Unsolved Problems in Combinatorial Games

Total Page:16

File Type:pdf, Size:1020Kb

Unsolved Problems in Combinatorial Games Unsolved Problems in Combinatorial Games Richard K. Guy & Richard J. Nowakowski 2008-02-24 We have sorted the problems into sections: A. Taking & Breaking • B. Pushing & Placing Pieces • C. Playing with Pencil & Paper • D. Disturbing & Destroying • E. Theory of Games • They have been given new numbers. The numbers in parentheses are the old numbers used in each of the lists of unsolved problems given on pp. 183–189 of AMS Proc. Sympos. Appl. Math. 43(1991), called PSAM 43 below; on pp. 475–491 of Games of No Chance, hereafter referred to as GONC; and on pp. 457–473 of More Games of No Chance (MGONC). Missing numbers are of problems which have been solved, or for which we have nothing new to add. References [year] may be found in Fraenkel’s Bibliography at the end of this volume. References [#] are at the end of this article. A useful reference for the rules and an introduction to many of the specific games mentioned below is M. Albert, R. J. Nowakowski & D. Wolfe, Lessons in Play: An Introduction to the Combinatorial Theory of Games, AKPeters, 2007 (LIP). 1 A. Taking & Breaking Games A1(1). Subtraction games with finite subtraction sets are known to have periodic nim-sequences. Investigate the relationship between the subtraction set and the length and structure of the period. The same question can be asked about partizan subtraction games, in which each player is assigned an individual subtraction set. See Fraenkel & Kotzig [1987]. [A move in the game S(s1,s2,s3,...) is to take a number of beans from a heap, provided that number is a member of the subtraction-set, s1,s2,s3,... Analysis of such a game and of many other heap games is conveniently{ recorded} by a nim-sequence, n0n1n2n3 ..., meaning that the nim-value of a heap of h beans is nh; i.e., that the value of a heap of h beans in this particular game is the nimber n .] ∗ h For examples see Table 2 in 4 on p. 67 of the Impartial Games paper in GONC. § It would now seem feasible to give the complete analysis for games whose subtraction sets have just three members, though this has so far eluded us. Several people, including Mark Paulhus and Alex Fink, have given a complete analysis for all sets 1, b, c and for sets a, b, c with a < b < c < 32. { } { } In general, period lengths can be surprisingly long, and it has been sug- gested that they could be super-polynomial in terms of the size of the subtrac- tion set. However, Guy conjectures that they are bounded by polynomials of n degree at most 2 in sn, the largest member of a subtraction set of cardinality n. It would also be of interest to characterize the subtraction sets which yield ! " a purely periodic nim-sequence, i.e., for which there is no preperiod. Angela Siegel [18] considered infinite subtraction sets which are the comple- ment of finite ones and showed that the nim-sequences are always arithmetic periodic. That is, the nim-values belong to a finite set of arithmetic progres- sions with the same common difference. The number of progressions is the period and their common difference is called the saltus. For instance, the game S 4ˆ, 9ˆ, 26, 30 (in which a player may take any number of beans except 4, 9, 26{ or 30) has} a pre-period of length 243, period-length 13014 and saltus 4702. # # For infinite subtraction games in general there are corresponding questions about the length and purity of the period. 2 As we go to press we note that Question A2 on the 2006-12-02 Putnam exam is the subtraction game with subtraction set p 1:p prime . Show { − } that there are infinitely many heap sizes which are -positions. P A2(2). Are all finite octal games ultimately periodic? [If the binary expansion of the kth code digit in the game with code d0 d1d2d3 ... is · ak bk ck dk =2 +2 +2 + ..., where 0 a <b <c < . ., then it is legal to remove k beans from a ≤ k k k heap, provided that the rest of the heap is left in exactly ak or bk or ck or . non-empty heaps. See WW, 81–115. Some specimen games are exhibited in Table 3 of 5 of the Impartial Games paper in GONC.] § Resolve any number of outstanding particular cases, e.g., 6 (Officers), 04, 06, 14, 36, 37, 64, 74, 76, 004, 005, 006, 007, ·014, 015, 016· , ·024,· 026·, 034· , 064· , 114· , · 125,· 126,· 135,· 136,· 142, · 143, ·146, ·162, · · · · · · · · · · · · · 163, 164, 166, 167, 172, 174, 204, 205, 206, 207, 224, 244, 245, ·264, ·324, ·334, ·336, ·342, ·344, ·346, ·362, ·364, ·366, ·371, ·374, ·404, ·414, ·416, · 444,· 564,· 604,· 606,· 744·, 764·, 774·, 776· and ·Grundy’s· · · · · · · · · · · Game (split a heap into two unequal heaps; WW, pp. 96–97, 111–112; LIP, p. 142), which has been analyzed, first by Dan Hoey, and later by Achim Flammenkamp, as far as heaps of 235 beans. 