Anaerobic Microbial Transformation of Chlorinated Alkanes in Cultures Derived from Besòs River Estuary Sediments Siti Hatijah

Total Page:16

File Type:pdf, Size:1020Kb

Anaerobic Microbial Transformation of Chlorinated Alkanes in Cultures Derived from Besòs River Estuary Sediments Siti Hatijah ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Escola d’Enginyeria Departament d'Enginyeria Química, Biològica i Ambiental “Anaerobic microbial transformation of chlorinated alkanes in cultures derived from Besòs River estuary sediments” PhD Thesis Siti Hatijah Mortan Doctorat en Ciència i Tecnologia Ambientals Supervised by Dr Ernest Marco Urrea Dra Gloria Caminal Saperas Bellaterra, Cerdanyola del Vallès, Barcelona March 2017 Title: Anaerobic microbial transformation of chlorinated alkanes in cultures derived from Besòs River estuary sediments Presented by: Siti Hatijah Mortan Supervised by: Ernest Marco Urrea and Gloria Caminal Saperas PhD program in Environmental Science and Technology Departament d'Enginyeria Química, Biològica i Ambiental Escola d’Enginyeria Universitat Autònoma de Barcelona, Bellatera, 2017 This work was supported by the Xarxa de Referència en Biotecnologia de la Generalitat de Catalunya (Premi Pot d’Idees 2016), the Spanish Ministry of Economy and Competitiveness and FEDER(project CTM2013-48545-C2-1-R) and supported by the Generalitat de Catalunya (Consolidated Research Group 2014-SGR-476). The author acknowledges the predoctoral fellowship from Ministry of Higher Education Malaysia and Universiti Malaysia Pahang. Part of this work has been done in collaboration with the Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Germany (Dr. L. Adrian); Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona (Dra. N. Gaju, Dra. M. Martínez, E. Parladé); Departament de Cristal-lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (Dra. M. Rosell, Dr. J. Palau); Department of Earth and Environmental Sciences, University of Waterloo, Canada (Dr. O. Shouakar-Stash). ERNEST MARCO URREA, Professor Agregat Interí del Departament d'Enginyeria Química, Biològica i Ambiental de la Universitat Autònoma de Barcelona, GLORIA CAMINAL SAPERAS, Investigador Científic del Institut de Química Avançada de Catalunya (IQAC) del CSIC, CERTIFIQUEM: Que el titulat en Enginyeria Bioquímica Siti Hatijah Mortan ha realitzat sota la nostra direcció, en els laboratoris del Departament d'Enginyeria Química, Biològica i Ambiental el treball que amb el títol “Anaerobic microbial transformation of chlorinated alkanes in cultures derived from Besòs River estuary sediments”, es presenta en aquesta memòria, la qual constitueix la seva Tesi per optar al Grau de Doctor per la Universitat Autònoma de Barcelona. I perquè en prengueu coneixement i consti als efectes oportuns, presentem a l’Escola d’Enginyeria de la Universitat Autònoma de Barcelona l’esmentada Tesi, signant el present certificat a Bellaterra, Marc 2017. Dr. Ernest Marco Urrea Dra. Gloria Caminal Saperas ACKNOWLEDGEMENT First and foremost, a very special gratitude to Dr Ernest Marco and Dr Gloria Caminal Saperas for being such a wonderful and helpful supervisors to me. Thank you very much for your guidance and I am highly indebted to both of you for all the encouragement, the patience for my shortcomings and open up the opportunity for me to work in such an interesting research. A special thank you to Dr Lucia Martin-Gonzalez for took a great care of me in the lab and Alba Trueba-Santiso whom I’ve shared so many fun and memorable times working with the ‘anaerobic babies’. I would like to take this moment also to express my appreciation to Dr Teresa Vicent and everyone in “Toxics” Research Group, UAB for your continuous support and I am very grateful being a member of this extremely supportive research group. Special mention to Dr Lorenz Adrian and his research group in the Department Isotope Biogeochemistry (UFZ), Leipzig, Germany for the opportunity to do my research stay in your lab. Working in UFZ was a great joy and experience, thanks to this wonderful group of people. Thank you very much also to Dr Monica Rosell from Departament de Mineralogia (UB), Dr Ivonne Nijenhuis (UFZ), Dr Nuria Gaju, Dr Maira Martinez-Alonso and Eloi Parlade from Departament de Genètica i Microbiologia (UAB) for our research collaboration. I also want to thanks the members of the Departament d'Enginyeria Química, Biològica i Ambiental and Institut de Ciència i Tecnologia Ambiental (ICTA) for their helpful assistance. I would like to acknowledge Manuel Plaza and Lucia Delgado for their technical assistance. Sincere thanks are extended to the examination committee for reviewing this thesis. Last but not least, special thanks to my family and good friends who have provided me their support and understanding throughout this whole PhD journey. ‘Gracias a todos! Gracies a tothom!’ Abstract ABSTRACT Halogenated compounds (organohalides) are recalcitrant organic compounds, exhibiting toxic effects on human health and the ecosystem. Among the organohalides, chlorinated alkanes such as chloroethanes and chloropropanes received less attention despite their large use in the industry and have caused serious environmental problems. Physicochemical processes are the most commonly used technology to treat groundwaters contaminated with these compounds, however these techniques imply high operational costs and require a post-treatment step to completely destroy these compounds. Biodegradation has become a more suitable, cost-efficient and environmental friendly technology to address contamination of these compounds. In this study, we aimed to obtain an enrichment culture containing organohalide-respiring bacteria able to transform halogenated alkanes. A stable nonmethanogenic enriched anaerobic culture that exclusively dehalogenates vicinally chlorinated and brominated alkanes via dihaloelimination was established from Besòs River estuary sediments (Barcelona, Spain). Application of genus specific primers targeting 16S rRNA gene sequences together with the observation of physiological characteristics of the dechlorinating culture indicated that a Dehalogenimonas strain was the responsible for chlorinated alkane degradation in the microcosms. The increase of Dehalogenimonas 16S rRNA gene copies using quantitative PCR (qPCR) revealed that 1,2-dichloropropane (1,2-DCP) dechlorination was coupled to Dehalogenimonas growth in this culture. Carbon and dual carbon-chlorine (C-Cl) isotope fractionation during anaerobic biodegradation of 1,2-DCP and 1,2-dichloroethane (1,2-DCA), respectively, by Dehalogenimonas-containing enrichment culture were determined in this study. Compound specific isotope analysis revealed that the Dehalogenimonas-catalyzed carbon isotopic i Abstract fractionation (ε) of the 1,2-DCP-to-propene reaction was −15.0 ± 0.7‰ and differs significantly from other Dehalococcoides strains eventhough they harbored the same functional reductive dehalogenase (DcpA) for 1,2-DCP-to-propene dechlorination. The dual element C-Cl isotope correlation obtained (Ʌ = 1.89 ± 0.02) during 1,2-DCA-to-ethene dichloroelimination by Dehalogenimonas was significantly discernible from those reported for Dehalococcoides catalyzing a similar dihaloelimination reaction and aerobic oxidation. This illustrates the potential use of dual C-Cl isotope approach to distinguish between different degradation pathways (oxidation, hydrolytic dehalogenation and dihaloelimination). After overcoming the challenges in developing a stable culture, isolation of Dehalogenimonas became the next objective. To date, only three species belonging to Dehalogenimonas genus have been isolated and this study constituted the first evidence of a Dehalogenimonas culture enriched in Europe. The isolation approach consisted of the dilution to extinction method and the addition of selected antibiotics. After thirteen sequential transfer of this culture fed with 1,2-DCP-to-propene and two consecutive 10-7 dilutions followed by the addition of streptomycin for five transfers, a clone library of bacterial amplicons revealed that Dehalogenimonas sp. constituted 87 % of the predominant bacteria, followed by Desulfovibrio sp. (12 %) and unclassified Veillonellaceae (1 %). Further work is currently underway in our lab to isolate the Dehalogenimonas sp. In this study, a preliminary list of reductive dehalogenase (RDase) candidates involved in the transformation of 1,1,2-trichloroethane (1,1,2-TCA) and 1,2-dibromoethane (EDB) by this Dehalogenimonas culture was