Approaching Disordered Quantum Dot Systems by Complex Networks with Spatial and Physical-Based Constraints

Total Page:16

File Type:pdf, Size:1020Kb

Approaching Disordered Quantum Dot Systems by Complex Networks with Spatial and Physical-Based Constraints nanomaterials Article Approaching Disordered Quantum Dot Systems by Complex Networks with Spatial and Physical-Based Constraints Lucas Cuadra 1,2,* and José Carlos Nieto-Borge 2 1 Department of Signal Processing and Communications, University of Alcalá, 28801 Alcalá de Henares, Spain 2 Department of Physics and Mathematics, University of Alcalá, 28801 Alcalá de Henares, Spain; [email protected] * Correspondence: [email protected] Abstract: This paper focuses on modeling a disordered system of quantum dots (QDs) by using complex networks with spatial and physical-based constraints. The first constraint is that, although QDs (=nodes) are randomly distributed in a metric space, they have to fulfill the condition that there is a minimum inter-dot distance that cannot be violated (to minimize electron localization). The second constraint arises from our process of weighted link formation, which is consistent with the laws of quantum physics and statistics: it not only takes into account the overlap integrals but also Boltzmann factors to include the fact that an electron can hop from one QD to another with a different energy level. Boltzmann factors and coherence naturally arise from the Lindblad master equation. The weighted adjacency matrix leads to a Laplacian matrix and a time evolution operator that allows the computation of the electron probability distribution and quantum transport efficiency. The results suggest that there is an optimal inter-dot distance that helps reduce electron localization Citation: Cuadra, L.; Nieto-Borge, in QD clusters and make the wave function better extended. As a potential application, we provide J.C. Approaching Disordered recommendations for improving QD intermediate-band solar cells. Quantum Dot Systems by Complex Networks with Spatial and Keywords: quantum dot; disordered system of quantum dots; complex networks; spatial networks; Physical-Based Constraints. quantum transport; quantum dot intermediate-band solar cells Nanomaterials 2021, 11, 2056. https://doi.org/10.3390/ nano11082056 1. Introduction Academic Editors: Maria E. Dávila Low-dimensional nanomaterials are systems that confine quantum particles in at and Iván Mora-Seró least one of the Euclidean dimensions (D). As illustrated in Figure1a, quantum wells, quantum wires and quantum dots (QDs) confine particles in 2-D, 1-D and 0-D, respec- Received: 1 July 2021 tively. Specifically, a QD [1,2] is a “tiny” (shorter than the de Broglie wavelength) 0-D Accepted: 3 August 2021 Published: 12 August 2021 nanostructure that confines carriers in all three directions in space [1,3,4], mimicking an “artificial atom”. QDs lead to a delta-like density of states (DOS) [1], which is very different Publisher’s Note: MDPI stays neutral from those corresponding to the other low-dimensional structures [1] (Figure1b). Put simply, a semiconductor QD is a heterostructure [5] formed by a small piece ( 10–15 nm with regard to jurisdictional claims in ∼ published maps and institutional affil- in size) of a semiconductor material (“dot material” (DM)) embedded inside another with iations. a higher bandgap (“barrier material” (BM)). This leads to the formation of confinement potentials (CPs) that confine particles, as illustrated in Figure1c. This creates discrete or bound energy levels for carriers and modifies both the electronic and optical properties [3] when compared to those of both bulk and other nano-materials [1]. All these properties would not be useful if there were no techniques to manufacture Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. a high density of QDs. The most successful methods are the self-assembled QD (SAQD) This article is an open access article growth technologies [6] illustrated in Figure1d. In the Stranski–Krastanow (SK) mode [7], distributed under the terms and the deposition of the DM starts with the formation of a very thin 2-D wetting layer, and conditions of the Creative Commons when a critical amount of strained dot material has been deposited, the formation of Attribution (CC BY) license (https:// (usually) pyramidal QDs occurs by relaxing strain. Conversely, sub-monolayer (SML)- creativecommons.org/licenses/by/ QDs [8] can be formed as disks or spherical QDs [7]. SML-QDs exhibit some advantages 11 2 4.0/). over SK-QDs, such as a smaller diameters (5–10 nm), a higher dot density ( 5 10 cm ), ∼ × − Nanomaterials 2021, 11, 2056. https://doi.org/10.3390/nano11082056 https://www.mdpi.com/journal/nanomaterials L. CUADRA, DEVELOPMENT OF INTERMEL.DIAT CUADRAE BAND, D SEVELOPMOLAR CELLSENT OF INTERMEDIATE BAND SOLAR CELLS L. CUADRA, DEVELOPMENT OF INTERMEDIATE BAND SOLAR CELLS