TheRoleofBaseExcisionRepairin RegulatingEndotoxinInduced Inflammation AthesissubmittedtoTheUniversityofManchesterfor theDegreeofDoctorofPhilosophy(PhD)intheFaculty ofMedicalandHumanSciences 2012 AlanCarter SchoolofMedicine HealthSciencesResearchGroup OccupationalandEnvironmentalHealth Ph.D.Thesis2012AlanCarter

Tableofcontents……………………………………………………………………………….2 ListofFigures…………………………………………………………………………………...5 ListofTables……………………………………………………………………………….….10 ListofAbbreviations…………………………………………………………………………12 Abstract………………………………………………………………………………………....15 Declaration……………………………………………………………………………………..16 CopyrightStatement………………………………………………………………………..16 Acknowledgements………………………………………………………………………….17 1.Introduction...... 18 1.1.StructureofEndotoxin...... 19 1.2.EndotoxinInducedInflammation...... 21 1.2.1.LPSRecognition...... 21 1.2.2.Activationoftheinflammatoryresponse...... 21 1.2.3.InflammatorySignalling...... 22 1.2.3.1.Fibroblasts...... 24 1.2.3.2.HumanPolymophonuclearLeukocytes...... 25 1.3.TheEndotoxinParadox...... 26 1.4.Factorsaffectingtheinflammationresponsetoendotoxin....... 27 1.5.BERProteinsandEndotoxinInducedInflammation...... 31 1.6.DNAandEndotoxinInducedInflammation...... 32 1.7.OxidativeDamage...... 34 1.7.1.ReactiveOxygen...... 34 1.7.2.OxidativeAdenineDamage...... 39 1.7.3.OxidativeThymineDamage...... 40 1.7.4.OxidativeCytosineDamage...... 41 1.7.5.SpontaneousBaseRemoval...... 41 1.7.6.DNAstrandbreaks...... 42 1.7.7.Lipidperoxidation...... 43 1.8.DNARepair...... 44 1.8.1.BaseExcisionRepair...... 45 1.8.2.DNAGlycosylases...... 47 1.8.2.1.OGG1...... 49 1.8.2.2.NTH1...... 52 1.8.2.3.NEIL1...... 54 1.8.2.4.NEIL2...... 56 1.9.Hypothesis...... 59 2.MaterialsandMethods...... 61 2.1.Materials...... 61 2.1.1.Buffercomposition...... 61 2.1.2.Tissueculturemedia...... 62 2.1.3.PCRprimers...... 62 2.1.4.Molecularbiologyreagents...... 65 2.1.5.Proteinanalysisreagents...... 65 2.1.6.Equipment...... 66 2.1.7.TransgenicMouseandMEFsources...... 66 2.2.Methods...... 67 2.2.1.MouseColonyManagement...... 67 2.2.2.MouseColonyCharacterisation...... 67

2 Ph.D.Thesis2012AlanCarter

2.2.3.LPSInducedOrganDamage...... 68 2.2.4.InductionofImmuneResponse...... 68 2.2.5.EstablishmentofMEFculturesfrommouseembryos...... 68 2.2.6.MEFculture...... 70 2.2.7.TreatmentofMEFswithLPS...... 70 2.2.8.GenomicDNAextraction...... 71 2.2.9.PolymeraseChainReaction(PCR)Genotyping...... 71 2.2.10.AgaroseGelElectrophoresis...... 72 2.2.11.RNAextraction...... 72 2.2.12.Reversetranscription(RT)...... 73 2.2.13.ProteinAnalysis...... 73 2.2.13.1.Proteinextractionfrommousetissues...... 73 2.2.13.2.Proteinquantification...... 74 2.2.13.3.Westernblot...... 74 2.2.13.4.ELISA...... 75 2.2.13.5.MyeloperoxidaseAssay...... 76 2.2.13.6.MalondialdehydeAssay...... 76 2.2.13.7.GlutathioneAssay...... 77 2.2.14.StatisticalAnalysis...... 78 3.Mousemodels:Generationandcharacterisation...... 79 3.1.Introduction...... 79 3.1.1.Aims...... 80 3.2.Results...... 81 3.2.1.NEIL1MouseColony...... 81 3.2.1.1.PreparationofNEIL1KnockoutMice....... 81 3.2.1.2.ConfirmationofGenotype....... 82 3.2.1.3.ViabilityandMortalityofNEIL1mice....... 84 3.2.1.4.NEIL1MouseWeights...... 85 3.2.2.NEIL2MouseColony...... 91 3.2.2.1.Genotyping...... 91 3.2.2.2.WesternandRTPCR...... 92 3.2.3.OGG1MouseColony...... 94 3.2.3.1.OGG1MouseGenotyping...... 94 3.3.Discussion...... 95 4.CytokineOutputofDNADisruptedCells...... 101 4.1.Introduction...... 101 4.1.1.Aims...... 102 4.2.Results...... 102 4.2.1.TLR4mRNATranscriptionAnalysis...... 102 4.2.2.CytokineOutputfromLPSChallengedMEFCells...... 103 4.3.Discussion...... 108 5.EffectsofNEIL1KnockoutonEndotoxinInduced Inflammation...... 113 5.1.Introduction...... 113 5.1.1.Aims...... 114 5.2.Results...... 114 5.2.1.CytokineOutputinLPSChallengedNEIL1 /Mice...... 114 5.2.2.MyeloperoxidaseactivityinLPSchallengedNEIL1 /mice.....118

3 Ph.D.Thesis2012AlanCarter

5.2.3.MalondialdehydecontentinLPSchallengedNEIL1 /mice....126 5.2.4.GlutathionelevelsinLPSchallengedNEIL1 /mice...... 133 5.2.5.AgerelatedcytokineoutputNEIL1 /mice...... 141 5.3.Discussion...... 141 6.EffectsofOGG1GeneKnockoutonEndotoxinInduced Inflammation...... 153 6.1.Introduction...... 153 6.1.1.Aims...... 154 6.2.Results...... 154 6.2.1.CytokineOutputinLPSChallengedOGG1 /Mice...... 154 6.2.2.MyeloperoxidaseActivityinLPSChallengedOGG1 /Mice.....159 6.2.3.MalondialdehydeContentinLPSChallengedOGG1 /Mice....167 6.2.1.GlutathioneActivityinLPSChallengedOGG1 /Mice...... 174 6.3.Discussion...... 182 7.OverallDiscussion...... 190 8.References……………………………………………………………….202 Maintextwordcountincludingfiguresandtables:41,001