1401– 1024– 512– 256– Figure 1: Plot of 11000000 nim-values of the octal game 007 · 3 Perhaps the most notorious and deserving of attention is the game 007, one-dimensional Tic-Tac-Toe, or Treblecross, which Flammenkamp has pushed· to 225. Figure 1 shows the first 11 million nim-values, a small proportion of which are 1024; the largest, (6193903) = 1401 is shown circled. Will 2048 ever be reached?≥ G Achim Flammenkamp has settled 106: it has the remarkable period and preperiod lengths of 328226140474 and· 465384263797. For information on the current status of each of these games, see Flammenkamp’s web page at http://www.uni-bielefeld.de/~achim/octal.html A game similar to Grundy’s, and which is also unsolved, is John Conway’s Couples-Are-Forever (LIP, p. 142) where a move is to split any heap except a heap of two. The first 50 million nim-values haven’t displayed any periodicity. See Caines et al. [1999]. More generally, Bill Pulleyblank suggests looking at splitting games in which you may only split heaps of size >h, so that h =1 is She-Loves-Me-She-Loves-Me-Not and h = 2 is Couples-Are-Forever. David Singmaster suggested a similar generalization: you may split a heap provided that the resulting two heaps each contain at least k beans: k = 1 is the same as h = 1, while k = 2 is the third cousin of Dawson’s Chess. Explain the structure of the periods of games known to be periodic. In Discrete Math., 44(1983) 331–334, Problem 38, Fraenkel raised questions concerning the computational complexity (see E1 below) of octal games. In Problem 39, he & Kotzig define partizan octal games in which distinct octals are assigned to the two players. Mesdal, in this volume, pp.??, show that in many cases, if the game is “all-small” (WW, pp. 229–262, LIP, pp. 183–207), then the atomic weights are arithmetic periodic. In Problem 40, Fraenkel introduces poset games, played on a partially ordered set of heaps, each player in turn selecting a heap and then removing a non-negative number of beans from this heap and from each heap above it in the ordering, at least one heap being reduced in size. For posets of height one, new regularities in the nim-sequence can occur; see Horrocks & Nowakowski [2003]. Note that this includes, as particular cases, Subset Takeaway, Chomp or Divisors, and Green Hackenbush forests. Compare Problems A3, D1 and D2 below. A3(3). Hexadecimal games have code digits dk in the interval from 0 to f (= 15), so that there are options splitting a heap into three heaps. See WW, 116–117. 4 Such games may be arithmetically periodic. Nowakowski has calculated the first 100000 nim-values for each of the 1-, 2- and 3-digit games. Richard Austin’s theorem 6.8 in his thesis [1976] and the generalization by Howse & Nowakowski [2004] suffice to confirm the arithmetic periodicity of several of these games. Some interesting specimens are 28 = 29, which have period 53 and saltus 16, the only exceptional value being· (0) =· 0; 9c, which has period 36, prepe- riod 28 and saltus 16; and f6 withG period 43· and saltus 32, but its apparent · preperiod of 604 and failure to satisfy one of the conditions of the theorem prevent us from verifying the ultimate periodicity. The game 205200c is · arithmetic periodic with pre-period length of 4, period length of 40, saltus 16 except that 40k +19 has nim-value 6 and 40k +39 has nim-value 14. This regu- larity, (which also seems to be exhibited by 660060008 with a period length of · approximately 300,000), was first reported in Horrocks & Nowakowski [2003] (see Problem A2.) Grossman & Nowakowski [7] have shown that the nim- sequences for 200. 0048, with an odd number of zero code digits, exhibit · “ruler function” patterns. The game 9 has not so far yielded its complete anal- ysis, but, as far as analyzed (to heaps· of size 100000), exhibits a remarkable fractal-like set of nim-values. See Howse & Nowakowski [2004]. Also of special interest are e; 7f (which has a strong tendency to period 8, saltus 4, but, for n 100, 000,· has· 14 exceptional values, the largest being (94156) = 26614); ≤ G b6 (which “looks octal”); b33b (where a heap of size n has nim-value n except· for 27 heap sizes which· appear to be random); and 817264517 · [why 817264517 ?] whose nim-values appear to form a lattice of ruler functions 1 1 with slopes slightly less than 2 and 2 (see Figure 2).