attempted using shotgun proteomics analysis (LTQ-Orbitrap). In addition, blue native polyacrylamide gel electrophoresis (BN-PAGE) approach combined with dechlorination activity assays were performed to identify the RDase responsible for 1,1,2-TCA ii Abstract dichloroelimination. Eventhough dechlorination activity was detected in a gel slice of the BN- PAGE of the culture growing with 1,1,2-TCA, no RDase was identified by neither liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis nor sodium dodecyl sulfate- polyacrylamide gel electrophoresis (SDS-PAGE). The absence of RDase can be due to several reasons including low protein content and the
Recommended publications
  • Dehalogenimonas</Em> Spp. Can Reductively Dehalogenate High
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Faculty Publications and Other Works -- Civil & Engineering -- Faculty Publications and Other Environmental Engineering Works 10-9-2012 Dehalogenimonas spp. can Reductively Dehalogenate High Concentrations of 1,2-Dichloroethane, 1,2-Dichloropropane, and 1,1,2-Trichloroethane Andrew D. Maness Louisiana State University and Agricultural & Mechanical College Kimberly S. Bowman Louisiana State University and Agricultural & Mechanical College Jun Yan University of Tennessee - Knoxville, [email protected] Fred A. Rainey Louisiana State University and Agricultural & Mechanical College William M. Moe Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://trace.tennessee.edu/utk_civipubs Part of the Civil and Environmental Engineering Commons Recommended Citation AMB Express 2012, 2:54 doi:10.1186/2191-0855-2-54 This Article is brought to you for free and open access by the Engineering -- Faculty Publications and Other Works at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Faculty Publications and Other Works -- Civil & Environmental Engineering by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Maness et al. AMB Express 2012, 2:54 http://www.amb-express.com/content/2/1/54 ORIGINAL ARTICLE Open Access Dehalogenimonas spp. can Reductively Dehalogenate High Concentrations of 1,2-Dichloroethane, 1,2-Dichloropropane, and 1,1,2-Trichloroethane Andrew D Maness1, Kimberly S Bowman1,2, Jun Yan1,4, Fred A Rainey2,3 and William M Moe1* Abstract The contaminant concentrations over which type strains of the species Dehalogenimonas alkenigignens and Dehalogenimonas lykanthroporepellens were able to reductively dechlorinate 1,2-dichloroethane (1,2-DCA), 1,2-dichloropropane (1,2-DCP), and 1,1,2-trichloroethane (1,1,2-TCA) were evaluated.
    [Show full text]
  • Azonexus Hydrophilus Sp. Nov., a Nifh Gene-Harbouring Bacterium Isolated from Freshwater
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by National Chung Hsing University Institutional Repository International Journal of Systematic and Evolutionary Microbiology (2008), 58, 946–951 DOI 10.1099/ijs.0.65434-0 Azonexus hydrophilus sp. nov., a nifH gene-harbouring bacterium isolated from freshwater Jui-Hsing Chou,1 Sing-Rong Jiang,2 Jang-Cheon Cho,3 Jaeho Song,3 Mei-Chun Lin2 and Wen-Ming Chen2 Correspondence 1Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, Wen-Ming Chen National Chung Hsing University, Taichung, Taiwan [email protected] 2Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd, Nan-Tzu, Kaohsiung City 811, Taiwan 3Division of Biology and Ocean Sciences, Inha University, Yonghyun Dong, Incheon 402-751, Republic of Korea Three Gram-negative, non-pigmented, rod-shaped, facultatively aerobic bacterial strains, designated d8-1T, d8-2 and IMCC1716, were isolated from a freshwater spring sample and a eutrophic freshwater pond. Based on characterization using a polyphasic approach, the three strains showed highly similar phenotypic, physiological and genetic characteristics. All of the strains harboured the nitrogenase gene nifH, but nitrogen-fixing activities could not be detected in nitrogen-free culture media. The three strains shared 99.6–99.7 % 16S rRNA gene sequence similarity and showed 89–100 % DNA–DNA relatedness, suggesting that they represent a single genomic species. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains d8-1T, d8-2 and IMCC1716 formed a monophyletic branch in the periphery of the evolutionary radiation occupied by the genus Azonexus.
