Discrete Rings
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Class Number One Problem for Imaginary Quadratic Fields
MODULAR CURVES AND THE CLASS NUMBER ONE PROBLEM JEREMY BOOHER Gauss found 9 imaginary quadratic fields with class number one, and in the early 19th century conjectured he had found all of them. It turns out he was correct, but it took until the mid 20th century to prove this. Theorem 1. Let K be an imaginary quadratic field whose ring of integers has class number one. Then K is one of p p p p p p p p Q(i); Q( −2); Q( −3); Q( −7); Q( −11); Q( −19); Q( −43); Q( −67); Q( −163): There are several approaches. Heegner [9] gave a proof in 1952 using the theory of modular functions and complex multiplication. It was dismissed since there were gaps in Heegner's paper and the work of Weber [18] on which it was based. In 1967 Stark gave a correct proof [16], and then noticed that Heegner's proof was essentially correct and in fact equiv- alent to his own. Also in 1967, Baker gave a proof using lower bounds for linear forms in logarithms [1]. Later, Serre [14] gave a new approach based on modular curve, reducing the class number + one problem to finding special points on the modular curve Xns(n). For certain values of n, it is feasible to find all of these points. He remarks that when \N = 24 An elliptic curve is obtained. This is the level considered in effect by Heegner." Serre says nothing more, and later writers only repeat this comment. This essay will present Heegner's argument, as modernized in Cox [7], then explain Serre's strategy. -
OSTROWSKI for NUMBER FIELDS 1. Introduction in 1916, Ostrowski [6] Classified the Nontrivial Absolute Values on Q: up to Equival
OSTROWSKI FOR NUMBER FIELDS KEITH CONRAD 1. Introduction In 1916, Ostrowski [6] classified the nontrivial absolute values on Q: up to equivalence, they are the usual (archimedean) absolute value and the p-adic absolute values for different primes p, with none of these being equivalent to each other. We will see how this theorem extends to a number field K, giving a list of all the nontrivial absolute values on K up to equivalence: for each nonzero prime ideal p in OK there is a p-adic absolute value, real embeddings of K and complex embeddings of K up to conjugation lead to archimedean absolute values on K, and every nontrivial absolute value on K is equivalent to a p-adic, real, or complex absolute value. 2. Defining nontrivial absolute values on K For each nonzero prime ideal p in OK , a p-adic absolute value on K is defined in terms × of a p-adic valuation ordp that is first defined on OK − f0g and extended to K by taking ratios. m Definition 2.1. For x 2 OK − f0g, define ordp(x) := m where xOK = p a with m ≥ 0 and p - a. We have ordp(xy) = ordp(x)+ordp(y) for nonzero x and y in OK by unique factorization of × ideals in OK . This lets us extend ordp to K by using ratios of nonzero numbers in OK : for × α 2 K , write α = x=y for nonzero x and y in OK and set ordp(α) := ordp(x) − ordp(y). To 0 0 0 0 0 0 see this is well-defined, if x=y = x =y for nonzero x; y; x , and y in OK then xy = x y 0 0 in OK , which implies ordp(x) + ordp(y ) = ordp(x ) + ordp(y), so ordp(x) − ordp(y) = 0 0 × × ordp(x ) − ordp(y ). -
Formal Power Series - Wikipedia, the Free Encyclopedia
Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series -
MAXIMAL and NON-MAXIMAL ORDERS 1. Introduction Let K Be A
MAXIMAL AND NON-MAXIMAL ORDERS LUKE WOLCOTT Abstract. In this paper we compare and contrast various prop- erties of maximal and non-maximal orders in the ring of integers of a number field. 1. Introduction Let K be a number field, and let OK be its ring of integers. An order in K is a subring R ⊆ OK such that OK /R is finite as a quotient of abelian groups. From this definition, it’s clear that there is a unique maximal order, namely OK . There are many properties that all orders in K share, but there are also differences. The main difference between a non-maximal order and the maximal order is that OK is integrally closed, but every non-maximal order is not. The result is that many of the nice properties of Dedekind domains do not hold in arbitrary orders. First we describe properties common to both maximal and non-maximal orders. In doing so, some useful results and constructions given in class for OK are generalized to arbitrary orders. Then we de- scribe a few important differences between maximal and non-maximal orders, and give proofs or counterexamples. Several proofs covered in lecture or the text will not be reproduced here. Throughout, all rings are commutative with unity. 2. Common Properties Proposition 2.1. The ring of integers OK of a number field K is a Noetherian ring, a finitely generated Z-algebra, and a free abelian group of rank n = [K : Q]. Proof: In class we showed that OK is a free abelian group of rank n = [K : Q], and is a ring. -
Topological Vector Spaces and Algebras