4 Ph.D.Thesis2012AlanCarter

IndexofFigures Figure1.1:AschematicviewofthestructureofLPS 20 Figure1.2:TheRecognitionofLPSandActivationoftheImmune ResponseinMacrophages 22 Figure1.3:GenerationofAntimicrobialReactiveOxygenandReactive NitrogenSpecies 26 Figure1.4:DifferencesinThreeDimensionalShapeofLPSfrom DifferentSources 28 Figure1.5:HypothesislinkingLipidAconfigurationtoCytokineOutput 29 Figure1.6:ComparisonofChangestoCytokineProductionafterLPS StimulationinPARP1andOGG1KnockoutMice 33 Figure1.7:ProductionofSuperoxideRadicalandHydrogenPeroxideby theElectronTransportChain 35 Figure1.8:TheFentonReaction 37 Figure1.9:FormationofOxidisedGuanineProducts 38 Figure1.10:8oxoGpairedwithcytosineandmispairedwithadenine39 Figure1.11:FormationofOxidisedAdenineProducts 39 Figure1.12:FormationofOxidisedThymineProducts 40 Figure1.13:FormationofOxidisedCytosineProducts 41 Figure1.14:FormationofanAPsite 42 Figure1.15:LipidPeroxidation 43 Figure1.16:Compositionofmalondialdehydeand4hydrooxyalkenal44 Figure1.17:MonofunctionalDNAglycosylaseBER(I),bifunctional APE1dependantBER(II)andindependent(III)pathways 46 Figure1.18:SequencealignmentofcriticaldomainsofNEIL1andNEIL2 withE .coli Nei/Fpg 54 Figure3.1:DiagramoftheNEIL1KnockoutConstructandGenotyping Results 81 Figure3.2:PedegreeofNEIL1 /Mice 82 Figure3.3:ConfirmationofaNEIL1NullPhenotype 83

5 Ph.D.Thesis2012AlanCarter

Figure3.4:ThedistributionofgenotypesfromHETxHETbreeding pairsofNEIL1TransgenicMice 84 Figure3.5:AveragelittercompositionfromNEIL1colony 85 Figure3.6:MortalityratesofMaleandFemaleNeil1 TransgenicMice86 Figure3.7:NEIL1Transgenicmaleandfemalemouseweightsover12 Months 87 Figure3.8:LengthandBMIofNEIL1 TransgenicMice 88 Figure3.9:MaleNEIL1transgenic mouseorganweightcomparisons89 Figure3.10:FemaleNEIL1transgenicmouseorganweightcomparisons 90 Figure3.11:DiagramoftheNEIL2KnockoutConstructandGenotyping Results 92 Figure3.12:ConfirmationofaNEIL2NullPhenotype 93 Figure3.13:DiagramoftheOGG1KnockoutConstructandGenotyping Results 94 Figure3.14:Thecreationoftransgenicmicecanresultinlinkage disequilibrium 97 Figure4.1:RTPCRforTLR4 102 Figure4.2:IL6outputofwildtypeandknockoutMEFcelllines 105 Figure4.3:IL10outputofwildtypeandknockoutMEFcelllines 106 Figure4.4:MCP1outputofwildtypeandknockoutMEFcelllines 107 Figure5.1:IL4concentrationsinbloodserumtakenfromNEIL1 transgenicmice 115 Figure5.2:IL6concentrationsinbloodserumtakenfromNEIL1 transgenicmice 116 Figure5.3:IL10concentrationsinbloodserumtakenfromNEIL1 transgenicmice 117 Figure5.4:IL12concentrationsinbloodserumtakenfromNEIL1 transgenicmice 118 Figure5.5:MPOactivityinhearttissuesofNEIL1transgenicmice exposedtoLPS 121

6 Ph.D.Thesis2012AlanCarter

Figure5.6:MPOactivitylevelsinlungtissuesofNEIL1transgenicmice exposedtoLPS 122 Figure5.7:MPOactivityinlivertissuesofNEIL1transgenicmiceexposed toLPS 123 Figure5.8:MPOactivityinkidneytissuesofNEIL1transgenicmice exposedtoLPS 124 Figure5.9:MPOactivityinileumtissuesofNEIL1transgenicmice exposedtoLPS 125 Figure5.10:MDAlevelsinhearttissuesofNEIL1transgenicmiceexposed toLPS 128 Figure5.11:MDAlevelsinlungtissuesofNEIL1transgenicmiceexposed toLPS 129 Figure5.12:MDAlevelsinlivertissuesofNEIL1transgenicmiceexposed toLPS 130 Figure5.13:MDAlevelsinkidneytissuesofNEIL1transgenicmice exposedtoLPS 131 Figure5.14:MDAlevelsinileumtissuesofNEIL1transgenicmiceexposed toLPS 132 Figure5.15:GSHlevelsinhearttissuesofNEIL1transgenicmiceexposed toLPS 135 Figure5.16:GSHlevelsinlungtissuesofNEIL1transgenicmiceexposed toLPS 136 Figure5.17:GSHlevelsinlivertissuesofNEIL1transgenicmiceexposed toLPS 137 Figure5.18:GSHlevelsinkidneytissuesofNEIL1transgenicmice exposedtoLPS 138 Figure5.19:GSHlevelsinileumtissuesofNEIL1transgenicmiceexposed toLPS 139 Figure5.20:IL4concentrationsinbloodserumtakenfromNEIL1 transgenicmice 142 Figure5.21:IL6concentrationsinbloodserumtakenfromNEIL1 transgenicmice 143

7 Ph.D.Thesis2012AlanCarter

Figure5.22:IL10concentrationsinbloodserumtakenfromNEIL1 transgenicmice 144 Figure5.23:IL12concentrationsinbloodserumtakenfromNEIL1 transgenicmice 145 Figure6.1:IL4concentrationsinbloodserumtakenfromOGG1 transgenicmice 155 Figure6.2:IL6concentrationsinbloodserumtakenfromOGG1 transgenicmice 156 Figure6.3:IL10concentrationsinbloodserumtakenfromOGG1 transgenicmice 157 Figure6.4:IL12concentrationsinbloodserumtakenfromOGG1 transgenicmice 158 Figure6.5:MPOactivityinhearttissuesofOGG1transgenicmice exposedtoLPS 161 Figure6.6:MPOactivityinlungtissuesofOGG1transgenicmiceexposed toLPS 162 Figure6.7:MPOactivitylevelsinlivertissuesofOGG1transgenicmice exposedtoLPS 163 Figure6.8:MPOactivityinkidneytissuesofOGG1transgenicmice exposedtoLPS 164 Figure6.9:MPOactivityinileumtissuesofOGG1transgenicmice exposedtoLPS 165 Figure6.10:MDAlevelsinhearttissuesofOGG1transgenicmiceexposed toLPS 169 Figure6.11:MDAlevelsinlungtissuesofOGG1transgenicmiceexposed toLPS 170 Figure6.12:MDAlevelsinlivertissuesofOGG1transgenicmiceexposed toLPS 171 Figure6.13:MDAlevelsinkidneytissuesofOGG1transgenicmice exposedtoLPS 172 Figure6.14:MDAlevelsinileumtissuesofOGG1transgenicmiceexposed toLPS 173

