The Newsletter of the Barnard-Seyfert Astronomical Society
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Astronomical Garden of Venus and Mars-NG915: the Pivotal Role Of
The astronomical garden of Venus and Mars - NG915 : the pivotal role of Astronomy in dating and deciphering Botticelli’s masterpiece Mariateresa Crosta Istituto Nazionale di Astrofisica (INAF- OATo), Via Osservatorio 20, Pino Torinese -10025, TO, Italy e-mail: [email protected] Abstract This essay demonstrates the key role of Astronomy in the Botticelli Venus and Mars-NG915 painting, to date only very partially understood. Worthwhile coin- cidences among the principles of the Ficinian philosophy, the historical characters involved and the compositional elements of the painting, show how the astronomi- cal knowledge of that time strongly influenced this masterpiece. First, Astronomy provides its precise dating since the artist used the astronomical ephemerides of his time, albeit preserving a mythological meaning, and a clue for Botticelli’s signature. Second, it allows the correlation among Botticelli’s creative intention, the historical facts and the astronomical phenomena such as the heliacal rising of the planet Venus in conjunction with the Aquarius constellation dating back to the earliest represen- tations of Venus in Mesopotamian culture. This work not only bears a significant value for the history of science and art, but, in the current era of three-dimensional mapping of billion stars about to be delivered by Gaia, states the role of astro- nomical heritage in Western culture. Finally, following the same method, a precise astronomical dating for the famous Primavera painting is suggested. Keywords: History of Astronomy, Science and Philosophy, Renaissance Art, Educa- tion. Introduction Since its acquisition by London’s National Gallery on June 1874, the painting Venus and Mars by Botticelli, cataloged as NG915, has remained a mystery to be interpreted [1]1. -
32Nd Saas-Fee Course 2002
IAU Executive Committee P r e s i d e n t V i c e -P r e s i d e n t s Silvia Torres-Peimbert Instituto Astronomia Franco Pacini Catherine J. Cesarsky Dpto di Astronomia UNAM Director General, ESO Apt 70 264 Universitá degli Studi Karl Schwarzschildstr. 2 Largo E. Fermi 5 Mexico DF 04510, Mexico DE 85748 Garching, Tel: 52 5 622 3906 IT 50125 Firenze, Italy Germany Tel: 39 055 27521/2232 Fax: 52 5 616 0653 Tel: 49 893 200 6227 [email protected] Fax: 39 055 22 0039 Fax: 49 893 202 362 [email protected] [email protected] Robert E. Williams P r e s i d e n t -E l e c t STScI Norio Kaifu Homewood Campus Ronald D. Ekers Director General, NAO 3700 San Martin Dr CSIRO, ATNF Osawa, Mitaka US Baltimore MD 21218 Box 76 JP Tokyo 181- 8588, Japan USA AU Epping NSW 1710 Tel: 81 422 34 3650 Tel: 1 410 338 4963 Australia Fax: 81 422 34 3690 Fax: 1 410 338 2617 Tel: 61 2 9372 4300 [email protected] [email protected] Fax: 61 2 9372 4310 [email protected] Nikolay S. Kardashev A d v i s e r s Astro Space Center G e n e r a l S e c r e t a r y Lebedev Physical Institute Robert P. Kraft (Past President) Hans Rickman Academy of Sciences Profsojuznaya ul 84/32 Lick Observatory IAU RU 117810 Moscow University of California 98 bis Blvd Arago Russian Federation US Santa Cruz CA 95064 FR 75014 Paris, France Tel: 7 095 333 2378 USA Tel: 33 1 43 25 8358 Fax: 7 095 333 2378 Fax: 1 831 426 3115 Fax: 33 1 43 25 2616 or 7 095 310 7023 [email protected] [email protected] [email protected] Johannes Andersen H o m e I n s t i t u t e Kenneth A. -
Messier Objects
Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun. -
Binocular Universe: You're My Hero! December 2010
Binocular Universe: You're My Hero! December 2010 Phil Harrington on't you just love a happy ending? I know I do. Picture this. Princess Andromeda, a helpless damsel in distress, chained to a rock as a ferocious D sea monster loomed nearby. Just when all appeared lost, our hero -- Perseus! -- plunges out of the sky, kills the monster, and sweeps up our maiden in his arms. Together, they fly off into the sunset on his winged horse to live happily ever after. Such is the stuff of myths and legends. That story, the legend of Perseus and Andromeda, was recounted in last month's column when we visited some binocular targets within the constellation Cassiopeia. In mythology, Queen Cassiopeia was Andromeda's mother, and the cause for her peril in the first place. Left: Autumn star map from Star Watch by Phil Harrington Above: Finder chart for this month's Binocular Universe. Chart adapted from Touring the Universe through Binoculars Atlas (TUBA), www.philharrington.net/tuba.htm This month, we return to the scene of the rescue, to our hero, Perseus. He stands in our sky to the east of Cassiopeia and Andromeda, should the Queen's bragging get her daughter into hot water again. The constellation's brightest star, Mirfak (Alpha [α] Persei), lies about two-thirds of the way along a line that stretches from Pegasus to the bright star Capella in Auriga. Shining at magnitude +1.8, Mirfak is classified as a class F5 white supergiant. It radiates some 5,000 times the energy of our Sun and has a diameter 62 times larger. -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