Joseph Muscat 2015 1 Topological Vector Spaces and Algebras [email protected] 1 June 2016 1 Topological Vector Spaces over R or C Recall that a topological vector space is a vector space with a T0 topology such that addition and the field action are continuous. When the field is F := R or C, the field action is called scalar multiplication. Examples: A N • R , such as sequences R , with pointwise convergence. p • Sequence spaces ℓ (real or complex) with topology generated by Br = (a ): p a p < r , where p> 0. { n n | n| } p p p p • LebesgueP spaces L (A) with Br = f : A F, measurable, f < r (p> 0). { → | | } R p • Products and quotients by closed subspaces are again topological vector spaces. If π : Y X are linear maps, then the vector space Y with the ini- i → i tial topology is a topological vector space, which is T0 when the πi are collectively 1-1. The set of (continuous linear) morphisms is denoted by B(X, Y ). The mor- phisms B(X, F) are called ‘functionals’. +, , Finitely- Locally Bounded First ∗ → Generated Separable countable Top. Vec. Spaces ///// Lp 0 <p< 1 ℓp[0, 1] (ℓp)N (ℓp)R p ∞ N n R 2 Locally Convex ///// L p > 1 L R , C(R ) R pointwise, ℓweak Inner Product ///// L2 ℓ2[0, 1] ///// ///// Locally Compact Rn ///// ///// ///// ///// 1. A set is balanced when λ 6 1 λA A. | | ⇒ ⊆ (a) The image and pre-image of balanced sets are balanced. ◦ (b) The closure and interior are again balanced (if A 0; since λA = (λA)◦ A◦); as are the union, intersection, sum,∈ scaling, T and prod- uct A ⊆B of balanced sets. -
1 Absolute Values and Valuations
Algebra in positive Characteristic Fr¨uhjahrssemester 08 Lecturer: Prof. R. Pink Organizer: P. Hubschmid Absolute values, valuations and completion F. Crivelli ([email protected]) April 21, 2008 Introduction During this talk I’ll introduce the basic definitions and some results about valuations, absolute values of fields and completions. These notions will give two basic examples: the rational function field Fq(T ) and the field Qp of the p-adic numbers. 1 Absolute values and valuations All along this section, K denote a field. 1.1 Absolute values We begin with a well-known Definition 1. An absolute value of K is a function | | : K → R satisfying these properties, ∀ x, y ∈ K: 1. |x| = 0 ⇔ x = 0, 2. |x| ≥ 0, 3. |xy| = |x| |y|, 4. |x + y| ≤ |x| + |y|. (Triangle inequality) Note that if we set |x| = 1 for all 0 6= x ∈ K and |0| = 0, we have an absolute value on K, called the trivial absolute value. From now on, when we speak about an absolute value | |, we assume that | | is non-trivial. Moreover, if we define d : K × K → R by d(x, y) = |x − y|, x, y ∈ K, d is a metric on K and we have a topological structure on K. We have also some basic properties that we can deduce directly from the definition of an absolute value. 1 Lemma 1. Let | | be an absolute value on K. We have 1. |1| = 1, 2. |ζ| = 1, for all ζ ∈ K with ζd = 1 for some 0 6= d ∈ N (ζ is a root of unity), 3. -
Artinian Subrings of a Commutative Ring
transactions of the american mathematical society Volume 336, Number 1, March 1993 ARTINIANSUBRINGS OF A COMMUTATIVERING ROBERT GILMER AND WILLIAM HEINZER Abstract. Given a commutative ring R, we investigate the structure of the set of Artinian subrings of R . We also consider the family of zero-dimensional subrings of R. Necessary and sufficient conditions are given in order that every zero-dimensional subring of a ring be Artinian. We also consider closure properties of the set of Artinian subrings of a ring with respect to intersection or finite intersection, and the condition that the set of Artinian subrings of a ring forms a directed family. 1. Introduction Suppose R is a commutative ring with unity element. We consider here various properties of the family sf of Artinian subrings of R and the family Z of zero-dimensional subrings of R . We remark that the inclusion s? ç Z may be proper, even if R is Noetherian; for example, Corollary 3.4 implies that if K is an infinite field of positive characteristic, then the local principal ideal ring K[X]/(X2) contains a zero-dimensional subring that is not Artinian. Of course, if every subring of R were Noetherian, the families sf and Z would be identical. Thus one source of motivation for this work comes from papers such as [Gi, Wi, W2, GHi, GH3] that deal with Noetherian and zero- dimensional pairs of rings, hereditarily Noetherian rings, and hereditarily zero- dimensional rings. Another source of motivation is related to our work in [GH3], where we considered several problems concerning a direct product of zero-dimensional rings. -
Maximal Orders of Quaternions
Maximal Orders of Quaternions Alyson Deines Quaternion Algebras Maximal Orders of Quaternions Maximal Orders Norms, Traces, and Alyson Deines Integrality Local Fields and Hilbert Symbols December 8th Math 581b Final Project Uses A non-commutative analogue of Rings of Integers of Number Field Abstract Maximal Orders of Quaternions Alyson Deines Abstract Quaternion I will define maximal orders of quaternion algebras, give Algebras Maximal examples, discuss how they are similar to and differ from rings Orders of integers, and then I will discuss one of their applications . Norms, Traces, and Integrality Local Fields and Hilbert Symbols Uses Quaternion Algebras over Number Fields Maximal Orders of Definition Quaternions Alyson Deines Let F be a field and a; b 2 F . A quaternion algebra over F is an F -algebra B = a;b Quaternion F Algebras with basis Maximal 2 2 Orders i = a; j = b; and ij = −ji: Norms, Traces, and Integrality Examples: Local Fields −1;−1 and Hilbert = Symbols H R p Uses −1;−1 F = Q( 5), B = F 1;b ∼ Let F be any number field, F = M2(F ) via 1 0 0 b i 7! and j 7! 0 −1 1 0 Maximal Orders Maximal Orders of Quaternions Lattices Alyson Deines Let F be a number field with ring of integers R and let V Quaternion be a finite dimensional F -vector space. Algebras An R-lattice of V is a finitely generated R-submodule Maximal Orders O ⊂ V such that OF = V . Norms, Traces, and Integrality Orders Local Fields and Hilbert Let F be a number field with ring of integers R and let B Symbols be a finite dimensional F -algebra. -