    [Show full text]
  • Download/Splitstree5)
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.31.446453; this version posted June 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Phylogenetic context using phylogenetic outlines Caner Bagcı1, David Bryant2, Banu Cetinkaya3, and Daniel H. Huson1;4;∗ 1 Algorithms in Bioinformatics, University of T¨ubingen,72076 T¨ubingen,Germany 2 Department of Mathematics, University of Otago, Dunedin, New Zealand 3 Computer Science program, Sabancı University, 34956 Tuzla/Istanbul,_ Turkey 4 Cluster of Excellence: Controlling Microbes to Fight Infection, T¨ubingen,Germany *[email protected] Abstract 1 Microbial studies typically involve the sequencing and assembly of draft genomes for 2 individual microbes or whole microbiomes. Given a draft genome, one first task is to 3 determine its phylogenetic context, that is, to place it relative to the set of related reference 4 genomes. We provide a new interactive graphical tool that addresses this task using Mash 5 sketches to compare against all bacterial and archaeal representative genomes in the 6 GTDB taxonomy, all within the framework of SplitsTree5. The phylogenetic context of the 7 query sequences is then displayed as a phylogenetic outline, a new type of phylogenetic 8 network that is more general that a phylogenetic tree, but significantly less complex than 9 other types of phylogenetic networks. We propose to use such networks, rather than trees, 10 to represent phylogenetic context, because they can express uncertainty in the placement 11 of taxa, whereas a tree must always commit to a specific branching pattern.
    [Show full text]
  • Genomics, Exometabolomics, and Metabolic Probing Reveal Conserved Proteolytic Metabolism of Thermoflexus Hugenholtzii and Three Candidate Species from China and Japan
    fmicb-12-632731 April 27, 2021 Time: 13:56 # 1 ORIGINAL RESEARCH published: 03 May 2021 doi: 10.3389/fmicb.2021.632731 Genomics, Exometabolomics, and Metabolic Probing Reveal Conserved Proteolytic Metabolism of Thermoflexus hugenholtzii and Three Candidate Species From China and Japan Scott C. Thomas1*, Devon Payne1†, Kevin O. Tamadonfar1†, Cale O. Seymour1, Jian-Yu Jiao2,3, Senthil K. Murugapiran1,4†, Dengxun Lai1, Rebecca Lau5,6, Edited by: Benjamin P. Bowen5,6, Leslie P. Silva5,6, Katherine B. Louie5,6, Marcel Huntemann5,6, Jesse G. Dillon, Alicia Clum5,6, Alex Spunde5,6, Manoj Pillay5,6, Krishnaveni Palaniappan5,6, California State University, Long Neha Varghese5,6, Natalia Mikhailova5,6, I-Min Chen5,6, Dimitrios Stamatis5,6, Beach, United States T. B. K. Reddy5,6, Ronan O’Malley5,6, Chris Daum5,6, Nicole Shapiro5,6, Natalia Ivanova5,6, Reviewed by: Nikos C. Kyrpides5,6, Tanja Woyke5,6, Emiley Eloe-Fadrosh5,6, Trinity L. Hamilton4, Andrew Decker Steen, Paul Dijkstra7, Jeremy A. Dodsworth8, Trent R. Northen5,6, Wen-Jun Li2,3 and The University of Tennessee, Brian P. Hedlund1,9* Knoxville, United States Vera Thiel, 1 School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States, 2 School of Life Sciences, Sun German Collection of Microorganisms Yat-sen University, Guangzhou, China, 3 State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant and Cell Cultures GmbH (DSMZ), Resources and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China, 4 Department of Plant Germany and Microbial Biology, The BioTechnology Institute, University of Minnesota, St. Paul, MN, United States, 5 The Department of Energy Joint Genome Institute, Berkeley, CA, United States, 6 Environmental Genomics and Systems Biology Division, *Correspondence: Lawrence Berkeley National Laboratory, Berkeley, CA, United States, 7 Department of Biological Sciences, Center Scott C.