from suggesting QWs for imfromplem suggestingenting the QW IBSC.s for An im electronplementing optically the IBSC. pum pedAn fromelectron optically pumped from L. CUADRA, DEVELOPMENT OF INTERMEDIATE BAND SOLAR CtheELLS ground state in the wellthe (actually ground thestate fi rstin sub-band)the well (actually up to the the second first sub-band) sub-band up(or to the second sub-band (or From this perspective, since QDs are able to create discrete energy levels, theyeven to the continuum ineven the CB)to the would continuum easily inrelax the toCB) the wouldfirst sub-band.easily relax Thus to the first sub-band. Thus mimic some of the properties of the atoms, and sometimes, even it is said that they electronsare in the QW sub-bandselectrons and inin thethe QWCB continuumsub-bands andare describedin the CB bycontinuum the same are described by the same “artificial atoms” [We91]. In this context, itfrom is also suggesting said that QW a QDs for is aim zero-dimensionalplementing thequasi-Ferm IBSC. Ani level,electron EFC optically. A quasi-Fermsim ilarpum discussionpedi level,from EcanFC. Abe simappliedilar discussionto the hole can sub-bands. be applied to the hole sub-bands. structure (0D). This statement requires somthee groundcomme ntsstate in in order the wellto clarify (actually what the “0D” fiTherefore,rst sub-band) as onlyup to two the quasi-FermsecondTherefore, sub-bandi levelsas only (or exist two in quasi-Ferm a QW-cell,i levels(EFC andexist E inFV , awhich QW-cell, (EFC and EFV, which physically means. It is known that theeven reduction to the incontinuum dimensionality in the fromCB) woulda bulkdescribe easily the relax carrier to theconcentration firstdescribe sub-band. inthe th Thuscarriere electron concentration and hole sub-bands),in the electron the QWand -cellhole sub-bands), the QW-cell semiconductor to a thin layer confines electrelectronsons (or in holes)the QW to sub-bandsthis layer. andThis in causes thbehavese CB continuum like a conventional are describedbehaves single-gap by likethe sam acell conventionale whose effective single-gap gap correspondscell whose effectiveto the gap corresponds to the outstanding changes in some of the carrier properties. This is the case, for example, of a Nanomaterials 2021quasi-Ferm, 11, 2056 i level, EFC. A similar discussionseparation can bebetween applied the to groundtheseparation hole electron sub-bands. between and hole the sub-bands.ground electron Although and holethe MQW sub-bands. cell2 of 26Although the MQW cell QW, which currently is the best knownTherefore, and more as used only low-dim two quasi-Fermensional istructure levelshas exist the inpotential a QW -cell,advantage (EFChas andof the increasingE FVpotential, which its advantage ISC by theof absorptionincreasing itsof sub-bandgapISC by the absorption of sub-bandgap [Sh99]. But more exciting modifications describein electronic the carrier and optical concentration properties in canthe photons,beelectron this and is, hole nevertheless, sub-bands),photons, at thethe expenses thisQW is,-cell nevertheless, of reducing atits the VOC expenses. of reducing its VOC. achieved by a further reduction in the dimebehavesnsionality like of athe conventional carrierand surroundings better single-gap control from cell a of whose QD effective size [8 ,9gap]. corresponds SAQD technologies to the are crucial for implementing two-dimensional (2D) QW to a one-dimensionalseparation (1D) between quantum devicesthe wire, ground and such electron finally, as QD-based ato nd a hole sub-bands. light-emitting Although diodes the MQW (LEDs) cell [10], QD-lasers [11–14], QD-infrared zero-dimensional QD. This process of reduchas ingthe dimpotentialensionality advantagephotodetectors has artisticallyof increasing [been7, 15its , 16ISC], by QD-solar the absorption cells [of17 sub-bandgap], or QD-memories [4,18]. A key point for all these devices is that the position of carrier level(s) can be tuned by controlling the dot represented in Fig. 4.10. photons, this is, nevertheless, at the expenses of reducing its VOC. size [1], this being achieved by modifying the growth conditions [5,8,9,19]. DOS DOS DOS Quantum well Quantum wire Q-Well Q-Wire QD constant QD L. CUADRA, DEVELOPMENT OF INTERMEDIATE BAND SOLAR CELLS (2-D) (1-D) E E E (0-D) (a) (b) Wetting layer QD Fig. 4.11. Electron density ofFig. states, 4.11. N Electron(E): (a) indensity a bulk of sem states,iconductor, N(E): (a) (b) in in a abulk quantum semiconductor, (b) in a quantum Fig. 4.10. Representation of the three different kinds of barrierlow-dim ensional structures: CB CB quantum well (two-dimensional heterostructure), quantum wire (one-dimensional) andwell, (c) in a quantum wire,well, and (d)(c) in a QDEquantume, [2Le00 wire,]. and (d) in a QD [Le00]. QD material BM quantum dot (zero-dimensional). (BM) intra-band IB transition CB-CP Stranski-Krastanov E Ee,1 EI 2R I QD EG Fig. 4.11.