8 Ph.D.Thesis2012AlanCarter

Figure6.15:GSHlevelsinhearttissuesofOGG1transgenicmiceexposed toLPS 177 Figure6.16:GSHlevelsinlungtissuesofOGG1transgenicmiceexposed toLPS 178 Figure6.17:GSHlevelsinlivertissuesofOGG1transgenicmiceexposed toLPS 179 Figure6.18:GSHlevelsinkidneytissuesofOGG1transgenicmice exposedtoLPS 180 Figure6.19:GSHlevelsinileumtissuesofOGG1transgenicmiceexposed toLPS 181 Figure6.20:Pathwaysinvolvedinthegenerationanddegradationof oxidantsandtheeffectsofOGG1knockoutatkey endpoints 184 Figure6.21:ProposedmodelofPARP1inhibitionbyoestrogen 188 Figure7.1:Alterationsinorganactivityduetoadrenalineandobserved levelsofGSHinNEIL1 /mice 197

9 Ph.D.Thesis2012AlanCarter

IndexofTables Table1.1:ThegenerationofmajorROSandmajoravenuesofprotection 36 Table1.2:HumanDNAglycosylaseslocatedinthenucleiandtheDNA damagethattheyremove 48 Table2.1:MolecularBiologyBuffers 61 Table2.2:ProteinAnalysisBuffers 62 Table2.3:TissueCultureMedia 62 Table2.4:PCRGenotypingPrimers 63 Table2.5:RTPCRPrimers 64 Table3.1:SummaryofPhenotypesofDNAGlycosylaseDeficientMice100 Table4.1:ComparisonofIL6resultsbetweenuntreatedandtreatedDNA glycosylasedeficientMEFcells 105 Table4.2:ComparisonofIL10resultsbetweenuntreatedandtreated DNAglycosylasedeficientMEFcells 106 Table4.3:ComparisonofMCP1resultsbetweenuntreatedandtreated DNAglycosylasedeficientMEFcells 107 Table4.4SummaryofResultsfromcytokineassays 108 Table5.1:MPOactivityintissuesofNEIL1transgenicmiceexposedtoLPS 120 Table5.2:MDAlevelsintissuesofNEIL1transgenicmiceexposedtoLPS 127 Table5.3:GSHlevelsintissuesofNEIL1transgenicmiceexposedtoLPS 134 Table5.4:SummaryofNEIL1transgenicmousebloodserumcytokine Results 146 Table5.5:SummaryofNEIL1transgenicmouseorgandamageresults 147 Table6.1:MPOactivityintissuesofOGG1transgenicmiceexposedtoLPS 160

10 Ph.D.Thesis2012AlanCarter

Table6.2:MDAlevelsintissuesofOGG1transgenicmiceexposedtoLPS 168 Table6.3:GSHlevelsintissuesofOGG1transgenicmiceexposedtoLPS 175 Table6.4:SummaryofOGG1transgenicmousecytokineResults 182 Table6.5:SummaryofOGG1transgenicmouseorgandamageresults 183 Table7.1:SummaryandcomparisonofNEIL1andOGG1cytokineoutput resultswhencomparedwiththoseofWTanimals 191 Table7.2:SummaryandcomparisonofNEIL1andOGG1organdamage results 192

11 Ph.D.Thesis2012AlanCarter

ListofAbbreviations 2OHA 2hydroxyadenine 5′dRP 5′deoxyribose5phosphate 5,6DHU 5,6dihydrouracil 5FoU 5formyluracil 5FU 5fluorouracil 5HMU 5hydroxymethyluracil 5OHC 5hydroxycystosine 5OHU 5hydroxyuracil 8oxoA 7,8dihydro8oxoadenine 8oxoG 7,8dihydro8oxoguanine AP1 Activatorprotein1 APE1 Apurinicendonuclease1 APsite Apurinic/apyrimidinicsites BPI Bactericidal/permeabilityincreasingprotein Cg Cytosineglycol DEP Dieselexhaustparticles ddH 2O Doubledistilledwater DMSO Dimethylsulfoxide DSB Doublestrandbreaks DTNB 5,5’dithiobis(2nitrobenzoicacid) Egr1 Earlygrowthresponse1 ERα Oestrogenreceptorα FapyA 4,6diamino5formamidopyrimidine FapyG 6diamino4hydroxy5formamidoguanine GR Glutathionereductase GPX Glutathioneperoxidise GSH Glutathione

H2O2 Hydrogenperoxide HAE 4hydroxyalkenals HET Heterozygous

12 Ph.D.Thesis2012AlanCarter

HhH Helixhairpinhelix IFNγ Interferonγ IL1 Interleukin1 iNOS induciblenitricoxidesynthase IRAK Interleukin1receptorassociatedkinase KDO 2keto3deoxyoctonicacid KO Knockout KPE PotassiumphosphateEDTA LBP LPSbindingprotein LPS Lipopolysaccharide MAC Membraneattackcomplex MAPK1 Mitogenactivatedproteinkinase1 MAPK8/JNK Mitogenactivatedproteinkinase8 MDA Malondialdehyde MIP1α Macrophageinflammatoryprotein1 MMR Mismatchrepair MPG NmethylpurineDNAglycosylase MPO Myeloperoxidase MyD88 Myeloiddifferentiationprimaryresponsegene 88 NADPH Nicotinamideadeninedinucleotidephosphate NER Nucleotideexcisionrepair NEIL1/2 NeiendonucleaseVIIIlike1/2 NFκβ Nuclearfactorκβ NO Nitricoxide NOX NADPHoxidase NTH1 NthendonucleaseIIIlike O 2 Superoxide OGG1 8Oxoguanineglycosylase PARP1 Poly(ADPRibose)Polymerase1 PBS Phosphatebufferedsaline PCNA Proliferatingcellnuclearantigen

13 Ph.D.Thesis2012AlanCarter

PCR Polymerasechainreaction PNK Polynucleotidekinase Polβ DNApolymeraseβ PUA 3′phosphoα,βunsaturatedaldehyde RPA ReplicationproteinA RTPCR ReversetranscriptasePCR ROS Reactiveoxygenspecies SOD Superoxidedismutase SMUG1 SinglestrandselectiveMonofunctionalUracil DNAGlycosylase SSB Singlestrandbreaks TEMED N,N,N,Ntetramethylethylenediamine Tg Thymineglycol

Th1 Thelper1

Th2 Thelper2 TLR4 Tolllikereceptor4 TNFα Tumournecrosisfactorα TRAF6 TNFreceptorassociatedfactor Ug Uracilglycol UNG2 UracilDNAglycosylase2 WT Wildtype