    [Show full text]
  • Rapport Nederlands
    Moleculaire detectie van bacteriën in dekaarde Dr. J.J.P. Baars & dr. G. Straatsma Plant Research International B.V., Wageningen December 2007 Rapport nummer 2007-10 © 2007 Wageningen, Plant Research International B.V. Alle rechten voorbehouden. Niets uit deze uitgave mag worden verveelvoudigd, opgeslagen in een geautomatiseerd gegevensbestand, of openbaar gemaakt, in enige vorm of op enige wijze, hetzij elektronisch, mechanisch, door fotokopieën, opnamen of enige andere manier zonder voorafgaande schriftelijke toestemming van Plant Research International B.V. Exemplaren van dit rapport kunnen bij de (eerste) auteur worden besteld. Bij toezending wordt een factuur toegevoegd; de kosten (incl. verzend- en administratiekosten) bedragen € 50 per exemplaar. Plant Research International B.V. Adres : Droevendaalsesteeg 1, Wageningen : Postbus 16, 6700 AA Wageningen Tel. : 0317 - 47 70 00 Fax : 0317 - 41 80 94 E-mail : [email protected] Internet : www.pri.wur.nl Inhoudsopgave pagina 1. Samenvatting 1 2. Inleiding 3 3. Methodiek 8 Algemene werkwijze 8 Bestudeerde monsters 8 Monsters uit praktijkteelten 8 Monsters uit proefteelten 9 Alternatieve analyse m.b.v. DGGE 10 Vaststellen van verschillen tussen de bacterie-gemeenschappen op myceliumstrengen en in de omringende dekaarde. 11 4. Resultaten 13 Monsters uit praktijkteelten 13 Monsters uit proefteelten 16 Alternatieve analyse m.b.v. DGGE 23 Vaststellen van verschillen tussen de bacterie-gemeenschappen op myceliumstrengen en in de omringende dekaarde. 25 5. Discussie 28 6. Conclusies 33 7. Suggesties voor verder onderzoek 35 8. Gebruikte literatuur. 37 Bijlage I. Bacteriesoorten geïsoleerd uit dekaarde en van mycelium uit commerciële teelten I-1 Bijlage II. Bacteriesoorten geïsoleerd uit dekaarde en van mycelium uit experimentele teelten II-1 1 1.
    [Show full text]
  • Microbial Communities Driving Emerging Contaminant Removal. Impact of Treated Wastewater on the Ecosystem Eloi Parladé Molist
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Departament de Gen`eticai Microbiologia Universitat Aut`onomade Barcelona Microbial communities driving emerging contaminant removal. Impact of treated wastewater on the ecosystem by Eloi Parlad´eMolist Directed by: Maira Mart´ınez-AlonsoPh.D & N´uriaGaju Ricart Ph.D January, 2018 Microbial communities driving emerging contaminant removal. Impact of treated wastewater on the ecosystem A thesis submitted in partial fulfillment of the requirements for the degree of PhD program in Microbiology by Eloi Parlad´eMolist With the approval of the supervisors, Dra. Maira Mart´ınez-Alonso Dra. N´uriaGaju Ricart Bellaterra, January 2018 "I wish there was a way to know you're in the good old days before you've actually left them." -Andy Bernard This work has been funded by the Spanish Ministry of Economy and Competitive- ness (project CTM2013-48545-C2-1-R), State Research Agency (project CTM2016- 75587-C2-1-R), co-financed by the European Union through the European Regional Development Fund (ERDF) and supported by the Generalitat de Catalunya (Con- solidated Research Groups 2014-SGR-559/2017-SGR-1762 and 2014-SGR-476/2017- SGR-14).
    [Show full text]
  • Lists of Names of Prokaryotic Candidatus Taxa
    NOTIFICATION LIST: CANDIDATUS LIST NO. 1 Oren et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.003789 Lists of names of prokaryotic Candidatus taxa Aharon Oren1,*, George M. Garrity2,3, Charles T. Parker3, Maria Chuvochina4 and Martha E. Trujillo5 Abstract We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, pro- posed between the mid- 1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evo- lutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current propos- als to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes. Introduction of the category called Candidatus was first pro- morphology, basis of assignment as Candidatus, habitat, posed by Murray and Schleifer in 1994 [1]. The provisional metabolism and more. However, no such lists have yet been status Candidatus was intended for putative taxa of any rank published in the journal. that could not be described in sufficient details to warrant Currently, the nomenclature of Candidatus taxa is not covered establishment of a novel taxon, usually because of the absence by the rules of the Prokaryotic Code.
