The Algebraization of Kazhdan's Property
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Physics.Hist-Ph] 15 May 2018 Meitl,Fo Hsadsadr Nepeainlprinciples
Why Be Regular?, Part I Benjamin Feintzeig Department of Philosophy University of Washington JB (Le)Manchak, Sarita Rosenstock, James Owen Weatherall Department of Logic and Philosophy of Science University of California, Irvine Abstract We provide a novel perspective on “regularity” as a property of representations of the Weyl algebra. We first critique a proposal by Halvorson [2004, “Complementarity of representa- tions in quantum mechanics”, Studies in History and Philosophy of Modern Physics 35(1), pp. 45–56], who argues that the non-regular “position” and “momentum” representations of the Weyl algebra demonstrate that a quantum mechanical particle can have definite values for position or momentum, contrary to a widespread view. We show that there are obstacles to such an intepretation of non-regular representations. In Part II, we propose a justification for focusing on regular representations, pace Halvorson, by drawing on algebraic methods. 1. Introduction It is standard dogma that, according to quantum mechanics, a particle does not, and indeed cannot, have a precise value for its position or for its momentum. The reason is that in the standard Hilbert space representation for a free particle—the so-called Schr¨odinger Representation of the Weyl form of the canonical commutation relations (CCRs)—there arXiv:1805.05568v1 [physics.hist-ph] 15 May 2018 are no eigenstates for the position and momentum magnitudes, P and Q; the claim follows immediately, from this and standard interpretational principles.1 Email addresses: [email protected] (Benjamin Feintzeig), [email protected] (JB (Le)Manchak), [email protected] (Sarita Rosenstock), [email protected] (James Owen Weatherall) 1Namely, the Eigenstate–Eigenvalue link, according to which a system has an exact value of a given property if and only if its state is an eigenstate of the operator associated with that property. -
Discrete and Profinite Groups Acting on Regular Rooted Trees
Discrete and Profinite Groups Acting on Regular Rooted Trees Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades “Doctor rerum naturalium” der Georg-August-Universit¨at G¨ottingen vorgelegt von Olivier Siegenthaler aus Lausanne G¨ottingen, den 31. August 2009 Referent: Prof. Dr. Laurent Bartholdi Korreferent: Prof. Dr. Thomas Schick Tag der m¨undlichen Pr¨ufung: den 28. September 2009 Contents Introduction 1 1 Foundations 5 1.1 Definition of Aut X∗ and ...................... 5 A∗ 1.2 ZariskiTopology ............................ 7 1.3 Actions of X∗ .............................. 8 1.4 Self-SimilarityandBranching . 9 1.5 Decompositions and Generators of Aut X∗ and ......... 11 A∗ 1.6 The Permutation Modules k X and k X ............ 13 { } {{ }} 1.7 Subgroups of Aut X∗ .......................... 14 1.8 RegularBranchGroups . 16 1.9 Self-Similarity and Branching Simultaneously . 18 1.10Questions ................................ 19 ∗ 2 The Special Case Autp X 23 2.1 Definition ................................ 23 ∗ 2.2 Subgroups of Autp X ......................... 24 2.3 NiceGeneratingSets. 26 2.4 Uniseriality ............................... 28 2.5 Signature and Maximal Subgroups . 30 2.6 Torsion-FreeGroups . 31 2.7 Some Specific Classes of Automorphisms . 32 2.8 TorsionGroups ............................. 34 3 Wreath Product of Affine Group Schemes 37 3.1 AffineSchemes ............................. 38 3.2 ExponentialObjects . 40 3.3 Some Hopf Algebra Constructions . 43 3.4 Group Schemes Corresponding to Aut X∗ .............. 45 3.5 Iterated Wreath Product of the Frobenius Kernel . 46 i Contents 4 Central Series and Automorphism Towers 49 4.1 Notation................................. 49 4.2 CentralSeries.............................. 51 4.3 Automorphism and Normalizer Towers . 54 5 Hausdorff Dimension 57 5.1 Definition ................................ 57 5.2 Layers .................................. 58 5.3 ComputingDimensions . -
Representations of the Symmetric Group and Its Hecke Algebra Nicolas Jacon
Representations of the symmetric group and its Hecke algebra Nicolas Jacon To cite this version: Nicolas Jacon. Representations of the symmetric group and its Hecke algebra. 2012. hal-00731102v1 HAL Id: hal-00731102 https://hal.archives-ouvertes.fr/hal-00731102v1 Preprint submitted on 12 Sep 2012 (v1), last revised 10 Nov 2012 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Representations of the symmetric group and its Hecke algebra N. Jacon Abstract This paper is an expository paper on the representation theory of the symmetric group and its Hecke algebra in arbitrary characteristic. We study both the semisimple and the non semisimple case and give an introduction to some recent results on this theory (AMS Class.: 20C08, 20C20, 05E15) . 1 Introduction Let n N and let S be the symmetric group acting on the left on the set 1, 2, . , n . Let k be a field ∈ n { } and consider the group algebra kSn. This is the k-algebra with: k-basis: t σ S , • { σ | ∈ n} 2 multiplication determined by the following rule: for all (σ, σ′) S , we have t .t ′ = t ′ . • ∈ n σ σ σσ The aim of this survey is to study the Representation Theory of Sn over k. -
