study in Neotropical Taxa and a Review of Terminology
    SALAMANDRA 57(1): 124–138 Claudio Borteiro et al. SALAMANDRA 15 February 2021 ISSN 0036–3375 German Journal of Herpetology Aberrant colourations in wild snakes: case study in Neotropical taxa and a review of terminology Claudio Borteiro1, Arthur Diesel Abegg2,3, Fabrício Hirouki Oda4, Darío Cardozo5, Francisco Kolenc1, Ignacio Etchandy6, Irasema Bisaiz6, Carlos Prigioni1 & Diego Baldo5 1) Sección Herpetología, Museo Nacional de Historia Natural, Miguelete 1825, Montevideo 11800, Uruguay 2) Instituto Butantan, Laboratório Especial de Coleções Zoológicas, Avenida Vital Brasil, 1500, Butantã, CEP 05503-900 São Paulo, SP, Brazil 3) Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia, Programa de Pós-Graduação em Zoologia, Travessa 14, Rua do Matão, 321, Cidade Universitária, 05508-090, São Paulo, SP, Brazil 4) Universidade Regional do Cariri, Departamento de Química Biológica, Programa de Pós-graduação em Bioprospecção Molecular, Rua Coronel Antônio Luiz 1161, Pimenta, Crato, Ceará 63105-000, CE, Brazil 5) Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Felix de Azara 1552, CP 3300, Posadas, Misiones, Argentina 6) Alternatus Uruguay, Ruta 37, km 1.4, Piriápolis, Uruguay Corresponding author: Claudio Borteiro, e-mail: [email protected] Manuscript received: 2 April 2020 Accepted: 18 August 2020 by Arne Schulze Abstract. The criteria used by previous authors to define colour aberrancies of snakes, particularly albinism, are varied and terms have widely been used ambiguously. The aim of this work was to review genetically based aberrant colour morphs of wild Neotropical snakes and associated terminology. We compiled a total of 115 cases of conspicuous defective expressions of pigmentations in snakes, including melanin (black/brown colour), xanthins (yellow), and erythrins (red), which in- volved 47 species of Aniliidae, Boidae, Colubridae, Elapidae, Leptotyphlopidae, Typhlopidae, and Viperidae.
    [Show full text]
  • Controlled Animals
    Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3.
    [Show full text]
  • Quick Reference Guide: Introduced Constrictors in Florida1 Steve A
    WEC302 Quick Reference Guide: Introduced Constrictors in Florida1 Steve A. Johnson and Monica E. McGarrity2 Three non-native species of large constrictor snakes are that these were escaped or released pets. View maps of loca- now breeding in Florida, and several others have been tions where each species has been encountered in Florida encountered but have not yet established wild populations. by visiting the EDDMapS Florida invasive species reporting This fact sheet, best viewed as a pdf (http://edis.ifas.ufl.edu/ portal online at http://www.IveGot1.org. Learn more about pdffiles/UW/UW34700.pdf), is a quick reference guide how to scan for, recognize, and report introduced constric- to identification of the constrictors you are most likely to tors by completing the Introduced Reptile Early Detection encounter in Florida. Although many of these snakes are and Documentation training course. Visit http://ufwildlife. not established in the wild, they are common in the pet ifas.ufl.edu/reddy.shtml to learn more and get REDDy! trade, and each has been spotted in the wild—it is likely Pythons Burmese Python (Python bivittatus) Status: established, breeding populations; range expanding Head: dark arrowhead, light center line, dark and light in Florida wedges under eyes Size: up to 12 feet or longer Body: Giraffe-like spots, dark blotches not connected Figure 1. Burmese python. Credits: Head illustration by USGS; body illustration by Monica E. McGarrity, UF 1. This document is WEC302, one of a series of the Department of Wildlife Ecology and Conservation, UF/IFAS Extension. Original publication date November 2010. Revised February 2014 and June 2017.