14 Ph.D.Thesis2012AlanCarter

Abstract Endotoxinsacomponentoftheoutermembraneofthecellwallofgram negative , stimulate the innate immune system to elicit an inflammatoryresponseinmammals.Deletionofbaseexcisionrepair(BER) hasbeenreportedtodecreasetheimmuneresponsetoendotoxin inmousemodels.Itiscurrentlyunknownwhetherthisroleislimitedtoa fewselectproteinsoraresultofthegeneralfunctionoftheBERpathway. The aim of this study was to identify if the loss of other BER proteins wouldtriggerasimilarresponsebymeasuringthelevelsofinflammatory cytokinesproducedandcertainbiomarkersofoxidativestress.Tofacilitate this,anewstrainof NEIL1 /micewassuccessfullycreatedaswellasa putative NEIL2 / strain. A previous strain of NEIL1 / mice displayed a sporadic obese phenotype, our NEIL1 / mice showed no significant increaseinbodyweightwhencomparedtoWTmice. Whilstthereweresignificantdifferencesintheserumcontentofcytokines IL6, IL12, IL10 and IL4 between wildtype, NEIL1/ and OGG1 / mice challenged with lipopolysaccharide (LPS, the active component of endotoxin).WhencomparedtowildtypeanimalsbothNEIL1 /andOGG1 / miceproducedlowerlevelsoftheTh1cytokineIL6( ♂1h; p<0.05and ♀ 24h; p<0.01),andtheTh2IL10cytokine(♀6and24h; p<0.01)along withothersexandgenotypespecificdifferences. WhencomparingLPSinducedorgandamageinNEIL1 /andwildtypemice therewerenosignificantdifferencesinmyeloperoxidase(MPO)activityor malondialdehyde (MDA) concentration due to genotype. However, there were significant differences observed in glutathione (GSH) levels in the heart ( p=0.01), lung ( p=0.05), liver ( p=0.05) and ileum ( p=0.05) that whenconsideredalongsideasignificantincreaseintheweightsofadrenal glandsinNEIL1 /knockout( ♂ p=0.05 , ♀ p=0.03)miceweresuggestiveof araisedlevelofadrenaline. The OGG1 / mice displayed no significant genotype x treatment interactioninMPOactivity,MDAlevelsorGSHlevels.However,genotype xsexinteractionswereobservedintheliverandlungtissuesofOGG1 / forMPO(lung p<0.01,liver p=0.02),MDA(lung p<0.01)andGSH(lung p=0.05, liver p=0.04) indicating that female OGG1 / mice had greater protectionfromtheoxidativeeffectsofLPSinducedinflammation. InconclusionwhilsttheknockoutofOGG1andNEIL1geneshadaneffect ontheinflammatorysignallingresponse,thiseffectwasnotgreatenough toimpactuponoxidativestressmarkersofinflammationwithinthetissues sampled.Themechanismofhowthisisaccomplishedisatpresentunclear andworthyoffurtherstudy.

15 Ph.D.Thesis2012AlanCarter

Declaration “Noportionoftheworkreferredtointhethesishasbeensubmittedin supportofanapplicationforanotherdegreeorqualificationofthisor anyotheruniversityorotherinstituteoflearning.” CopyrightStatement (i)Theauthorofthisthesis(includinganyappendicesand/orschedulesto thisthesis)ownsanycopyrightinit(the“Copyright”)ands/hehasgiven TheUniversity of Manchester the right to use such Copyright for any administrative,promotional,educationaland/orteachingpurposes. (ii)Copiesofthisthesis,eitherinfullorinextracts,maybemade only in accordancewiththeregulationsoftheJohnRylandsUniversityLibraryof Manchester. Details of these regulations may be obtained from the Librarian.Thispagemustformpartofanysuchcopiesmade. (iii)Theownershipofanypatents,designs,trademarksandanyandall otherintellectualpropertyrightsexceptfortheCopyright(the“Intellectual PropertyRights”)andanyreproductionsofcopyrightworks,forexample graphs and tables (“Reproductions”), which may be described in this thesis, may not be owned by the author and may be owned by third parties. Such Intellectual Property Rights and Reproductions cannot and mustnotbemadeavailableforusewithoutthepriorwrittenpermissionof the owner(s) of the relevant Intellectual Property Rights and/or Reproductions. (iv) Further information on the conditions under which disclosure, publication and exploitation of this thesis, the Copyright and any IntellectualPropertyRightsand/orReproductionsdescribedinitmaytake placeisavailablefromtheHeadofSchoolofMedicine.

16 Ph.D.Thesis2012AlanCarter

Acknowledgements IwouldliketothankmysupervisorsDr.AndrewPoveyandDr.Rhoderick Elder, for their guidance and support throughout the course of this researchproject,andmyadvisorDr.RachelWatson.Iwouldalsoliketo thanktheBritishCottonGrowingAssociationforprovidingthefundingto makethisworkpossible. IwouldalsoliketoacknowledgethehelpIreceivedfromthemembersof staffattheTransgenicAnimalsFacilityatTheUniversity of Manchester, especiallyIanTownsend,RuthJonesandKarenFry.Alsospecial thanks shouldgotothosewhohelpedmelearnsomeofthefinertechniquesDr. MelHeeranandBrianA.Tefler. AspecialmentionshouldgotomycolleaguesintheBiomarkersLabwho inadditiontogivingmemoralsupportmadetheatmosphereweworked infun,aspecialthankstoW.M.Md.Saadwhoseworkontheconfirmation oftheNEIL2knockoutisfoundwithin.FinallyIwouldliketothankallmy familyandfriendswhosupportedmethroughtheirkind(andsometimes lessthankindbutneeded)advice,caringwordsandthoughtfulactions.

17 Ph.D.Thesis2012AlanCarter

1. Introduction Cottonworkers,andotherworkersexposedtoorganicdusts,havebeen observedtoexhibitbyssinosis(Mberikunashe etal., 2010;McKERROW et al., 1958; ROACH and SCHILLING 1960). Symptoms include coughing, shortnessofbreathanddifficultybreathing.Theseweremorepronounced whenthepersonsreturnedtoworkaftertheweekend,andthensubsided the following day leading to the moniker “Monday Asthma” (Liu, 2007). Originallyitwasassumedthatthiswasduetoabuildupofplantmatterin theairwaysoftheseworkers(ROACHandSCHILLING1960),butlaterit was found to be due to the presence of endotoxins, potent inducers of neutrophilic airway inflammation, carried on the dust (Cavagna et al., 1969; Radon, 2006). Smokers can also exhibit similar symptoms due to endotoxin carried with the smoke particles from tobacco (Hasday et al., 1999).Aperson’ssensitivitytoendotoxininducedinflammationhasbeen showntobeaffectedbytheirgeneticmakeup(Ederetal., 2004). Endotoxiniscomposedofcomplexesoflipooligosaccharrides,lipoproteins andlipopolysacharide(LPS),asubstancefoundexclusivelyaspartofthe outermembraneofthecellwallofgramnegativebacteria;indeed310% of the dry weight of these bacteria is endotoxin (Fan and Cook 2004; Vaara, 1999). All sources of gram negative phospholipid contain this substance including blebs, vesicles and fragments of dead cells (Prins, 1996; Radon, 2006; Vaara, 1999). Hence humans can therefore be exposed to LPS in several ways including working in the presence of organic dust, smoking, exposure to invasive gram negative bacteria via injury, and exposure to intestinal bacteria during surgery (Beutler and Rietschel2003;Hasday etal., 1999). Endotoxin activates the innate immune system, that portion of the immune system which defends the host from organisms in a generic