Abstract Quotients of Profinite Groups, After Nikolov and Segal
ABSTRACT QUOTIENTS OF PROFINITE GROUPS, AFTER NIKOLOV AND SEGAL BENJAMIN KLOPSCH Abstract. In this expanded account of a talk given at the Oberwolfach Ar- beitsgemeinschaft “Totally Disconnected Groups”, October 2014, we discuss results of Nikolay Nikolov and Dan Segal on abstract quotients of compact Hausdorff topological groups, paying special attention to the class of finitely generated profinite groups. Our primary source is [17]. Sidestepping all difficult and technical proofs, we present a selection of accessible arguments to illuminate key ideas in the subject. 1. Introduction §1.1. Many concepts and techniques in the theory of finite groups depend in- trinsically on the assumption that the groups considered are a priori finite. The theoretical framework based on such methods has led to marvellous achievements, including – as a particular highlight – the classification of all finite simple groups. Notwithstanding, the same methods are only of limited use in the study of infinite groups: it remains mysterious how one could possibly pin down the structure of a general infinite group in a systematic way. Significantly more can be said if such a group comes equipped with additional information, such as a structure-preserving action on a notable geometric object. A coherent approach to studying restricted classes of infinite groups is found by imposing suitable ‘finiteness conditions’, i.e., conditions that generalise the notion of being finite but are significantly more flexible, such as the group being finitely generated or compact with respect to a natural topology. One rather fruitful theme, fusing methods from finite and infinite group theory, consists in studying the interplay between an infinite group Γ and the collection of all its finite quotients. -
Fourier Analysis Using Representation Theory
FOURIER ANALYSIS USING REPRESENTATION THEORY NEEL PATEL Abstract. In this paper, it is our goal to develop the concept of Fourier transforms by using Representation Theory. We begin by laying basic def- initions that will help us understand the definition of a representation of a group. Then, we define representations and provide useful definitions and the- orems. We study representations and key theorems about representations such as Schur's Lemma. In addition, we develop the notions of irreducible repre- senations, *-representations, and equivalence classes of representations. After doing so, we develop the concept of matrix realizations of irreducible represen- ations. This concept will help us come up with a few theorems that lead up to our study of the Fourier transform. We will develop the definition of a Fourier transform and provide a few observations about the Fourier transform. Contents 1. Essential Definitions 1 2. Group Representations 3 3. Tensor Products 7 4. Matrix Realizations of Representations 8 5. Fourier Analysis 11 Acknowledgments 12 References 12 1. Essential Definitions Definition 1.1. An internal law of composition on a set R is a product map P : R × R ! R Definition 1.2. A group G, is a set with an internal law of composition such that: (i) P is associative. i.e. P (x; P (y; z)) = P (P (x; y); z) (ii) 9 an identity; e; 3 if x 2 G; then P (x; e) = P (e; x) = x (iii) 9 inverses 8x 2 G, denoted by x−1, 3 P (x; x−1) = P (x−1; x) = e: Let it be noted that we shorthand P (x; y) as xy. -
Factorization of Unitary Representations of Adele Groups Paul Garrett [email protected]
(February 19, 2005) Factorization of unitary representations of adele groups Paul Garrett [email protected] http://www.math.umn.edu/˜garrett/ The result sketched here is of fundamental importance in the ‘modern’ theory of automorphic forms and L-functions. What it amounts to is proof that representation theory is in principle relevant to study of automorphic forms and L-function. The goal here is to get to a coherent statement of the basic factorization theorem for irreducible unitary representations of reductive linear adele groups, starting from very minimal prerequisites. Thus, the writing is discursive and explanatory. All necessary background definitions are given. There are no proofs. Along the way, many basic concepts of wider importance are illustrated, as well. One disclaimer is necessary: while in principle this factorization result makes it clear that representation theory is relevant to study of automorphic forms and L-functions, in practice there are other things necessary. In effect, one needs to know that the representation theory of reductive linear p-adic groups is tractable, so that conversion of other issues into representation theory is a change for the better. Thus, beyond the material here, one will need to know (at least) the basic properties of spherical and unramified principal series representations of reductive linear groups over local fields. The fact that in some sense there is just one irreducible representation of a reductive linear p-adic group will have to be pursued later. References and historical notes -