    [Show full text]
  • Suggested Guidelines for Reptiles and Amphibians Used in Outreach
    RECOMMENDATIONS FOR REPTILES AND AMPHIBIANS USED IN OUTREACH PROGRAMS Compiled by Diane Barber, Fort Worth Zoo Originally posted September 2003; updated February 2008 INTRODUCTION This document has been created by the AZA Reptile and Amphibian Taxon Advisory Groups to be used as a resource to aid in the development of institutional outreach programs. Within this document are lists of species that are commonly used in reptile and amphibian outreach programs. With over 12,700 species of reptiles and amphibians in existence today, it is obvious that there are numerous combinations of species that could be safely used in outreach programs. It is not the intent of these Taxon Advisory Groups to produce an all-inclusive or restrictive list of species to be used in outreach. Rather, these lists are intended for use as a resource and are some of the more common species that have been safely used in outreach programs. A few species listed as potential outreach animals have been earmarked as controversial by TAG members for various reasons. In each case, we have made an effort to explain debatable issues, enabling staff members to make informed decisions as to whether or not each animal is appropriate for their situation and the messages they wish to convey. It is hoped that during the species selection process for outreach programs, educators, collection managers, and other zoo staff work together, using TAG Outreach Guidelines, TAG Regional Collection Plans, and Institutional Collection Plans as tools. It is well understood that space in zoos is limited and it is important that outreach animals are included in institutional collection plans and incorporated into conservation programs when feasible.
    [Show full text]
  • A New Species of Hepatozoon (Apicomplexa: Adeleorina) from Python Regius (Serpentes: Pythonidae) and Its Experimental Transmission by a Mosquito Vector
    J. Parasitol., 93(?), 2007, pp. 1189–1198 ᭧ American Society of Parasitologists 2007 A NEW SPECIES OF HEPATOZOON (APICOMPLEXA: ADELEORINA) FROM PYTHON REGIUS (SERPENTES: PYTHONIDAE) AND ITS EXPERIMENTAL TRANSMISSION BY A MOSQUITO VECTOR Michal Sloboda, Martin Kamler, Jana Bulantova´*, Jan Voty´pka*†, and David Modry´† Department of Parasitology, University of Veterinary and Pharmaceutical Sciences, Palacke´ho 1-3, 612 42 Brno, Czech Republic. e-mail: [email protected] ABSTRACT: Hepatozoon ayorgbor n. sp. is described from specimens of Python regius imported from Ghana. Gametocytes were found in the peripheral blood of 43 of 55 snakes examined. Localization of gametocytes was mainly inside the erythrocytes; free gametocytes were found in 15 (34.9%) positive specimens. Infections of laboratory-reared Culex quinquefasciatus feeding on infected snakes, as well as experimental infection of juvenile Python regius by ingestion of infected mosquitoes, were performed to complete the life cycle. Similarly, transmission to different snake species (Boa constrictor and Lamprophis fuliginosus) and lizards (Lepidodactylus lugubris) was performed to assess the host specificity. Isolates were compared with Hepatozoon species from sub-Saharan reptiles and described as a new species based on the morphology, phylogenetic analysis, and a complete life cycle. Hemogregarines are the most common intracellular hemo- 3 genera (Telford et al., 2004). Low host specificity of Hepa- parasites found in reptiles. The Hemogregarinidae, Karyolysi- tozoon spp. is supported by experimental transmissions between dae, and Hepatozoidae are distinguished based on the different snakes from different families. Ball (1967) observed experi- developmental patterns in definitive (invertebrate) hosts oper- mental parasitemia with Hepatozoon rarefaciens in the Boa ating as vectors; all 3 families have heteroxenous life cycles constrictor (Boidae); the vector was Culex tarsalis, which had (Telford, 1984).