18 Ph.D.Thesis2012AlanCarter manner,inanattempttodestroyanybacterialinvaders.Oncebacteriaare killed, however, the endotoxins in their membrane continue to stimulate theimmunesystemfuellingfurtherresponse(Prins,1996).Thisescalating response can lead to severe systemic inflammation, which manifests as fever,increasedheartandrespiratoryrates,andisdescribedasendotoxic (septic)shock(BeutlerandRietschel2003).Inordertounderstandwhy this occurs, it is important to further discuss the structure of endotoxin andtheimmuneresponsetoit,infurtherdetail.

1.1. StructureofEndotoxin Endotoxin refers to a mixture of bacterial cell surface molecules mainly consisting of LPS but including lipooligosaccharrides and lipoproteins. Alternatively,thetermLPSreferstoapuresubstancewhichisnotfound in nature. The structure of LPS is shown in Figure 1.1. The molecule consists of four major domains, an Oantigenic polysaccharide, an outer core oligosaccharide, an inner core oligosaccharide and an acylated diglucosamineheadgroup(lipidA)(Rietschel etal., 1994). TheOantigenicpolysaccharideconsistsofarepeatingstructureofoneto eightglycosylresidues,thestructureofwhichvariesbetweenserotypes. The size range of the Oantigenic polysaccharide chain is comparatively specifictoabacterialspeciesalthoughthereissomeheterogeneity,even withinLPSfromthesamecolony,inthelengthofthesemolecules.Thisis seenasanevolutionarymeasureinordertoprotectthebacteriumfrom complement immune measures and phagocytosis by macrophages (Aspinall etal., 1996;BeutlerandRietschel2003;Rietschel etal., 1994). The outer core oligosaccharide consists of the common hexoses D glucose, Dgalactose, and NacetylDglucosamine. It is more uniform in composition than the Oantigenic polysaccharide and indeed only five differentcoretypeshavebeenfoundin E.coli serotypes(Aspinall etal., 1996;Rietschel etal., 1994).Theinnercoreoligosaccharideiscomposed

19 Ph.D.Thesis2012AlanCarter oftwounusualsugars(heptoseand2keto3deoxyoctonoicacid(KDO)), and it is important in the structure and functional viability of the outer membrane,andhencetheviabilityofthebacterium(Aspinall etal., 1996; Rietschel etal., 1994).

Figure1.1:AschematicviewofthestructureofLPS Hep, LglycerolDmannoheptose; Gal, galactose; Glc, glucose; KDO, 2keto3 deoxyoctonic acid; NGa, Nacetylgalactosamine; NGc, Nacetylglucosamine. Adapted Magalhaes etal., 2007. LipidAisresponsibleforthetoxiceffectsoftheLPSchainandconsistsof twoglucosamineunitswithfattyacidchainsattached,eachofthesefatty acid chains normally contains a phosphate group (Raetz et al., 2009; WangandQuinn2010).WhenpurifiedlipidA,elicits thesame cytokine responseasthewholemoleculeinanimalmodels(Netea etal., 2002).All fouroftheLPScomponentsarerequiredtomaintainthevirulenceofthe bacterium,butonlytheinnercoreandlipidAarerequiredfortheviability oftheorganism(Vaara,1999).

20 Ph.D.Thesis2012AlanCarter

1.2. EndotoxinInducedInflammation

1.2.1. LPSRecognition The inflammatory response is an innate response generally to invasive pathogens,andoccursintwoformsnamely,anacuteresponsewhichis directresponsetoastimuli, e.g. tissuedamage,andachronicresponse whichcanleadtoarthritisandthewastingassociatedwithcertaincancers (Gupta etal., 2011;Matsukawa etal., 1997). Endotoxinisrecognisedbyhostcellsafterbindingtorecognitionsiteson theirmembranes,aprocesswhichrequiresthemediationofLPSbinding protein (LBP). In vitro, without LBP, large concentrations (>1mg/ml) of LPS are needed to activate macrophages. In vivo however, due to the presenceofLBP,onlynanogramamountsofLPSarerequiredforcellular recognition, and an inflammatory response (Moore et al., 1976; Watson andRiblet1974;WatsonandRiblet1975). LBP shares many features with other phospholipid binding proteins, and worksmainlyasatransportprotein.LBPfirstbreaksdownendotoxinfrom largecomplexessothatseparatedLPSmoleculescanbetransportedto targetreceptor,CD14/tolllikereceptor4(TLR4)asshowninFigure1.2 (Paulos etal., 2007).AlternativelytheLPSistransportedbyLBPtohigh density lipoproteins where it becomes unable to activate the immune responseandisremovedfromthesystem.ThusLBPisimportantforboth therecognition andremovalofLPS(BeutlerandRietschel2003;Martin, 2000).

1.2.2. Activationoftheinflammatoryresponse OneoftheprimarysignallingcellsintheLPSinflammatoryresponseisthe monocyte which is present in all tissues (Butterfield et al., 2006). TLR4 having recognised LPS, then activates a number of proteins including NADPHoxidase(NOX)proteinswhichcatalysetheformationofsuperoxide

21 Ph.D.Thesis2012AlanCarter radicals. When considering the inflammation reaction the major protein activatorisnuclearfactorκB(NFκB)whichisthekeytranscriptionfactor intheexpressionofseveralproinflammatoryproteinsincludingcytokines, chemokines,induciblenitricoxidesynthase( iNOS),theinducibleformof cyclooxygenaseandadhesionmolecules(Gloire etal., 2006).

Figure 1.2: The Recognition of LPS and Activation of the Immune Response in Monocytes The LPS/LBP complex is recognised by CD14/TLR4 which activate a series of proteins withinthecell,beginningwithmyeloiddifferentiationprimaryresponsegene88(MyD88), causing an inflammatory activation cascade to proceed via IL1Rassociated kinase (IRAK)Adaptedfrom(BuerandBalling2003).