Recommended publications
  • The Switch Operators and Push-The-Button Games: a Sequential Compound Over Rulesets
    The switch operators and push-the-button games: a sequential compound over rulesets Eric Duchêne1, Marc Heinrich1, Urban Larsson2, and Aline Parreau1 1Université Lyon 1, LIRIS, UMR5205, France∗ 2The Faculty of Industrial Engineering and Management, Technion - Israel Institute of Technology, Israel December 22, 2017 Abstract We study operators that combine combinatorial games. This field was initiated by Sprague- Grundy (1930s), Milnor (1950s) and Berlekamp-Conway-Guy (1970-80s) via the now classical disjunctive sum operator on (abstract) games. The new class consists in operators for rulesets, dubbed the switch-operators. The ordered pair of rulesets (R1; R2) is compatible if, given any position in R1, there is a description of how to move in R2. Given compatible (R1; R2), we build the push-the-button game R1 } R2, where players start by playing according to the rules R1, but at some point during play, one of the players must switch the rules to R2, by pushing the button ‘}’. Thus, the game ends according to the terminal condition of ruleset R2. We study the pairwise combinations of the classical rulesets Nim, Wythoff and Euclid. In addition, we prove that standard periodicity results for Subtraction games transfer to this setting, and we give partial results for a variation of Domineering, where R1 is the game where the players put the domino tiles horizontally and R2 the game where they play vertically (thus generalizing the octal game 0.07). Keywords: Combinatorial game; Ruleset compound; Nim; Wythoff Nim; Euclid’s game; 1 Gallimaufry–new combinations of games Combinatorial Game Theory (CGT) concerns combinations of individual games.
    [Show full text]
  • Impartial Games
    Combinatorial Games MSRI Publications Volume 29, 1995 Impartial Games RICHARD K. GUY In memory of Jack Kenyon, 1935-08-26 to 1994-09-19 Abstract. We give examples and some general results about impartial games, those in which both players are allowed the same moves at any given time. 1. Introduction We continue our introduction to combinatorial games with a survey of im- partial games. Most of this material can also be found in WW [Berlekamp et al. 1982], particularly pp. 81{116, and in ONAG [Conway 1976], particu- larly pp. 112{130. An elementary introduction is given in [Guy 1989]; see also [Fraenkel 1996], pp. ??{?? in this volume. An impartial game is one in which the set of Left options is the same as the set of Right options. We've noticed in the preceding article the impartial games = 0=0; 0 0 = 1= and 0; 0; = 2: {|} ∗ { | } ∗ ∗ { ∗| ∗} ∗ that were born on days 0, 1, and 2, respectively, so it should come as no surprise that on day n the game n = 0; 1; 2;:::; (n 1) 0; 1; 2;:::; (n 1) ∗ {∗ ∗ ∗ ∗ − |∗ ∗ ∗ ∗ − } is born. In fact any game of the type a; b; c;::: a; b; c;::: {∗ ∗ ∗ |∗ ∗ ∗ } has value m,wherem =mex a;b;c;::: , the least nonnegative integer not in ∗ { } the set a;b;c;::: . To see this, notice that any option, a say, for which a>m, { } ∗ This is a slightly revised reprint of the article of the same name that appeared in Combi- natorial Games, Proceedings of Symposia in Applied Mathematics, Vol. 43, 1991. Permission for use courtesy of the American Mathematical Society.