Recommended publications
  • Energy Conservation and the Correlation Quasi-Temperature in Open Quantum Dynamics
    Article Energy Conservation and the Correlation Quasi-Temperature in Open Quantum Dynamics Vladimir Morozov 1 and Vasyl’ Ignatyuk 2,* 1 MIREA-Russian Technological University, Vernadsky Av. 78, 119454 Moscow, Russia; [email protected] 2 Institute for Condensed Matter Physics, Svientsitskii Str. 1, 79011 Lviv, Ukraine * Correspondence: [email protected]; Tel.: +38-032-276-1054 Received: 25 October 2018; Accepted: 27 November 2018; Published: 30 November 2018 Abstract: The master equation for an open quantum system is derived in the weak-coupling approximation when the additional dynamical variable—the mean interaction energy—is included into the generic relevant statistical operator. This master equation is nonlocal in time and involves the “quasi-temperature”, which is a non- equilibrium state parameter conjugated thermodynamically to the mean interaction energy of the composite system. The evolution equation for the quasi-temperature is derived using the energy conservation law. Thus long-living dynamical correlations, which are associated with this conservation law and play an important role in transition to the Markovian regime and subsequent equilibration of the system, are properly taken into account. Keywords: open quantum system; master equation; non-equilibrium statistical operator; relevant statistical operator; quasi-temperature; dynamic correlations 1. Introduction In this paper, we continue the study of memory effects and nonequilibrium correlations in open quantum systems, which was initiated recently in Reference [1]. In the cited paper, the nonequilibrium statistical operator method (NSOM) developed by Zubarev [2–5] was used to derive the non-Markovian master equation for an open quantum system, taking into account memory effects and the evolution of an additional “relevant” variable—the mean interaction energy of the composite system (the open quantum system plus its environment).
    [Show full text]
  • Arxiv:Quant-Ph/0105127V3 19 Jun 2003
    DECOHERENCE, EINSELECTION, AND THE QUANTUM ORIGINS OF THE CLASSICAL Wojciech Hubert Zurek Theory Division, LANL, Mail Stop B288 Los Alamos, New Mexico 87545 Decoherence is caused by the interaction with the en- A. The problem: Hilbert space is big 2 vironment which in effect monitors certain observables 1. Copenhagen Interpretation 2 of the system, destroying coherence between the pointer 2. Many Worlds Interpretation 3 B. Decoherence and einselection 3 states corresponding to their eigenvalues. This leads C. The nature of the resolution and the role of envariance4 to environment-induced superselection or einselection, a quantum process associated with selective loss of infor- D. Existential Interpretation and ‘Quantum Darwinism’4 mation. Einselected pointer states are stable. They can retain correlations with the rest of the Universe in spite II. QUANTUM MEASUREMENTS 5 of the environment. Einselection enforces classicality by A. Quantum conditional dynamics 5 imposing an effective ban on the vast majority of the 1. Controlled not and a bit-by-bit measurement 6 Hilbert space, eliminating especially the flagrantly non- 2. Measurements and controlled shifts. 7 local “Schr¨odinger cat” states. Classical structure of 3. Amplification 7 B. Information transfer in measurements 9 phase space emerges from the quantum Hilbert space in 1. Action per bit 9 the appropriate macroscopic limit: Combination of einse- C. “Collapse” analogue in a classical measurement 9 lection with dynamics leads to the idealizations of a point and of a classical trajectory. In measurements, einselec- III. CHAOS AND LOSS OF CORRESPONDENCE 11 tion replaces quantum entanglement between the appa- A. Loss of the quantum-classical correspondence 11 B.