1.2.3. InflammatorySignalling HavingbeenactivatedbyLPB/LPScomplexes,localcells( e.g. fibroblasts) and the more mobile leukocytes proceed to release various signalling proteins into the surrounding area including the primary inflammatory cytokinesInterleukin1(IL1),IL6andTumourNecrosisFactorα(TNFα). These molecules act as stimulators of proinflammatory proteases ( i.e . collagenase and elastase) to aid in tissue remodelling as well as many secondary messengers such as platelet activating factor (which induces

22 Ph.D.Thesis2012AlanCarter vasodilation and wound healing), prostaglandins (to induce vasodilation) and reactive oxygen species (ROS; increasing proinflammatory cytokine release)(MollerandVilliger2006;NaikandDixit2011). The release of the prostaglandins PGE2 and PGF2 influences the contractionandrelaxationofthebloodvesselsleadingtogreatervascular permeability(vasodilation;(Williams,1979)).Thesubsequentmovementof fluids influences several physiological changes including a raise in local temperature,andthemovementofneutrophilsandmacrophagesfromthe blood stream to the local areas. These cells are drawn by chemotaxis (followingconcentrationsofattractantproteins).Onceatthesourceofthe chemotacticagentstheneutrophils,macrophagesandmonocytescontinue releasingcytokoinesandchemokinesaswellasbeginningtheprocessof phagocytosis(DiStasiandLey2009) . IL6isoftenusedasameasureofimmuneresponseasitisinducedin largequantitiesbyLPS,andisreleasedbyfibroblasts(Van,1990).Whilst increasedIL6levelsareusedtodenoteagreaterlevelofinflammation,it isinfactapleiotropiccytokineasitactsasbothaproinflammatoryand antiinflammatory signal. It increases inflammation by directly increasing macrophage activity. However, it also activates the release of adrenocorticotrophichormonewhichtriggersthereleaseofcortisoland IL10, both of which lead to a reduction in inflammation (Moller and Villiger2006). IL10isalsoreleasedfromfibroblastsandactivatedmacrophages,which also release IL12. These T h2 cytokines modulate the production of cytokines from T lymphocytes and fibroblasts, including the chemoattractantsIL8andMIP1αwhichrecruitmoreneutrophilstothe surrounding area by chemotaxis (Maloney et al., 2005; Martinez et al., 2004;ReedandMilton2001;Wan etal., 2000;Wang etal., 2005).IL12 increases the effectiveness of T helper 1 (T h1) cells, modulators of the

23 Ph.D.Thesis2012AlanCarter innate immune system, in the area of endotoxin challenge by further promoting theproductionoflymphokinesandinterferonγ,whichtrigger theproliferationofcytotoxicTcellsandfurtheractivatethemacrophages so that they become more aggressive. These ‘angry’ macrophages also release proinflammatory molecules, such as IL1 and TNFα, at a much greaterrate(MollerandVilliger2006).

ThedifferentiationofThelper2(Th2)cellsisinitiatedbyIL4,andthese cellsthencreatemoreIL4inaselfpromotingfeedbackloop(Takeda et al., 1996).ThereleaseofIL10increasestheactivityofT h2cellswhichin turnactivateBcellsincreasingantibodyproduction.IL10alsoinhibitsthe production of IL12 by macrophages, thus ensuring that antibody production is kept at a maximum and that the T h1 cells are not over stimulatedintoanautoimmunereaction(Wan etal., 2000).

1.2.3.1. Fibroblasts

Fibroblasts, connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules had previously not been considered to produce inflammatory substances in significant amounts. More recently they have been shown to aid in the initiation of inflammatorycascadesthroughtthereleaseofproinflammatorycytokines such as IL6 (Van, 1990), but their major effects on the inflammatory response come via theinductionofbonemarrowderivedimmunecells, suchasneutrophilsandmacrophages,totheareaofinfectionthroughthe release of chemokines such as IL8, MCP1and MIP1α (Maloney et al., 2005;Smith etal., 1997;Wang etal., 2005). As fibroblasts can be cultured relatively easily when compared to other immune cells, they have become a staple in in vitro experiments measuring cytokine secretion. For instance they have been used in experimentstodefineTLRactivityandspecificity(KurtJones etal., 2004).

24 Ph.D.Thesis2012AlanCarter

1.2.3.2. HumanPolymophonuclearLeukocytes Human polymorphonuclear leukocytes (neutrophils, basophils and eosinophils) are important in the defence of the body from external pathogens such as bacteria and fungi, and are attracted to the site of invasion by macrophage release of IL8, MCP1 and Macrophage inflammatoryprotein1(MIP1α)(Martinez etal., 2004).Onceatthesite of endotoxin challenge these cells attempt to remove bacterial invaders directly by phagocytosis, then releasing many cytotoxic granules which assist in the destruction and disposal of invasive organisms (Faurschou and Borregaard 2003). Of the many granules released, two interact directlywithLPS;whichbindstoLPSrenderingitinactive,and bactericidal/permeabilityincreasingprotein(BPI)whichbindstothelipidA sectionofLPS,enablingotherbactericidestoreachtheinnermembrane (FaurschouandBorregaard2003).Duringthecourseofphagocytosisthe neutrophil produces ROS, including superoxide and hydrogen peroxide, andhypochloritewhicharehighlyeffectiveatkillingtheinvadingorganism by directly damaging the cell (Figure 1.3) (Faurschou and Borregaard 2003). As neutrophils are rapidly attracted to a site of bacterial invasion, great numbers of them can accumulate and this can lead to problems when theyundergonecroticlysisasthisreleasestheROScontainedwithinthe cell(Figure1.3).Cytotoxiccompoundsinoneareacancauseavarietyof problemsincludinggreatervascularpermeability,oedema,oxidativestress andeventuallyapoptosis(Vernooy etal., 2001).However,notallcellular apoptosisisdueto theaction ofneutrophils,asithasbeenshownthat LPS can stimulate lung cells to undergo apoptosis intheabsenceofan inflammatory immune response. It has been proposed that the lipid A portionoftheLPSmoleculecanactivatetheapoptosispathwaysduetoits

25 Ph.D.Thesis2012AlanCarter similarities with ceramide which has long been associated with programmedcelldeath(Pettus etal., 2002;Vernooy etal., 2001).

Figure1.3:GenerationofAntimicrobialReactiveOxygenandReactive NitrogenSpecies Withinthe neutrophiland macrophageseveralenzymescatalysetheformationofROS from molecular oxygen. The superoxide anion can react with nitric oxide to form peroxynitriteorbeoxidisedintonitrogendioxide.Adapted(Smith,1994).