    [Show full text]
  • Combinatorial Game Theory
    Combinatorial Game Theory Aaron N. Siegel Graduate Studies MR1EXLIQEXMGW Volume 146 %QIVMGER1EXLIQEXMGEP7SGMIX] Combinatorial Game Theory https://doi.org/10.1090//gsm/146 Combinatorial Game Theory Aaron N. Siegel Graduate Studies in Mathematics Volume 146 American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE David Cox (Chair) Daniel S. Freed Rafe Mazzeo Gigliola Staffilani 2010 Mathematics Subject Classification. Primary 91A46. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-146 Library of Congress Cataloging-in-Publication Data Siegel, Aaron N., 1977– Combinatorial game theory / Aaron N. Siegel. pages cm. — (Graduate studies in mathematics ; volume 146) Includes bibliographical references and index. ISBN 978-0-8218-5190-6 (alk. paper) 1. Game theory. 2. Combinatorial analysis. I. Title. QA269.S5735 2013 519.3—dc23 2012043675 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to [email protected]. c 2013 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government.
    [Show full text]
  • Regularity in the G−Sequences of Octal
    REGULARITY IN THE G¡SEQUENCES OF OCTAL GAMES WITH A PASS D. G. Horrocks1 Department of Mathematics and Computer Science, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada [email protected] R. J. Nowakowski2 Department of Mathematics and Statistics, Dalhousie University, Halifax, NS B3H 3J5, Canada [email protected] Received: 9/19/02, Revised: 3/27/03, Accepted: 4/7/03, Published: 4/9/03 Abstract Finite octal games are not arithmetic periodic. By adding a single pass move to precisely one heap, however, we show that arithmetic periodicity can occur. We also show a new regularity: games whose G¡sequences are partially arithmetic periodic and partially periodic. We give a test to determine when an octal game with a pass has such regularity and as special cases when the G¡sequence has become periodic or arithmetic periodic. 1. Introduction A Taking-and-Breaking game (see Chapter 4 of [3]) is an impartial, combinatorial game, played with heaps of beans on a table. Players move alternately and a move for either player consists of choosing a heap, removing a certain number of beans from the heap and then possibly splitting the remainder into several heaps. The winner is the player making the last move. The number of beans to be removed and the number of heaps that one heap can be split into are given by the rules of the game. For a ¯nite octal game the rules are given by the octal code d0:d1d2 :::du where 0 · di · 7. If di = 0 then a 2 1 0 player cannot take i beans away from a heap.
    [Show full text]
  • Partition Games Have Either a Periodic Or an Arithmetic-Periodic Sprague-Grundy Sequence.1 We Call the Class of Partition Games Cut
    Partition games Antoine Dailly†‡∗, Eric´ Duchˆene†∗, Urban Larsson¶, Gabrielle Paris†∗ †Univ Lyon, Universit´eLyon 1, LIRIS UMR CNRS 5205, F-69621, Lyon, France. ‡Instituto de Matem´aticas, UNAM Juriquilla, 76230 Quer´etaro, Mexico. ¶National University of Singapore, Singapore. Abstract We introduce cut, the class of 2-player partition games. These are nim type games, played on a finite number of heaps of beans. The rules are given by a set of positive integers, which specifies the number of allowed splits a player can perform on a single heap. In normal play, the player with the last move wins, and the famous Sprague-Grundy theory provides a solution. We prove that several rulesets have a periodic or an arithmetic periodic Sprague-Grundy sequence (i.e. they can be partitioned into a finite number of arithmetic progressions of the same common difference). This is achieved directly for some infinite classes of games, and moreover we develop a computational testing condition, demonstrated to solve a variety of additional games. Similar results have previously appeared for various classes of games of take-and-break, for example octal and hexadecimal; see e.g. Winning Ways by Berlekamp, Conway and Guy (1982). In this context, our contribution consists of a systematic study of the subclass ‘break-without-take’. 1 Introduction This work concerns 2-player combinatorial games related to the classical game of nim, but instead of removing objects, say beans, from heaps, players are requested to partition the existing heaps into smaller heaps, while the total number of beans remain constant. We prove several regularity results on the solutions of such games.