Wynyard Planetarium & Observatory a Autumn Observing Notes
Wynyard Planetarium & Observatory A Autumn Observing Notes Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn Tour of the Sky with the Naked Eye CASSIOPEIA Look for the ‘W’ 4 shape 3 Polaris URSA MINOR Notice how the constellations swing around Polaris during the night Pherkad Kochab Is Kochab orange compared 2 to Polaris? Pointers Is Dubhe Dubhe yellowish compared to Merak? 1 Merak THE PLOUGH Figure 1: Sketch of the northern sky in autumn. © Rob Peeling, CaDAS, 2007 version 1.2 Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn North 1. On leaving the planetarium, turn around and look northwards over the roof of the building. Close to the horizon is a group of stars like the outline of a saucepan with the handle stretching to your left. This is the Plough (also called the Big Dipper) and is part of the constellation Ursa Major, the Great Bear. The two right-hand stars are called the Pointers. Can you tell that the higher of the two, Dubhe is slightly yellowish compared to the lower, Merak? Check with binoculars. Not all stars are white. The colour shows that Dubhe is cooler than Merak in the same way that red-hot is cooler than white- hot. 2. Use the Pointers to guide you upwards to the next bright star. This is Polaris, the Pole (or North) Star. Note that it is not the brightest star in the sky, a common misconception. Below and to the left are two prominent but fainter stars. These are Kochab and Pherkad, the Guardians of the Pole. Look carefully and you will notice that Kochab is slightly orange when compared to Polaris. -
Science Discovery with Diverse Multi-Wavelength Data Fused in NED Joseph Mazzarella Caltech, IPAC/NED
Science Discovery with Diverse Multi-wavelength Data Fused in NED Joseph Mazzarella Caltech, IPAC/NED NED Team: Ben Chan, Tracy Chen, Cren Frayer, George Helou, Scott Terek, Rick Ebert, Tak Lo, Barry Madore, Joe Mazzarella, Olga Pevunova, Marion Schmitz, Ian Steer, Cindy Wang, Xiuqin Wu 7 Oct 2019 ADASS XXIX Groningen 1 Intro & outline Astro data are growing at an unprecedented rate. Ongoing expansion in volume, velocity and variety of data is creating great challenges, and exciting opportunities for discoveries from federated data. Advances in joining data across the spectrum from large sky surveys with > 100,000 smaller catalogs and journal articles, combined with new capabilities of the user interface, are helping astronomers make new discoveries directly from NED. This will be demonstrated with a tour of exciting scientific results recently enabled or facilitated by NED. Some challenges and limitations in joining heterogeneous datasets Outlook for the future 2 Overview: NED is maintaining a panchromatic census of the extragalactic Universe NED is: Published: • Linked to literature • Names • A synthesis of multi- and mission archives • (α,δ) wavelength data • Accessible via VO • Redshifts • D • Published data protocols Mpc • Easy-to-use • Fluxes augmented with • Sizes • Comprehensive derived physical • Attributes attributes • Growing rapidly • References • Notes Contributed: NED simplifies and accelerates • Images NED contains: • Spectra • 773 million multiwavelength cross-IDs scientific research on extragalactic • 667 million distinct objects Derived: • 4.9 billion photometric data points objects by distilling and synthesizing • Distances • 47 million object links to references data across the spectrum, and • Metric sizes SEDs • 7.9 million objects with redshifts providing value-added derived • Luminosities Aλ • 2.5 million images • Velocity corrections • And more .. -
Neutron Stars: Introduction
Neutron Stars: Introduction Stephen Eikenberry 16 Jan 2018 Original Ideas - I • May 1932: James Chadwick discovers the neutron • People knew that n u clei w ere not protons only (nuclear mass >> mass of protons) • Rutherford coined the name “neutron” to describe them (thought to be p+ e- pairs) • Chadwick identifies discrete particle and shows mass is greater than p+ (by 0.1%) • Heisenberg shows that neutrons are not p+ e- pairs Original Ideas - II • Lev Landau supposedly suggested the existence of neutron stars the night he heard of neutrons • Yakovlev et al (2012) show that he in fact discussed dense stars siiltimilar to a gi ant nucl eus BEFORE neutron discovery; this was immediately adapted to “t“neutron s t”tars” Original Ideas - III • 1934: Walter Baade and Fritz Zwicky suggest that supernova eventtttts may create neutron stars • Why? • Suppg(ernovae have huge (but measured) energies • If NS form from normal stars, then the gravitational binding energy gets released • ESN ~ star … Original Ideas - IV • Late 1930s: Oppenheimer & Volkoff develop first theoretical models and calculations of neutron star structure • WldhWould have con tidbttinued, but WWII intervened (and Oppenheimer was busy with other things ) • And that is how things stood for about 30 years … Little Green Men - I • Cambridge experiment with dipole antennae to map cosmic radio sources • PI: Anthony Hewish; grad students included Jocelyn Bell Little Green Men - II • August 1967: CP 1919 discovered in the radio survey • Nov ember 1967: Bell notices pulsations at P =1.337s -