    [Show full text]
  • The Quantum Toolbox in Python Release 2.2.0
    QuTiP: The Quantum Toolbox in Python Release 2.2.0 P.D. Nation and J.R. Johansson March 01, 2013 CONTENTS 1 Frontmatter 1 1.1 About This Documentation.....................................1 1.2 Citing This Project..........................................1 1.3 Funding................................................1 1.4 Contributing to QuTiP........................................2 2 About QuTiP 3 2.1 Brief Description...........................................3 2.2 Whats New in QuTiP Version 2.2..................................4 2.3 Whats New in QuTiP Version 2.1..................................4 2.4 Whats New in QuTiP Version 2.0..................................4 3 Installation 7 3.1 General Requirements........................................7 3.2 Get the software...........................................7 3.3 Installation on Ubuntu Linux.....................................8 3.4 Installation on Mac OS X (10.6+)..................................9 3.5 Installation on Windows....................................... 10 3.6 Verifying the Installation....................................... 11 3.7 Checking Version Information via the About Box.......................... 11 4 QuTiP Users Guide 13 4.1 Guide Overview........................................... 13 4.2 Basic Operations on Quantum Objects................................ 13 4.3 Manipulating States and Operators................................. 20 4.4 Using Tensor Products and Partial Traces.............................. 29 4.5 Time Evolution and Quantum System Dynamics.........................
    [Show full text]
  • Non-Ergodicity in Open Quantum Systems Through Quantum Feedback
    epl draft Non-Ergodicity in open quantum systems through quantum feedback Lewis A. Clark,1;4 Fiona Torzewska,2;4 Ben Maybee3;4 and Almut Beige4 1 Joint Quantum Centre (JQC) Durham-Newcastle, School of Mathematics, Statistics and Physics, Newcastle University, Newcastle-Upon-Tyne, NE1 7RU, United Kingdom 2 The School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom 3 Higgs Centre for Theoretical Physics, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ, UK, United Kingdom 4 The School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom PACS 42.50.-p { Quantum optics PACS 42.50.Ar { Photon statistics and coherence theory PACS 42.50.Lc { Quantum fluctuations, quantum noise, and quantum jumps Abstract {It is well known that quantum feedback can alter the dynamics of open quantum systems dramatically. In this paper, we show that non-Ergodicity may be induced through quan- tum feedback and resultantly create system dynamics that have lasting dependence on initial conditions. To demonstrate this, we consider an optical cavity inside an instantaneous quantum feedback loop, which can be implemented relatively easily in the laboratory. Non-Ergodic quantum systems are of interest for applications in quantum information processing, quantum metrology and quantum sensing and could potentially aid the design of thermal machines whose efficiency is not limited by the laws of classical thermodynamics. Introduction. { Looking at the mechanical motion applicability of statistical-mechanical methods to quan- of individual particles, it is hard to see why ensembles tum physics [3]. Moreover, it has been shown that open of such particles should ever thermalise.