    [Show full text]
  • 3 Algorithms and Applications 27 3.1 Some Basic Complexity Theory
    2.1 Code-digits 2 TAKE-AND-BREAK GAMES token the first move and then make sure that 4 tokens are removed every two moves. F Definition 2.1. Let Γ = d0d1d2 ... be a word (infinite or finite) in the alphabet N. The string Γ = d d d ... is called code-digits. If there are only a finite number of 0· 1 2 non-zero characters in Γ and dk is the last non-zero character, then we simply write Γ = d d d . d . 0· 1 2 k N We will now give an informal combinatorial definition of Take-and-Break games and then a more formal, set theoretic one. We will say that an integer n = (nm . n1n0)2 k contains a power of two 2 if nk = 1. For example, 9 = (1001)2 contains 8 but 22 = (10110)2 does not. The rules of Take-and-Break games are characterized by some string Γ = d d d ... 0· 1 2 of code-digits where d0 does not contain 1 or 2. The game itself can be thought of as a pile of tokens where it is a legal move to remove i tokens and split up the remaining k tokens into k non-empty piles if di contains 2 . Play continues until there is no pile with a legal move left. Naturally, we want these games to obey the axioms of impartial games and as such, we must prohibit "do-nothing"-moves. This is why we must define d0 to not contain 1 or 2. Definition 2.2 (Take-and-Break games).
    [Show full text]
  • Daisies, Kayles, Sibert-Conway and the Decomposition in Miske Octal
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 96 (1992) 361-388 361 Elsevier Mathematical Games Daisies, Kayles, and the Sibert-Conway decomposition in miske octal games Thane E. Plambeck Compuler Science Department, Stanford University, StanJord, Cal@nia 94305, USA Communicated by R.K. Guy Received November 1990 Revised June 1991 Abstract Plambeck, T.E., Daisies, Kayles, and the Sibert-Conway decomposition in misere octal games, Theoretical Computer Science 96 (1992) 361-388. Sibert and Conway [to appear] have solved a long-standing open problem in combinatorial game theory by giving an efficient algorithm for the winning misere play of Kay/es, an impartial two-player game of complete information first described over 75 years ago by Dudeney (1910) and Loyd (1914). Here, we extend the SiberttConway method to construct a similar winning strategy for the game of Daisies (octal code 4.7) and then more generally solve all misere play finite octal games with at most 3 code digits and period two nim sequence * 1, * 2, * 1, * 2, 1. Introduction She Loves Me, She Loves Me Not is a two-player game that can be played with one or more daisies, such as portrayed in Fig. 1. To play the game, the two players take turns pulling one petal off a daisy. In normal play, the player taking the last petal is defined to be the winner. Theorem 1.1 is not difficult to prove. Theorem 1.1. In normal play of the game She Loves Me, She Loves Me Not, a position is a win for the jrst player if and only zifit contains an odd number of petals.