Burnside, March 2016
A Straightforward Solution to Burnside’s Problem S. Bachmuth 1. Introduction The Burnside Problem for groups asks whether a finitely generated group, all of whose elements have bounded order, is finite. We present a straightforward proof showing that the 2-generator Burnside groups of prime power exponent are solvable and therefore finite. This proof is straightforward in that it does not rely on induced maps as in [2], but it is strongly dependent on Theorem B in the joint paper with H. A. Heilbronn and H. Y. Mochizuki [9]. Theorem B is reformulated here as Lemma 3(i) in Section 2. Our use of Lemma 3(i) is indispensable. Throughout this paper we fix a prime power q = pe and unless specifically mentioned otherwise, all groups are 2-generator. At appropriate places, we may require e = 1 so that q = p is prime; otherwise q may be any fixed prime power. The only (published) positive results of finiteness of Burnside groups of prime power exponents are for exponents q = 2, 3 and 4 ([10],[12]). Some authors, beginning with P. S. Novikoff and S. I. Adian {15], (see also [1}), have claimed that groups of exponent k are infinite for k sufficiently large. Our result here, as in [2], is at odds with this claim. Since this proof avoids the use of induced maps, Section 4 of [2] has been rewritten. Sections 2, 3 and 6 have been left unaltered apart from minor, mostly expository, changes and renumbering of items. The introduction and Section 5 have been rewritten. Sections 5 & 6 are not involved in the proof although Section 5 is strongly recommended. -
On Haagerup and Kazhdan Properties Yves De Cornulier
On Haagerup and Kazhdan Properties Thèse de doctorat présentée à la Faculté des Sciences de Base Section de Mathématiques École Polytechnique Fédérale de Lausanne pour l’obtention du grade de Docteur ès Sciences par Yves de Cornulier de nationalité française titulaire d’un DEA de Mathématiques, Université Paris VII le 16 Décembre 2005 devant le jury composé de Peter Buser, directeur Alain Valette, codirecteur Éva Bayer Fluckiger, présidente du jury Laurent Bartholdi, rapporteur interne Étienne Ghys, rapporteur externe Pierre de la Harpe, rapporteur externe Lausanne, EPFL 2005 Remerciements Je voudrais avant tout remercier Alain Valette. Sa disponibilité et ses encoura- gements ont eu un rôle décisif dans ce travail. Je remercie chaleureusement Peter Buser, qui m’a permis de bénéficier des condi- tions de travail les plus enviables. Je remercie Eva Bayer d’avoir accepté de présider le jury. Je remercie égale- ment les rapporteurs Laurent Bartholdi, Étienne Ghys et Pierre de la Harpe aussi bien pour avoir accepté de participer au jury que pour de nombreuses discussions mathématiques durant cette thèse. Je remercie aussi tous les autres avec qui j’ai eu l’occasion de discuter de maths. Avant tout je remercie Romain Tessera, dont le rare esprit d’ouverture m’a permis de discuter de mille et un sujets (dont au moins neuf cent nonante-neuf mathématiques). Je remercie Bachir Bekka, qui m’a invité à deux reprises durant cette thèse (à Metz et à Rennes). Je remercie également Herbert Abels, Guillaume Aubrun, Yves Benoist, Emmanuel Breuillard, Gaëtan Chenevier, Yves Coudène, François Guéritaud, Olivier Guichard, Vincent Lafforgue, David Madore, Michel Matthey (pour qui j’ai une pensée émue), Andrés Navas, Yann Ollivier, Pierre Pansu, Frédéric Paulin, Bertrand Rémy, Joël Riou, Jean-François Quint, Gabriel Sabbagh, Yehuda Shalom, Olivier Wittenberg, et d’autres encore. -
23 Infinite Dimensional Unitary Representations
23 Infinite dimensional unitary representations Last lecture, we found the finite dimensional (non-unitary) representations of SL2(R). 23.1 Background about infinite dimensional representa- tions (of a Lie group G) What is an infinite dimensional representation? 1st guess Banach space acted on by G? This is no good for the following reasons: Look at the action of G on the functions on G (by left translation). We could use L2 functions, or L1 or Lp. These are completely different Banach spaces, but they are essentially the same representation. 2nd guess Hilbert space acted on by G? This is sort of okay. The problem is that finite dimensional representations of SL2(R) are NOT Hilbert space representations, so we are throwing away some interesting representations. Solution (Harish-Chandra) Take g to be the Lie algebra of G, and let K be the maximal compact subgroup. If V is an infinite dimensional representation of G, there is no reason why g should act on V . The simplest example fails. Let R act on L2(R) by left translation. Then d d 2 R d the Lie algebra is generated by dx (or i dx ) acting on L ( ), but dx of an L2 function is not in L2 in general. Let V be a Hilbert space. Set Vω to be the K-finite vectors of V , which are the vectors contained in a finite dimensional representation of K. The point is that K is compact, so V splits into a Hilbert space direct sum finite dimensional representations of K, at least if V is a Hilbert space. -