    [Show full text]
  • Quantum Computation and Complexity Theory
    Quantum computation and complexity theory Course given at the Institut fÈurInformationssysteme, Abteilung fÈurDatenbanken und Expertensysteme, University of Technology Vienna, Wintersemester 1994/95 K. Svozil Institut fÈur Theoretische Physik University of Technology Vienna Wiedner Hauptstraûe 8-10/136 A-1040 Vienna, Austria e-mail: [email protected] December 5, 1994 qct.tex Abstract The Hilbert space formalism of quantum mechanics is reviewed with emphasis on applicationsto quantum computing. Standardinterferomeric techniques are used to construct a physical device capable of universal quantum computation. Some consequences for recursion theory and complexity theory are discussed. hep-th/9412047 06 Dec 94 1 Contents 1 The Quantum of action 3 2 Quantum mechanics for the computer scientist 7 2.1 Hilbert space quantum mechanics ..................... 7 2.2 From single to multiple quanta Ð ªsecondº ®eld quantization ...... 15 2.3 Quantum interference ............................ 17 2.4 Hilbert lattices and quantum logic ..................... 22 2.5 Partial algebras ............................... 24 3 Quantum information theory 25 3.1 Information is physical ........................... 25 3.2 Copying and cloning of qbits ........................ 25 3.3 Context dependence of qbits ........................ 26 3.4 Classical versus quantum tautologies .................... 27 4 Elements of quantum computatability and complexity theory 28 4.1 Universal quantum computers ....................... 30 4.2 Universal quantum networks ........................ 31 4.3 Quantum recursion theory ......................... 35 4.4 Factoring .................................. 36 4.5 Travelling salesman ............................. 36 4.6 Will the strong Church-Turing thesis survive? ............... 37 Appendix 39 A Hilbert space 39 B Fundamental constants of physics and their relations 42 B.1 Fundamental constants of physics ..................... 42 B.2 Conversion tables .............................. 43 B.3 Electromagnetic radiation and other wave phenomena .........
    [Show full text]
  • Analysis of Nonlinear Dynamics in a Classical Transmon Circuit
    Analysis of Nonlinear Dynamics in a Classical Transmon Circuit Sasu Tuohino B. Sc. Thesis Department of Physical Sciences Theoretical Physics University of Oulu 2017 Contents 1 Introduction2 2 Classical network theory4 2.1 From electromagnetic fields to circuit elements.........4 2.2 Generalized flux and charge....................6 2.3 Node variables as degrees of freedom...............7 3 Hamiltonians for electric circuits8 3.1 LC Circuit and DC voltage source................8 3.2 Cooper-Pair Box.......................... 10 3.2.1 Josephson junction.................... 10 3.2.2 Dynamics of the Cooper-pair box............. 11 3.3 Transmon qubit.......................... 12 3.3.1 Cavity resonator...................... 12 3.3.2 Shunt capacitance CB .................. 12 3.3.3 Transmon Lagrangian................... 13 3.3.4 Matrix notation in the Legendre transformation..... 14 3.3.5 Hamiltonian of transmon................. 15 4 Classical dynamics of transmon qubit 16 4.1 Equations of motion for transmon................ 16 4.1.1 Relations with voltages.................. 17 4.1.2 Shunt resistances..................... 17 4.1.3 Linearized Josephson inductance............. 18 4.1.4 Relation with currents................... 18 4.2 Control and read-out signals................... 18 4.2.1 Transmission line model.................. 18 4.2.2 Equations of motion for coupled transmission line.... 20 4.3 Quantum notation......................... 22 5 Numerical solutions for equations of motion 23 5.1 Design parameters of the transmon................ 23 5.2 Resonance shift at nonlinear regime............... 24 6 Conclusions 27 1 Abstract The focus of this thesis is on classical dynamics of a transmon qubit. First we introduce the basic concepts of the classical circuit analysis and use this knowledge to derive the Lagrangians and Hamiltonians of an LC circuit, a Cooper-pair box, and ultimately we derive Hamiltonian for a transmon qubit.
    [Show full text]
  • Neural Networks Take on Open Quantum Systems
    VIEWPOINT Neural Networks Take on Open Quantum Systems Simulating a quantum system that exchanges energy with the outside world is notoriously hard, but the necessary computations might be easier with the help of neural networks. by Maria Schuld∗,y, Ilya Sinayskiyyy, and Francesco Petruccione{,k,∗∗ eural networks are behind technologies that are revolutionizing our daily lives, such as face recognition, web searching, and medical diagno- sis. These general problem solvers reach their Nsolutions by being adapted or “trained” to capture cor- relations in real-world data. Having seen the success of neural networks, physicists are asking if the tools might also be useful in areas ranging from high-energy physics to quantum computing [1]. Four research groups now re- port on using neural network tools to tackle one of the most Figure 1: Four teams have designed a neural network (right) that computationally challenging problems in condensed-matter can find the stationary steady states for an ``open'' quantum physics—simulating the behavior of an open many-body system (left). Their approach is built on neural network models for quantum system [2–5]. This scenario describes a collection of closed systems, where the wave function was represented by a particles—such as the qubits in a quantum computer—that statistical distribution over ``visible spins'' connected to a number of ``hidden spins.'' To extend the idea to an open system, three of both interact with each other and exchange energy with their the teams [3–5] added in a third set of ``ancillary spins,'' which environment. For certain open systems, the new work might capture correlations between the system and environment.