Rings of Real-Valued Continuous Functions. I
RINGS OF REAL-VALUED CONTINUOUS FUNCTIONS. I BY EDWIN HEWITT« Research in the theory of topological spaces has brought to light a great deal of information about these spaces, and with it a large number of in- genious special methods for the solution of special problems. Very few gen- eral methods are known, however, which may be applied to topological prob- lems in the way that general techniques are utilized in classical analysis. For nearly every new problem in set-theoretic topology, the student is forced to devise totally novel methods of attack. With every topological space satisfying certain restrictions there may be associated two non-trivial algebraic structures, namely, the ring of real- valued continuous bounded functions and the ring of all real-valued continu- ous functions defined on that space. These rings enjoy a great number of interesting algebraic properties, which are connected with corresponding topological properties of the space on which they are defined. It may be hoped that by utilizing appropriate algebraic techniques in the study of these rings, some progress may be made toward establishing general methods for the solution of topological problems. The present paper, which is the first of a projected series, is concerned with the study of these function rings, with a view toward establishing their fundamental properties and laying the foundation for applications to purely topological questions. It is intended first to give a brief account of the theory of rings of bounded real-valued continuous functions, with the adduction of proofs wherever appropriate. The theory of rings of bounded real-valued continuous functions has been extensively developed by mathematicians of the American, Russian, and Japanese schools, so that our account of this theory will in part be devoted to the rehearsal and organization of known facts. -
4.3 Absolute Value Equations 373
Section 4.3 Absolute Value Equations 373 4.3 Absolute Value Equations In the previous section, we defined −x, if x < 0. |x| = (1) x, if x ≥ 0, and we saw that the graph of the absolute value function defined by f(x) = |x| has the “V-shape” shown in Figure 1. y 10 x 10 Figure 1. The graph of the absolute value function f(x) = |x|. It is important to note that the equation of the left-hand branch of the “V” is y = −x. Typical points on this branch are (−1, 1), (−2, 2), (−3, 3), etc. It is equally important to note that the right-hand branch of the “V” has equation y = x. Typical points on this branch are (1, 1), (2, 2), (3, 3), etc. Solving |x| = a We will now discuss the solutions of the equation |x| = a. There are three distinct cases to discuss, each of which depends upon the value and sign of the number a. • Case I: a < 0 If a < 0, then the graph of y = a is a horizontal line that lies strictly below the x-axis, as shown in Figure 2(a). In this case, the equation |x| = a has no solutions because the graphs of y = a and y = |x| do not intersect. 1 Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/ Version: Fall 2007 374 Chapter 4 Absolute Value Functions • Case II: a = 0 If a = 0, then the graph of y = 0 is a horizontal line that coincides with the x-axis, as shown in Figure 2(b). -
Ring (Mathematics) 1 Ring (Mathematics)
Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right. -
A Brief History of Ring Theory
A Brief History of Ring Theory by Kristen Pollock Abstract Algebra II, Math 442 Loyola College, Spring 2005 A Brief History of Ring Theory Kristen Pollock 2 1. Introduction In order to fully define and examine an abstract ring, this essay will follow a procedure that is unlike a typical algebra textbook. That is, rather than initially offering just definitions, relevant examples will first be supplied so that the origins of a ring and its components can be better understood. Of course, this is the path that history has taken so what better way to proceed? First, it is important to understand that the abstract ring concept emerged from not one, but two theories: commutative ring theory and noncommutative ring the- ory. These two theories originated in different problems, were developed by different people and flourished in different directions. Still, these theories have much in com- mon and together form the foundation of today's ring theory. Specifically, modern commutative ring theory has its roots in problems of algebraic number theory and algebraic geometry. On the other hand, noncommutative ring theory originated from an attempt to expand the complex numbers to a variety of hypercomplex number systems. 2. Noncommutative Rings We will begin with noncommutative ring theory and its main originating ex- ample: the quaternions. According to Israel Kleiner's article \The Genesis of the Abstract Ring Concept," [2]. these numbers, created by Hamilton in 1843, are of the form a + bi + cj + dk (a; b; c; d 2 R) where addition is through its components 2 2 2 and multiplication is subject to the relations i =pj = k = ijk = −1.