1.3. TheEndotoxinParadox As early as 1966 it had been recognised that only mammals, and to a lesser extent avian species, are sensitive to endotoxin (Berczi et al., 1966).Thequestionwasasked,whyifitcausessuchanexaggerated,and sometimesharmful,immuneresponse,isendotoxinsensitivityabeneficial evolvedcharacteristic?Ithasbeenshownthatendotoxininsensitivemice weremoresusceptibletoinnerearandotherinfectionsandthattheyalso diedatfarlowerdosesofbacterialinfection(Beutler,2004).Sensitivityto LPS may allow animals to elicit an immune response to minor bacterial infections in order to prepare a response for times when the assault is greater(Beutler,2004). Inhumans,studieshaveshownaninverserelationshipbetweenendotoxin exposure and symptoms such as skin rash, shortness of breath and

26 Ph.D.Thesis2012AlanCarter coughing, and that in environments where endotoxin exposure occurs, casesofasthmaarereduced(BraunFahrlander etal., 2002).Exposureto endotoxin and the subsequent release of cytokines may assist in the maturation of T h1 modulated immunity reducing the risk of atopic sensitisation (BraunFahrlander et al., 2002; Douwes et al., 2000; McElvenny etal., 2011). Ithasalsobeenshownthatcottonworkershavelessthantheexpected leveloflungcancers(Enterline etal., 1985;McElvenny etal., 2011).In comparisonsbetweenanimalfarmersandcropfarmers,ithasbeenfound that those working with animals, who in theory are exposed to greater quantitiesofendotoxinfrombacteriainfaeces,experienceareducedrisk oflungcancer(Lange etal., 2003).Thereisalsoepidemiologicalevidence that endotoxin protects against the formation of cancer directly, those whogiveupsmokingexperienceashortperiodofincreasedlungcancer risk(Lange etal., 2005),anditisbelievedthatoncesmokingceasesthis protectiveeffectofendotoxinnolongeractsoncancersalreadyinitiated by the carcinogenic compounds in cigarette smoke (Lange et al., 2005). As a result has been hypothesised that the direct or indirect activity of endotoxinreducestheabilityofcancerstodevelop(Lange etal., 2005). In two studies, rabbits and guinea pigs were exposed to airborne endotoxinsandthemetastasislevelswithinthelungsweremeasured.In both cases the animals exposed to endotoxin had significantly reduced levelsofcancer(Rylander,2002).

1.4. Factorsaffectingtheinflammationresponsetoendotoxin.

The structure of endotoxin can vary between bacterial species and the inflammatory response does vary according to the strain of bacteria it comes from. Purified endotoxin from E. coli and Salmonella typhosa elicited the immune response similar to that detailed in section 1.2 at the greatest levels , followed by that from Klebsiella pneumoniae (K.

27 Ph.D.Thesis2012AlanCarter pneumoniae )and Pseuudomonasaeruginosa (P.aeruginosa ).Additionally, the response over time was significantly different according to which ‘species’ of LPS was administered. Specifically, treatment with endotoxin fromK.pneumoiae causedacomparativelyhigherIL1β,IL10andMCP1 production, and a reduction in the amount of TNFα secreted. More extremely, endotoxin from P. aeruginosa , only stimulated the release of MIP1αandIL1βafter4and8hoursrespectively,whilstexhibitingalmost noresponseinthereleaseofTNFα,interferonγ(IFNγ)orIL10atany timepointwhilstallotherLPSstestedinitiatedreactionsafter4h(Mathiak etal., 2003;Schromm etal., 1998). ItisthoughtthatthethreedimensionalshapeofthelipidAportionofthe LPSmoleculecouldberesponsibleforthisdifferenceinresponse(Figure 1.4).Bymeasuringthecytokineproduction inmiceaftertreatmentwith variousformsofLPSitwashypothesisedthatthoseLPSmoleculeswitha more conical configuration were more readily detected by TLR4 whilst those of an intermediate configuration were detected more readily by a combinationofTLR1/TLR2andTLR4althoughatalesserefficiency,whilst those with a conical configuration were not detected by either (Figure 1.5)(Netea etal., 2002;Schromm etal., 1998).

Figure1.4:DifferencesinThreeDimensionalShapeofLPSfromDifferent Sources The lipid A portion of E. Coli adoptsaconicalform,whilstthatofP.Gingivalis has an intermediateform,andtheartificiallycreatedlipidAprecursor1Aiscylindrical(Netea et al., 2002).

28 Ph.D.Thesis2012AlanCarter

Figure1.5:HypothesislinkingLipidAconfigurationtoCytokineOutput Lipid A in a conical configuration such as that from E. coli induces a strong proinflammatory response via TLR4, whilst those with a less conical form such as P. gingivalis bring about a smaller proinflammatory response via TLR2. Those with a cylindricalconfigurationactivateneither,inducingminimalornoresponse. Asthereisasmalleradaptiveimmuneresponsetoendotoxinaswellas the larger innate, response the number of times a particular strain of bacterialendotoxincomesintocontactwiththeimmunesystemisalsoa factor.AntibodiesareusedtoopsiniseLPSfordisposalbyphagocytosis, and as the adaptive immune system comes into contact with specific strainsofLPSitcanmoreefficientlyremovetheminthefuture(Chaby, 1999). If the endotoxins eliciting the immune response are part of a bacterial infection, the defence mechanisms of these invaders can play a part in howwellthebodycanrespond,forexamplethe E.coli strainCFT073has beenfoundtoreleaseTIRdomaincontaining–proteinswhicharetakenin by macrophages in vitro then disrupt TLR4 signaling via the MyD88 signalingpathway(Cirl etal., 2008). The site of endotoxin exposure is also important factor in the immune response. Membrane attack complex (MAC) proteins are a response to bacterial invasion which destroy the invading organisms, releasing more endotoxinsfromtheircellmembranes.Itwasreportedthattheproduction ofMACproteinswasreducedinlungtissuestoreduceendotoxinexposure tothelungcells(Bolger etal., 2007).Ithasalsobeenreportedthatthe

29 Ph.D.Thesis2012AlanCarter endotoxininducedresponsebylungwallepithelialcellsproducesagreater ratioofIL10toIL12whencomparedtosimilarlystimulatedbloodborne responses (Wan et al., 2000). This would suggest an effort from the lungs,whichareexposedtoendotoxinmoreregularly,toreduceharmful inflammation responses and promote the opsonisation of pathogens for disposalbyphagocytosis(Bolger etal., 2007). The subjects sex has an effect on the inflammatory response to endotoxin. It has been observed that females have a resistance to the effects of acute inflammation, whilst their prognosis in more long term inflammatorydisordersispoorer(Lefévre etal., 2012). In PARP1 inhibited mice males responded less to endotoxin induced inflammationwhencomparedtoWTanimals(measuredbyTNFαoutput), howevert he TNF α output of female WT mice began at a lower level and the inhibition of PARP-1 did not alter this output. In order to identify if this was due to the low output of TNF α in female mice further groups of WT and PARP-1 inhibited mice were treated with a more robust amount of LPS. Again no significant difference was observed between normal and PARP-1 inhibited serum TNF α concentrations (Mabley et al., 2005b). There are two proposed reasons for this sex difference in inflammation, firstly that it is to do with hormones specifically oestrogen. Treatment of LPS treated tissues with oestrogen has been shown to reduce the production of MCP-1 from the brain, arteries and macrophages, IL-6 from the arteries and MIP2-α from the brain when compared to those treated with LPS alone (Nilsson, 2007). Morerecentlyithasalsobeendescribed that X linked genes such as CD99, which plays a role in leukocyte diapedesis, may also contribute to the noted sex difference (Lefévre etal., 2012).