    [Show full text]
  • Study of Decoherence in Quantum Computers: a Circuit-Design Perspective
    Study of Decoherence in Quantum Computers: A Circuit-Design Perspective Abdullah Ash- Saki Mahabubul Alam Swaroop Ghosh Electrical Engineering Electrical Engineering Electrical Engineering Pennsylvania State University Pennsylvania State University Pennsylvania State University University Park, USA University Park, USA University Park, USA [email protected] [email protected] [email protected] Abstract—Decoherence of quantum states is a major hurdle interaction with environment [8]. The decoherence problem towards scalable and reliable quantum computing. Lower de- worsens with an increasing number of qubits. To mitigate coherence (i.e., higher fidelity) can alleviate the error correc- those, techniques like cryogenic cooling and error correction tion overhead and obviate the need for energy-intensive noise reduction techniques e.g., cryogenic cooling. In this paper, we code [9] are employed. However, these techniques are costly performed a noise-induced decoherence analysis of single and as cooling the qubits to ultra-low temperature (mili-Kelvin) re- multi-qubit quantum gates using physics-based simulations. The quires very high power (as much as 25kW) and error correction analysis indicates that (i) decoherence depends on the input requires many redundant physical qubits (one popular error state and the gate type. Larger number of j1i states worsen correction method named surface code incurs 18X overhead the decoherence; (ii) amplitude damping is more detrimental than phase damping; (iii) shorter depth implementation of a [10]). quantum function can achieve lower decoherence. Simulations Circuit level implications of decoherence are not well un- indicate 20% improvement in the fidelity of a quantum adder derstood. Therefore, a circuit level analysis of decoherence when realized using lower depth topology.
    [Show full text]
  • Al Transmon Qubits on Silicon-On-Insulator for Quantum Device Integration Andrew J
    Al transmon qubits on silicon-on-insulator for quantum device integration Andrew J. Keller, Paul B. Dieterle, Michael Fang, Brett Berger, Johannes M. Fink, and Oskar Painter Citation: Appl. Phys. Lett. 111, 042603 (2017); doi: 10.1063/1.4994661 View online: http://dx.doi.org/10.1063/1.4994661 View Table of Contents: http://aip.scitation.org/toc/apl/111/4 Published by the American Institute of Physics Articles you may be interested in Superconducting noise bolometer with microwave bias and readout for array applications Applied Physics Letters 111, 042601 (2017); 10.1063/1.4995981 A silicon nanowire heater and thermometer Applied Physics Letters 111, 043504 (2017); 10.1063/1.4985632 Graphitization of self-assembled monolayers using patterned nickel-copper layers Applied Physics Letters 111, 043102 (2017); 10.1063/1.4995412 Perfectly aligned shallow ensemble nitrogen-vacancy centers in (111) diamond Applied Physics Letters 111, 043103 (2017); 10.1063/1.4993160 Broadband conversion of microwaves into propagating spin waves in patterned magnetic structures Applied Physics Letters 111, 042404 (2017); 10.1063/1.4995991 Ferromagnetism in graphene due to charge transfer from atomic Co to graphene Applied Physics Letters 111, 042402 (2017); 10.1063/1.4994814 APPLIED PHYSICS LETTERS 111, 042603 (2017) Al transmon qubits on silicon-on-insulator for quantum device integration Andrew J. Keller,1,2 Paul B. Dieterle,1,2 Michael Fang,1,2 Brett Berger,1,2 Johannes M. Fink,1,2,3 and Oskar Painter1,2,a) 1Kavli Nanoscience Institute and Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA 2Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA 3Institute for Science and Technology Austria, 3400 Klosterneuburg, Austria (Received 3 April 2017; accepted 5 July 2017; published online 25 July 2017) We present the fabrication and characterization of an aluminum transmon qubit on a silicon-on-insulator substrate.