    [Show full text]
  • Octal Games on Graphs: the Game 0.33 on Subdivided Stars and Bistars
    Octal Games on Graphs: The game 0.33 on subdivided stars and bistars ✩ ∗ Laurent Beaudoua, Pierre Coupechouxd, Antoine Daillye, , Sylvain Gravierf, Julien Moncelb,c, Aline Parreaue, Éric Sopenag aLIMOS, 1 rue de la Chebarde, 63178 Aubière CEDEX, France. bLAAS-CNRS, Université de Toulouse, CNRS, Université Toulouse 1 Capitole - IUT Rodez, Toulouse, France cFédération de Recherche Maths à Modeler, Institut Fourier, 100 rue des Maths, BP 74, 38402 Saint-Martin d’Hères Cedex, France dLAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France. eUniv Lyon, Université Lyon 1, LIRIS UMR CNRS 5205, F-69621, Lyon, France. fCNRS/Université Grenoble-Alpes, Institut Fourier/SFR Maths à Modeler, 100 rue des Maths - BP 74, 38402 Saint Martin d’Hères, France. gUniv. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, F-33400 Talence, France Abstract Octal games are a well-defined family of two-player games played on heaps of counters, in which the players remove alternately a certain number of counters from a heap, sometimes being allowed to split a heap into two nonempty heaps, until no counter can be removed anymore. We extend the definition of octal games to play them on graphs: heaps are replaced by connected components and counters by vertices. Thus, playing an octal game on a path Pn is equivalent to playing the same octal game on a heap of n counters. We study one of the simplest octal games, called 0.33, in which the players can remove one vertex or two adjacent vertices without disconnecting the graph. We study this game on trees and give a complete resolution of this game on subdivided stars and bistars.
    [Show full text]
  • Nimber Sequences of Node-Kayles Games
    1 2 Journal of Integer Sequences, Vol. 23 (2020), 3 Article 20.3.5 47 6 23 11 Nimber Sequences of Node-Kayles Games Sierra Brown Spencer Daugherty Department of Mathematics Department of Mathematics and Statistics Creighton University Mount Holyoke College 2500 California Plaza 50 College Street Omaha, NE 68178 South Hadley, MA 01075 USA USA [email protected] [email protected] Eugene Fiorini Barbara Maldonado Department of Mathematics Department of Mathematics Muhlenberg College University of Houston 2400 Chew Street 3507 Cullen Boulevard Allentown, PA 18104 Houston, TX 77204 USA USA [email protected] [email protected] Diego Manzano-Ruiz Sean Rainville Department of Mathematics Department of Mathematics Kutztown University of Pennsylvania Plymouth State University 15200 Kutztown Road 17 High Street Kutztown, PA 19530 Plymouth, NH 03264 USA USA [email protected] [email protected] Riley Waechter Tony W. H. Wong Department of Mathematics and Statistics Department of Mathematics Northern Arizona University Kutztown University of Pennsylvania 801 South Osborne Drive 15200 Kutztown Road Flagstaff, AZ 86011 Kutztown, PA 19530 USA USA [email protected] [email protected] 1 Abstract Node-Kayles is an impartial game played on a simple graph. The Sprague-Grundy theorem states that every impartial game is associated with a nonnegative integer value called a Nimber. This paper studies the Nimber sequences of various families of graphs, including 3-paths, lattice graphs, prism graphs, chained cliques, linked cliques, linked cycles, linked diamonds, hypercubes, and generalized Petersen graphs. For most of these families, we determine an explicit formula or a recursion on their Nimber sequences. 1 Introduction An impartial game is a combinatorial two-player game with complete information, in which the allowable moves from any position are identical for both players.
    [Show full text]
  • Nimber Sequences of Node-Kayles Games
    1 2 Journal of Integer Sequences, Vol. 23 (2020), 3 47 6 Article 20.3.5 23 11 Nimber Sequences of Node-Kayles Games Sierra Brown Spencer Daugherty Department of Mathematics Department of Mathematics and Statistics Creighton University Mount Holyoke College 2500 California Plaza 50 College Street Omaha, NE 68178 South Hadley, MA 01075 USA USA [email protected] [email protected] Eugene Fiorini Barbara Maldonado Department of Mathematics Department of Mathematics Muhlenberg College University of Houston 2400 Chew Street 3507 Cullen Boulevard Allentown, PA 18104 Houston, TX 77204 USA USA [email protected] [email protected] Diego Manzano-Ruiz Sean Rainville Department of Mathematics Department of Mathematics Kutztown University of Pennsylvania Plymouth State University 15200 Kutztown Road 17 High Street Kutztown, PA 19530 Plymouth, NH 03264 USA USA [email protected] [email protected] Riley Waechter Tony W. H. Wong Department of Mathematics and Statistics Department of Mathematics Northern Arizona University Kutztown University of Pennsylvania 801 South Osborne Drive 15200 Kutztown Road Flagstaff, AZ 86011 Kutztown, PA 19530 USA USA [email protected] [email protected] 1 Abstract Node-Kayles is an impartial game played on a simple graph. The Sprague-Grundy theorem states that every impartial game is associated with a nonnegative integer value called a Nimber. This paper studies the Nimber sequences of various families of graphs, including 3-paths, lattice graphs, prism graphs, chained cliques, linked cliques, linked cycles, linked diamonds, hypercubes, and generalized Petersen graphs. For most of these families, we determine an explicit formula or a recursion on their Nimber sequences. 1 Introduction An impartial game is a combinatorial two-player game with complete information, in which the allowable moves from any position are identical for both players.