Experiencing Hubble
PRESCOTT ASTRONOMY CLUB PRESENTS EXPERIENCING HUBBLE John Carter August 7, 2019 GET OUT LOOK UP • When Galaxies Collide https://www.youtube.com/watch?v=HP3x7TgvgR8 • How Hubble Images Get Color https://www.youtube.com/watch? time_continue=3&v=WSG0MnmUsEY Experiencing Hubble Sagittarius Star Cloud 1. 12,000 stars 2. ½ percent of full Moon area. 3. Not one star in the image can be seen by the naked eye. 4. Color of star reflects its surface temperature. Eagle Nebula. M 16 1. Messier 16 is a conspicuous region of active star formation, appearing in the constellation Serpens Cauda. This giant cloud of interstellar gas and dust is commonly known as the Eagle Nebula, and has already created a cluster of young stars. The nebula is also referred to the Star Queen Nebula and as IC 4703; the cluster is NGC 6611. With an overall visual magnitude of 6.4, and an apparent diameter of 7', the Eagle Nebula's star cluster is best seen with low power telescopes. The brightest star in the cluster has an apparent magnitude of +8.24, easily visible with good binoculars. A 4" scope reveals about 20 stars in an uneven background of fainter stars and nebulosity; three nebulous concentrations can be glimpsed under good conditions. Under very good conditions, suggestions of dark obscuring matter can be seen to the north of the cluster. In an 8" telescope at low power, M 16 is an impressive object. The nebula extends much farther out, to a diameter of over 30'. It is filled with dark regions and globules, including a peculiar dark column and a luminous rim around the cluster. -
Astronomy Magazine Special Issue
γ ι ζ γ δ α κ β κ ε γ β ρ ε ζ υ α φ ψ ω χ α π χ φ γ ω ο ι δ κ α ξ υ λ τ μ β α σ θ ε β σ δ γ ψ λ ω σ η ν θ Aι must-have for all stargazers η δ μ NEW EDITION! ζ λ β ε η κ NGC 6664 NGC 6539 ε τ μ NGC 6712 α υ δ ζ M26 ν NGC 6649 ψ Struve 2325 ζ ξ ATLAS χ α NGC 6604 ξ ο ν ν SCUTUM M16 of the γ SERP β NGC 6605 γ V450 ξ η υ η NGC 6645 M17 φ θ M18 ζ ρ ρ1 π Barnard 92 ο χ σ M25 M24 STARS M23 ν β κ All-in-one introduction ALL NEW MAPS WITH: to the night sky 42,000 more stars (87,000 plotted down to magnitude 8.5) AND 150+ more deep-sky objects (more than 1,200 total) The Eagle Nebula (M16) combines a dark nebula and a star cluster. In 100+ this intense region of star formation, “pillars” form at the boundaries spectacular between hot and cold gas. You’ll find this object on Map 14, a celestial portion of which lies above. photos PLUS: How to observe star clusters, nebulae, and galaxies AS2-CV0610.indd 1 6/10/10 4:17 PM NEW EDITION! AtlAs Tour the night sky of the The staff of Astronomy magazine decided to This atlas presents produce its first star atlas in 2006. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
Eagle Nebula Star Formation Region
Eagle Nebula Star Formation Region AST 303: Chapter 17 1 The Formation of Stars (2) • A cloud of gas and dust must collapse if stars are to be formed. • The self-gravity of the cloud will tend to cause it to collapse. • Radiation pressure from nearby hot stars may do the same. • The passage of a shock wave from a nearby supernova blast or some other source (such as galactic shock waves) may do the same. – Note: The “sonic boom” of a jet plane is an example of a shock wave. • When two clouds collide, they may cause each other to collapse. AST 303: Chapter 17 2 Trifid Nebula AST 303: Chapter 17 3 Trifid Nebula Stellar Nursery Revealed AST 303: Chapter 17 4 Young Starburst Cluster Emerges from Cloud AST 303: Chapter 17 5 The Formation of Stars (3) • The gas in the collapsing cloud probably becomes turbulent. • This would tend to fragment the collapsing gas, producing condensations that would be the nuclei of new stars. • There is abundant evidence that shows that the stars in a cluster are all about the same age. For a young cluster, many stars have not yet reached the main sequence: ! Isochron Luminosity "Temperature AST 303: Chapter 17 6 The Formation of Stars (4) • The evolutionary paths of young stars on the H-R diagram look like this. Note the T Tauri stars, long thought to be young stars. • Theory says that these stars use convection as the main method of transporting energy to their surfaces. ! T Tauri Stars Luminosity "Temperature AST 303: Chapter 17 7 The Search for Stellar Precursors • Astronomers have long been fascinated by very dark, dense regions seen outlined against bright gas, called globules.