    [Show full text]
  • The Quantum Bases for Human Expertise, Knowledge, and Problem-Solving (Extended Version with Applications)
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Bickley, Steve J.; Chan, Ho Fai; Schmidt, Sascha Leonard; Torgler, Benno Working Paper Quantum-sapiens: The quantum bases for human expertise, knowledge, and problem-solving (Extended version with applications) CREMA Working Paper, No. 2021-14 Provided in Cooperation with: CREMA - Center for Research in Economics, Management and the Arts, Zürich Suggested Citation: Bickley, Steve J.; Chan, Ho Fai; Schmidt, Sascha Leonard; Torgler, Benno (2021) : Quantum-sapiens: The quantum bases for human expertise, knowledge, and problem- solving (Extended version with applications), CREMA Working Paper, No. 2021-14, Center for Research in Economics, Management and the Arts (CREMA), Zürich This Version is available at: http://hdl.handle.net/10419/234629 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte.
    [Show full text]
  • Quantum Thermodynamics of Single Particle Systems Md
    www.nature.com/scientificreports OPEN Quantum thermodynamics of single particle systems Md. Manirul Ali, Wei‑Ming Huang & Wei‑Min Zhang* Thermodynamics is built with the concept of equilibrium states. However, it is less clear how equilibrium thermodynamics emerges through the dynamics that follows the principle of quantum mechanics. In this paper, we develop a theory of quantum thermodynamics that is applicable for arbitrary small systems, even for single particle systems coupled with a reservoir. We generalize the concept of temperature beyond equilibrium that depends on the detailed dynamics of quantum states. We apply the theory to a cavity system and a two‑level system interacting with a reservoir, respectively. The results unravels (1) the emergence of thermodynamics naturally from the exact quantum dynamics in the weak system‑reservoir coupling regime without introducing the hypothesis of equilibrium between the system and the reservoir from the beginning; (2) the emergence of thermodynamics in the intermediate system‑reservoir coupling regime where the Born‑Markovian approximation is broken down; (3) the breakdown of thermodynamics due to the long-time non- Markovian memory efect arisen from the occurrence of localized bound states; (4) the existence of dynamical quantum phase transition characterized by infationary dynamics associated with negative dynamical temperature. The corresponding dynamical criticality provides a border separating classical and quantum worlds. The infationary dynamics may also relate to the origin of big bang and universe infation. And the third law of thermodynamics, allocated in the deep quantum realm, is naturally proved. In the past decade, many eforts have been devoted to understand how, starting from an isolated quantum system evolving under Hamiltonian dynamics, equilibration and efective thermodynamics emerge at long times1–5.
    [Show full text]
  • Exact N-Point Function Mapping Between Pairs of Experiments With
    Exact N -point function mapping between pairs of experiments with Markovian open quantum systems Etienne Wamba1;2;3;4, and Axel Pelster4 1 Faculty of Engineering and Technology, University of Buea, P.O. Box 63 Buea, Cameroon, 2 African Institute for Mathematical Sciences, P.O. Box 608 Limbe, Cameroon, 3 International Center for Theoretical Physics, 34151 Trieste, Italy, 4 Fachbereich Physik and State Research Center OPTIMAS, Technische Universit¨atKaiserslautern, 67663 Kaiserslautern, Germany E-mail: [email protected], [email protected] September 11, 2020 Abstract We formulate an exact spacetime mapping between the N -point correlation functions of two different experiments with open quantum gases. Our formalism extends a quantum-field mapping result for closed systems [Phys. Rev. A 94, 043628 (2016)] to the general case of open quantum systems with Markovian property. For this, we consider an open many-body system consisting of a D-dimensional quantum gas of bosons or fermions that interacts with a bath under Born-Markov approximation and evolves according to a Lindblad master equation in a regime of loss or gain. Invoking the independence of expectation values on pictures of quantum mechanics and using the quantum fields that describe the gas dynamics, we derive the Heisenberg evolution of any arbitrary N -point function of the system in the regime when the Lindblad generators feature a loss or a gain. Our quantum field mapping for closed quantum systems is rewritten in the Schr¨odingerpicture and then extended to open quantum systems by relating onto each other two different evolutions of the N -point functions of the open quantum system.
    [Show full text]