    [Show full text]
  • Final Rule to List Reticulated Python And
    Vol. 80 Tuesday, No. 46 March 10, 2015 Part II Department of the Interior Fish and Wildlife 50 CFR Part 16 Injurious Wildlife Species; Listing Three Anaconda Species and One Python Species as Injurious Reptiles; Final Rule VerDate Sep<11>2014 18:14 Mar 09, 2015 Jkt 235001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\10MRR2.SGM 10MRR2 mstockstill on DSK4VPTVN1PROD with RULES2 12702 Federal Register / Vol. 80, No. 46 / Tuesday, March 10, 2015 / Rules and Regulations DEPARTMENT OF THE INTERIOR Services Office, U.S. Fish and Wildlife 3330) to list Burmese (and Indian) Service, 1339 20th Street, Vero Beach, pythons, Northern African pythons, Fish and Wildlife Service FL 32960–3559; telephone 772–562– Southern African pythons, and yellow 3909 ext. 256; facsimile 772–562–4288. anacondas as injurious wildlife under 50 CFR Part 16 FOR FURTHER INFORMATION CONTACT: Bob the Lacey Act. The remaining five RIN 1018–AV68 Progulske, Everglades Program species (reticulated python, boa Supervisor, South Florida Ecological constrictor, green anaconda, [Docket No. FWS–R9–FHC–2008–0015; Services Office, U.S. Fish and Wildlife DeSchauensee’s anaconda, and Beni FXFR13360900000–145–FF09F14000] Service, 1339 20th Street, Vero Beach, anaconda) were not listed at that time and remained under consideration for Injurious Wildlife Species; Listing FL 32960–3559; telephone 772–469– 4299. If you use a telecommunications listing. With this final rule, we are Three Anaconda Species and One listing four of those species (reticulated Python Species as Injurious Reptiles device for the deaf (TDD), please call the Federal Information Relay Service python, green anaconda, AGENCY: Fish and Wildlife Service, (FIRS) at 800–877–8339.
    [Show full text]
  • (Gloydius Blomhoffii) Antivenom in Japan, Korea, and China
    Jpn. J. Infect. Dis., 59, 20-24, 2006 Original Article Standardization of Regional Reference for Mamushi (Gloydius blomhoffii) Antivenom in Japan, Korea, and China Tadashi Fukuda*, Masaaki Iwaki, Seung Hwa Hong1, Ho Jung Oh1, Zhu Wei2, Kazunori Morokuma3, Kunio Ohkuma3, Lei Dianliang4, Yoshichika Arakawa and Motohide Takahashi Department of Bacterial Pathogenesis and Infection Control, National Institute of Infectious Diseases, Tokyo 208-0011; 3First, Production Department, Chemo-Sero-Therapeutic Research Institute, Kumamoto 860-8568, Japan; 1Korea Food and Drug Administration, Soul 122-704, Korea; 2Shanghai Institute of Biological Products, Shanghai 200052; and 4Department of Serum, National Institute for the Control of Pharmaceutical and Biological Products, Beijing 10050, People’s Republic of China (Received June 27, 2005. Accepted November 11, 2005) SUMMARY: The mamushi (Gloydius blomhoffii) snakes that inhabit Japan, Korea, and China produce venoms with similar serological characters to each other. Individual domestic standard mamushi antivenoms have been used for national quality control (potency testing) of mamushi antivenom products in these countries, because of the lack of an international standard material authorized by the World Health Organization. This precludes comparison of the results of product potency testing among countries. We established a regional reference antivenom for these three Asian countries. This collaborative study indicated that the regional reference mamushi antivenom has an anti-lethal titer of 33,000 U/vial and anti-hemorrhagic titer of 36,000 U/vial. This reference can be used routinely for quality control, including national control of mamushi antivenom products. reference antivenom. INTRODUCTION In the present study, the potency of a candidate regional Snakebites are a threat to human life in areas inhabited by reference mamushi antivenom produced by Shanghai Insti- poisonous snakes.
    [Show full text]
  • Dispelling Python Regius Myths "Gorzula, Stefan, William Owusu Nsiah, and William Oduro
    Dispelling Python regius Myths "Gorzula, Stefan, William Owusu Nsiah, and William Oduro. Survey of the status and ​ By Francis Cosquieri management of the Royal Python (Python regius) in Ghana. Secrétariat CITES, 1997." ​ This paper lists several pythons being found in Before we get deep into the “nitty gritty” of the trees, although points out that the species is subject I want to take a moment to say that the very adaptable to the point of being AHH Royal Python sub-group "Not Just a Pet semi-invasive and responds well to Rock" is the best place to start for getting rid of anthropogenic disturbance. the preconceptions surrounding the poor old Royal Python. Zack Tippie and the other admins have done an incredible job of "Luiselli, Luca, and Francesco Maria Angelici. dispelling the myths surrounding Royal Python "Sexual size dimorphism and natural history ​ behaviour and husbandry, and Zack’s care traits are correlated with intersexual dietary guide for this oft-maligned snake (to be found divergence in royal pythons (Python regius) in the third Advancing Herpetological ​ from the rainforests of southeastern Nigeria." Husbandry Quarterly Newsletter) is one of the ​ ​ Italian Journal of Zoology 65.2 (1998): best I have read. 183-185." - In the meantime, here is a post I made some Half of the male pythons encountered over a time ago on AHH itself bringing together some two year period were found on trees, there is a information on the wild habits of this python. large discrepancy between habitat use by All the papers mentioned here can be found in male and female pythons, and by larger and the AHH Files section.