Congruence Subgroup Problem for Algebraic Groups: Old and New Astérisque, Tome 209 (1992), P
Astérisque A. S. RAPINCHUK Congruence subgroup problem for algebraic groups: old and new Astérisque, tome 209 (1992), p. 73-84 <http://www.numdam.org/item?id=AST_1992__209__73_0> © Société mathématique de France, 1992, tous droits réservés. L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l’accord avec les conditions générales d’uti- lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CONGRUENCE SUBGROUP PROBLEM FOR ALGEBRAIC GROUPS: OLD AND NEW A. S. RAPINCHUK* Let G C GLn be an algebraic group defined over an algebraic number field K. Let 5 be a finite subset of the set VK of all valuations of K, containing the set V*£ of archimedean valuations. Denote by O(S) the ring of 5-integers in K and by GQ(S) the group of 5-units in G. To any nonzero ideal a C O(S) there corresponds the congruence subgroup Go(s)(*) = {96 G0(s) \ 9 = En (mod a)} , which is a normal subgroup of finite index in GQ(S)- The initial statement of the Congruence Subgroup Problem was : (1) Does any normal subgroup of finite index in GQ(S) contain a suitable congruence subgroup Go(s)(a) ? In fact, it was found by F. Klein as far back as 1880 that for the group SL2(Z) the answer to question (1) is "no". -
GRADED LEVEL ZERO INTEGRABLE REPRESENTATIONS of AFFINE LIE ALGEBRAS 1. Introduction in This Paper, We Continue the Study ([2, 3
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 360, Number 6, June 2008, Pages 2923–2940 S 0002-9947(07)04394-2 Article electronically published on December 11, 2007 GRADED LEVEL ZERO INTEGRABLE REPRESENTATIONS OF AFFINE LIE ALGEBRAS VYJAYANTHI CHARI AND JACOB GREENSTEIN Abstract. We study the structure of the category of integrable level zero representations with finite dimensional weight spaces of affine Lie algebras. We show that this category possesses a weaker version of the finite length property, namely that an indecomposable object has finitely many simple con- stituents which are non-trivial as modules over the corresponding loop algebra. Moreover, any object in this category is a direct sum of indecomposables only finitely many of which are non-trivial. We obtain a parametrization of blocks in this category. 1. Introduction In this paper, we continue the study ([2, 3, 7]) of the category Ifin of inte- grable level zero representations with finite-dimensional weight spaces of affine Lie algebras. The category of integrable representations with finite-dimensional weight spaces and of non-zero level is semi-simple ([16]), and the simple objects are the highest weight modules. In contrast, it is easy to see that the category Ifin is not semi-simple. For instance, the derived Lie algebra of the affine algebra itself provides an example of a non-simple indecomposable object in that category. The simple objects in Ifin were classified in [2, 7] but not much else is known about the structure of the category. The category Ifin can be regarded as the graded version of the category F of finite-dimensional representations of the corresponding loop algebra. -
Representation Theory
M392C NOTES: REPRESENTATION THEORY ARUN DEBRAY MAY 14, 2017 These notes were taken in UT Austin's M392C (Representation Theory) class in Spring 2017, taught by Sam Gunningham. I live-TEXed them using vim, so there may be typos; please send questions, comments, complaints, and corrections to [email protected]. Thanks to Kartik Chitturi, Adrian Clough, Tom Gannon, Nathan Guermond, Sam Gunningham, Jay Hathaway, and Surya Raghavendran for correcting a few errors. Contents 1. Lie groups and smooth actions: 1/18/172 2. Representation theory of compact groups: 1/20/174 3. Operations on representations: 1/23/176 4. Complete reducibility: 1/25/178 5. Some examples: 1/27/17 10 6. Matrix coefficients and characters: 1/30/17 12 7. The Peter-Weyl theorem: 2/1/17 13 8. Character tables: 2/3/17 15 9. The character theory of SU(2): 2/6/17 17 10. Representation theory of Lie groups: 2/8/17 19 11. Lie algebras: 2/10/17 20 12. The adjoint representations: 2/13/17 22 13. Representations of Lie algebras: 2/15/17 24 14. The representation theory of sl2(C): 2/17/17 25 15. Solvable and nilpotent Lie algebras: 2/20/17 27 16. Semisimple Lie algebras: 2/22/17 29 17. Invariant bilinear forms on Lie algebras: 2/24/17 31 18. Classical Lie groups and Lie algebras: 2/27/17 32 19. Roots and root spaces: 3/1/17 34 20. Properties of roots: 3/3/17 36 21. Root systems: 3/6/17 37 22. Dynkin diagrams: 3/8/17 39 23.