    [Show full text]
  • Internship Report: Octal Games on Graphs
    Internship Report: Octal Games on Graphs Antoine Dailly Tutors: Éric Duchêne and Aline Parreau GOAL LIRIS Abstract. Combinatorial games are two-player games with perfect in- formation, without chance, loops or draws, and where the last move entirely determines the winner. Octal games are combinatorial games played on heaps of counters whose rules are entirely determined by an octal code. During my internship, I dened an extension of octal games to graphs and studied two of these games on trees and grids, using a program to help conjecture a result before formally proving it. Résumé Les jeux combinatoires sont des jeux opposant deux joueurs, à information parfaite, sans hasard, boucles ou match nul, et où le dernier coup joué détermine entièrement le vainqueur. Les jeux octaux sont une famille de jeux combinatoires se jouant sur des piles d'objets, et dont les règles sont entièrement déterminés par un code octal. Durant mon stage, j'ai déni une extension des jeux octaux sur les graphes et étudié deux de ces jeux sur les arbres et les grilles, utilisant un programme pour conjecturer un résultat avant de le démontrer formellement. Table of Contents Introduction . .3 1 Combinatorial Games . .4 1.1 Denitions . .4 1.2 Impartial games . .5 1.3 Sums and values . .8 2 Octal Games . 12 2.1 Denition and Examples . 12 2.2 Results. 13 2.3 Octal Games on Graphs . 14 3 0.03 on graphs . 15 3.1 Denition . 15 3.2 Chains . 15 3.3 Forests . 15 3.4 Grids . 17 3.4.1 2 × n Grids .
    [Show full text]
  • 1 Warmups 2 What Is a Game? 3 Starter Games
    Impartial Combinatorial Games Berkeley Math Circle Intermediate II Ted Alper Evans Hall, room 740 Sept 1, 2015 [email protected] 1 Warmups 1.1 (Kozepiskolai Matematikai Lapok, 1980) Contestants B and C play the following game. Player B places a queen on some field of the top row of an n × n chess board. Then they make moves with the queen alternately according to the rules of chess but they are allowed to move only to fields nearer to the left bottom corner than the field they move from. Player C moves first. The player compelled to move into the left bottom corner loses. Who wins if n = 8? Find n such that the other player has a winning strategy. 1.2 (Parabola, 1975) Same as the previous problem, only with a pawn (that is, the piece can only move to an adjacent square, as well as only towards the left bottom forner) 1.3 A game: Starting from 1, the players take turns multiplying the current number by any whole number from 2 to 9 (inclusive). The player who first names a number greater than 1000 wins. Which player, if either, can guarantee victory in this game? 1.4 A game: There are two piles of candy. One pile contains 20 pieces, and the other 21. Players take turns eating all the candy in one pile and separating the remaining candy into two (not necessarily equal) piles. (A pile may have 0 candies in it) The player who cannot eat a candy on his/her turn loses. Which player, if either, can guarantee victory in this game? This seems like a NIM variant { see below { but if you don't see an invariant right away, perhaps you can work backwards { you lose if there are no candies left on your turn; you WIN if there is one pile left; From what positions is there nothing you can do to keep your opponent from winning on the next turn? Iterate.
    [Show full text]