    [Show full text]
  • Investigations Into the Presence of Nidoviruses in Pythons Silvia Blahak1, Maria Jenckel2,3, Dirk Höper2, Martin Beer2, Bernd Hoffmann2 and Kore Schlottau2*
    Blahak et al. Virology Journal (2020) 17:6 https://doi.org/10.1186/s12985-020-1279-5 RESEARCH Open Access Investigations into the presence of nidoviruses in pythons Silvia Blahak1, Maria Jenckel2,3, Dirk Höper2, Martin Beer2, Bernd Hoffmann2 and Kore Schlottau2* Abstract Background: Pneumonia and stomatitis represent severe and often fatal diseases in different captive snakes. Apart from bacterial infections, paramyxo-, adeno-, reo- and arenaviruses cause these diseases. In 2014, new viruses emerged as the cause of pneumonia in pythons. In a few publications, nidoviruses have been reported in association with pneumonia in ball pythons and a tiger python. The viruses were found using new sequencing methods from the organ tissue of dead animals. Methods: Severe pneumonia and stomatitis resulted in a high mortality rate in a captive breeding collection of green tree pythons. Unbiased deep sequencing lead to the detection of nidoviral sequences. A developed RT-qPCR was used to confirm the metagenome results and to determine the importance of this virus. A total of 1554 different boid snakes, including animals suffering from respiratory diseases as well as healthy controls, were screened for nidoviruses. Furthermore, in addition to two full-length sequences, partial sequences were generated from different snake species. Results: The assembled full-length snake nidovirus genomes share only an overall genome sequence identity of less than 66.9% to other published snake nidoviruses and new partial sequences vary between 99.89 and 79.4%. Highest viral loads were detected in lung samples. The snake nidovirus was not only present in diseased animals, but also in snakes showing no typical clinical signs.
    [Show full text]
  • Ecology, Behavior and Conservation of the Japanese Mamushi Snake, Gloydius Blomhoffii: Variation in Compromised and Uncompromised Populations
    ECOLOGY, BEHAVIOR AND CONSERVATION OF THE JAPANESE MAMUSHI SNAKE, GLOYDIUS BLOMHOFFII: VARIATION IN COMPROMISED AND UNCOMPROMISED POPULATIONS By KIYOSHI SASAKI Bachelor of Arts/Science in Zoology Oklahoma State University Stillwater, OK 1999 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 2006 ECOLOGY, BEHAVIOR AND CONSERVATION OF THE JAPANESE MAMUSHI SNAKE, GLOYDIUS BLOMHOFFII: VARIATION IN COMPROMISED AND UNCOMPROMISED POPULATIONS Dissertation Approved: Stanley F. Fox Dissertation Adviser Anthony A. Echelle Michael W. Palmer Ronald A. Van Den Bussche A. Gordon Emslie Dean of the Graduate College ii ACKNOWLEDGMENTS I sincerely thank the following people for their significant contribution in my pursuit of a Ph.D. degree. I could never have completed this work without their help. Dr. David Duvall, my former mentor, helped in various ways until the very end of his career at Oklahoma State University. This study was originally developed as an undergraduate research project under Dr. Duvall. Subsequently, he accepted me as his graduate student and helped me expand the project to this Ph.D. research. He gave me much key advice and conceptual ideas for this study. His encouragement helped me to get through several difficult times in my pursuit of a Ph.D. degree. He also gave me several books as a gift and as an encouragement to complete the degree. Dr. Stanley Fox kindly accepted to serve as my major adviser after Dr. Duvall’s departure from Oklahoma State University and involved himself and contributed substantially to this work, including analysis and editing.
    [Show full text]