    [Show full text]
  • Roles of Organohalide-Respiring Dehalococcoidia in Carbon Cycling
    PERSPECTIVE Applied and Environmental Science crossm Roles of Organohalide-Respiring Dehalococcoidia in Carbon Cycling Yi Yang,a Robert Sanford,b Jun Yan,a Gao Chen,c,d Natalie L. Cápiro,e Xiuying Li,a Frank E. Löfflerc,d,f,g,h,i Downloaded from aKey Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China bDepartment of Geology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA cCenter for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA dDepartment of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA eDepartment of Civil Engineering, Environmental Engineering Program, Auburn University, Auburn, Alabama, USA fDepartment of Microbiology, University of Tennessee, Knoxville, Tennessee, USA gDepartment of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, USA http://msystems.asm.org/ hBiosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, Tennessee, USA iJoint Institute for Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA ABSTRACT The class Dehalococcoidia within the Chloroflexi phylum comprises the obligate organohalide-respiring genera Dehalococcoides, Dehalogenimonas, and “Can- didatus Dehalobium.” Knowledge of the unique ecophysiology and biochemistry of Dehalococcoidia has been largely derived from studies with enrichment cultures and isolates from sites impacted with chlorinated pollutants; however, culture- independent surveys found Dehalococcoidia sequences in marine, freshwater, and terrestrial biomes considered to be pristine (i.e., not impacted with organohalogens of anthropogenic origin). The broad environmental distribution of Dehalococcoidia, as well as other organohalide-respiring bacteria, supports the concept of active halo- on August 25, 2020 by guest gen cycling and the natural formation of organohalogens in various ecosystems.
    [Show full text]
  • Isotope Array Analysis of Rhodocyclales Uncovers Functional Redundancy and Versatility in an Activated Sludge
    The ISME Journal (2009) 3, 1349–1364 & 2009 International Society for Microbial Ecology All rights reserved 1751-7362/09 $32.00 www.nature.com/ismej ORIGINAL ARTICLE Isotope array analysis of Rhodocyclales uncovers functional redundancy and versatility in an activated sludge Martin Hesselsoe1, Stephanie Fu¨ reder2, Michael Schloter3, Levente Bodrossy4, Niels Iversen1, Peter Roslev1, Per Halkjær Nielsen1, Michael Wagner2 and Alexander Loy2 1Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark; 2Department of Microbial Ecology, University of Vienna, Wien, Austria; 3Department of Terrestrial Ecogenetics, Helmholtz Zentrum Mu¨nchen—National Research Center for Environmental Health, Neuherberg, Germany and 4Department of Bioresources/Microbiology, ARC Seibersdorf Research GmbH, Seibersdorf, Austria Extensive physiological analyses of different microbial community members in many samples are difficult because of the restricted number of target populations that can be investigated in reasonable time by standard substrate-mediated isotope-labeling techniques. The diversity and ecophysiology of Rhodocyclales in activated sludge from a full-scale wastewater treatment plant were analyzed following a holistic strategy based on the isotope array approach, which allows for a parallel functional probing of different phylogenetic groups. Initial diagnostic microarray, comparative 16S rRNA gene sequence, and quantitative fluorescence in situ hybridization surveys indicated the presence of a diverse community, consisting of an estimated number of 27 operational taxonomic units that grouped in at least seven main Rhodocyclales lineages. Substrate utilization profiles of probe-defined populations were determined by radioactive isotope array analysis and microautoradiography-fluorescence in situ hybridization of activated sludge samples that were briefly exposed to different substrates under oxic and anoxic, nitrate-reducing conditions.
    [Show full text]
  • Microbial Response to Singlecell Protein Production and Brewery
    bs_bs_banner Microbial response to single-cell protein production and brewery wastewater treatment Jackson Z. Lee,1† Andrew Logan,2 Seth Terry2 and Introduction John R. Spear1* Already half of all global fish stocks have been deemed 1Department of Civil and Environmental Engineering, fully exploited (Cressey, 2009), which has led to the col- Colorado School of Mines, Golden, CO, USA. lapse of several fisheries and the potential collapse of 2Nutrinsic, Corp., Aurora, CO, USA. others over the next several decades (Worm et al., 2006). Concomitantly, aquaculture (the farm rearing of fish) Summary has grown at an annual rate of 14% since 1970 (FAO Fisheries Department, 2003). Because aquaculture As global fisheries decline, microbial single-cell feed production relies on significant amounts of non- protein (SCP) produced from brewery process sustainable fish meal protein harvested from ocean fish- water has been highlighted as a potential source eries, further aquaculture growth will result in more fish of protein for sustainable animal feed. However, meal shortages and further depletion of ocean fisheries. biotechnological investigation of SCP is difficult Therefore, there has been renewed interest in the devel- because of the natural variation and complexity of opment of less expensive and more sustainable fish meal microbial ecology in wastewater bioreactors. In this replacements. study, we investigate microbial response across a In the brewing industry, solid byproducts of various full-scale brewery wastewater treatment plant and a forms (spent grains, hops, yeasts, etc.), once a costly parallel pilot bioreactor modified to produce an SCP landfill waste, have become a livestock feed source. Even product. A pyrosequencing survey of the brewery after this removal of solids, a large amount of dissolved treatment plant showed that each unit process carbon still remains in the typical brewery wastewater selected for a unique microbial community.
    [Show full text]
  • Prokaryotic Names: the Bold and the Beautiful Aharon Oren*
    FEMS Microbiology Letters, 367, 2020, fnaa096 doi: 10.1093/femsle/fnaa096 Advance Access Publication Date: 8 June 2020 Minireview Downloaded from https://academic.oup.com/femsle/article/367/17/fnaa096/5854537 by University Library of Innsbruck user on 26 April 2021 M I N I REV I EW – Taxonomy & Systematics Prokaryotic names: the bold and the beautiful Aharon Oren* Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 91904 Jerusalem, Israel ∗Corresponding author: Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 91904 Jerusalem, Israel. Tel: +972-2-6584951; Fax: +972-2-6584425; E-mail: [email protected] One sentence summary: The rules and the recommendations of the Prokaryotic Code allow considerable freedom to propose interesting and attractive names for newly described taxa of prokaryotes, but these opportunities are seldom used. Editor: Rich Boden ABSTRACT In recent years, names of ∼170 new genera and ∼1020 new species were added annually to the list of prokaryotic names with standing in the nomenclature. These names were formed in accordance with the Rules of the International Code of Nomenclature of Prokaryotes. Most of these names are not very interesting as specific epithets and word elements from existing names are repeatedly recycled. The rules of the Code provide many opportunities to create names in far more original ways. A survey of the lists of names of genera and species of prokaryotes shows that there is no lack of interesting names.
    [Show full text]
  • Comparative Genomics Provides Insights Into the Taxonomy of Azoarcus and Reveals Separate Origins of Nif Genes in the Proposed Azoarcus and Aromatoleum Genera
    G C A T T A C G G C A T genes Article Comparative Genomics Provides Insights into the Taxonomy of Azoarcus and Reveals Separate Origins of Nif Genes in the Proposed Azoarcus and Aromatoleum Genera Roberto Tadeu Raittz 1,*,† , Camilla Reginatto De Pierri 2,† , Marta Maluk 3 , Marcelo Bueno Batista 4, Manuel Carmona 5 , Madan Junghare 6, Helisson Faoro 7, Leonardo M. Cruz 2 , Federico Battistoni 8, Emanuel de Souza 2,Fábio de Oliveira Pedrosa 2, Wen-Ming Chen 9, Philip S. Poole 10, Ray A. Dixon 4,* and Euan K. James 3,* 1 Laboratory of Artificial Intelligence Applied to Bioinformatics, Professional and Technical Education Sector—SEPT, UFPR, Curitiba, PR 81520-260, Brazil 2 Department of Biochemistry and Molecular Biology, UFPR, Curitiba, PR 81531-980, Brazil; [email protected] (C.R.D.P.); [email protected] (L.M.C.); [email protected] (E.d.S.); [email protected] (F.d.O.P.) 3 The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; [email protected] 4 John Innes Centre, Department of Molecular Microbiology, Norwich NR4 7UH, UK; [email protected] 5 Centro de Investigaciones Biológicas Margarita Salas-CSIC, Department of Biotechnology of Microbes and Plants, Ramiro de Maeztu 9, 28040 Madrid, Spain; [email protected] 6 Faculty of Chemistry, Biotechnology and Food Science, NMBU—Norwegian University of Life Sciences, 1430 Ås, Norway; [email protected] 7 Laboratory for Science and Technology Applied in Health, Carlos Chagas Institute, Fiocruz, Curitiba, PR 81310-020, Brazil; helisson.faoro@fiocruz.br 8 Department of Microbial Biochemistry and Genomics, IIBCE, Montevideo 11600, Uruguay; [email protected] Citation: Raittz, R.T.; Reginatto De 9 Laboratory of Microbiology, Department of Seafood Science, NKMU, Kaohsiung City 811, Taiwan; Pierri, C.; Maluk, M.; Bueno Batista, [email protected] M.; Carmona, M.; Junghare, M.; Faoro, 10 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; H.; Cruz, L.M.; Battistoni, F.; Souza, [email protected] E.d.; et al.
    [Show full text]