30 Ph.D.Thesis2012AlanCarter

Othergeneticfactorsalsohavearoleindeterminingthemagnitudeofthe endotoxin induced inflammatory response. It was shown that both C3H/HeJ and C57BL/10ScCr mice which exhibit endotoxic hyporesponsivenessbothhadmutationsintheTLR4gene(Qureshi etal., 1999). It was later reported that similar mutations in the human TLR4 gene also contribute to a lessened inflammatory response to endotoxin (Arbour etal., 2000).Ahostofgenedeletionshavealsobeenrecognised toeffectendotoxininducedinflammationincludingsignaltransducerand activator of transcription 3 and Cyclooxygenase 1 and 2 (Kano et al., 2003;Martin etal., 2006).

1.5. BERProteinsandEndotoxinInducedInflammation Proteins not initially thought to be involved in modulating the inflammatory response have been discovered to have such a function. Theseincludecertainproteinslinkedwithbaseexcisionrepair.PARP1,a DNAdamagesensorforsingleanddoublestrandedbreaks,wasthefirst BER protein to be implicated in the inflammatory response. This was discovered through the use of PARP1 / knockout mice which showed a markeddecreaseininflammationinducedbycaecalligationandpuncture, which results in the extrusion of gut content into the peritoneal cavity, whencomparedtowildtypemice.Therewasalsoasignificantreductionin TNFα(1059±166pg/mlvs.1529±122pg/ml),IL6(approx.28±2 ng/mlvs.40±4ng/ml)andIL10(4750±2274pg/mlvs.6875±2076 pg/ml) plasma concentrations when compared with wildtype mice 24 h after caecal ligation. Similarly MPO activity was also reduced in PARP1 / gut(approx.3.2±0.5mU/mproteinvs.5.8±0.4mU/mgprotein)and lung (approx. 180 ± 15 mU/m protein vs. 370 ± 30 mU/mg protein) tissuesafter24h.SurvivalratesofPARP1 /miceaftercaecalligationwere also significantly higher compared to PARP +/+ (20% vs. 4% survival) (Soriano etal., 2002;ViragandSzabo2002).

31 Ph.D.Thesis2012AlanCarter

This is probably due to the regulatory control PARP1 has on certain proteins, including iNOS. PARP1 also has been found to be a cofactor withNFκBandAP1,keyinflammationtranscriptionfactors(Kiefmann et al., 2004).AsuggestedmodelfortheroleofPARP1hasbeendescribedby ViragandSzabo.Theinvasionofmicrobialparticlesactivatesneutrophils inthelocalarea,leadingtothereleaseofROSfromthesemonocytesin ordertodamage,andkilltheinvaders.ROSreleaseleadstoDNAdamage andcausestheactivationofPARP1,whichinturntriggerschemokineand inflammatory cytokine production via NFκB and AP1 leading to the furtherrecruitmentofneutrophilstotheareaofinvasion(ViragandSzabo 2002). APE1isinvolvedinredoxreactionsthroughoutthecellandisimportantin the regulation of many systems. Indeed APE1 / mouse foetuses are unable to develop beyond implantation (Xanthoudakis et al., 1996). Expression of APE1 is activated by the presence of ROS (Yang et al., 2007). APE1 activates transcription factors NFκΒ and AP1 by the reductionofactivecystineresidues(Ando etal., 2008).Indeedthedown regulationofAPE1,viaantisensecDNAandsiRNA,attenuatesNFκΒand AP1activation(Daily etal., 2001;FungandDemple2005).Thereforeit canbehypothesisedthatareductioninAPE1activitywithinthecellwould reduce cytokine and chemokine output from leukocytes, reducing the inflammationreactioninasimilarfashiontothatofPARP1.

1.6. DNAGlycosylasesandEndotoxinInducedInflammation More specific base excision repair proteins, such as DNA glycosylases which remove modified DNA bases, have also been shown to alter the inflammatory response . It has been reported that 8Oxoguanine glycosylase / (OGG1 /) mice are resistant to the damage caused by endotoxininducedinflammation,indicatingthatthisproteinmayalsohave a role in the regulation of inflammation (Mabley et al., 2005a). When givenintraperitonealinjectionsofLPS(80mg/kg)OGG1 /miceshoweda

32 Ph.D.Thesis2012AlanCarter significant decrease in the output of the chemokine MIP1α (~60% decrease), and the cytokines TNFα (~31%) and IL12 (~50%) when compared to WT controls, but a large increase in the T h2 cytokines IL4

(~4.7fold)andIL10(~2.4fold).Th2 cytokinesreduceIL12production and also signal for an increase in antibody production. Additionally, the MPO activity measured in lung (~60%) and heart (~50%) tissues was significantly lower in OGG1 / mice than their OGG +/+ counterparts: no differencewasobserved,however,intheliver,kidneyorgut.FinallyMDA content was significantly lower in the lung (~58%), heart (~55%) and liver(~72%)tissuesofLPStreatedOGG1 /micethanthoseofOGG1 +/+ mice,whilsttherewasnodifferenceobservedinkidneyorgut(Mabley et al., 2005a).AcomparisonofOGG1andPARP1responsestoLPSinduced inflammationarefoundinFigure1.6.

Figure1.6:ComparisonofChangestoCytokineProductionafterLPS StimulationinPARP1andOGG1KnockoutMice ThemacrophageisactivatedwhenLBPbindswithLPSandispresentedtoTLR4creating ainflammatorysignalcascade via MALandMyD88andultimatelynuclearfactorssuchas NFκΒ and AP1. The down regulation of APE1 down regulates the activity of these nuclear factors as does the knockout of PARP1 which has been shown to have an attenuatingeffectonIL6,IL10andTNFαproduction.OGG1 /micehavebeenshownto be protected against the negative effects of LPS induced inflammation, the probable mechanismofthesedifferencesisunknownbutanincreaseinIL4andIL10production wereobservedwhilstIL12,MIP1αandTNFαwerereduced.

33 Ph.D.Thesis2012AlanCarter

Ithasalsobeenreportedthattheinflammatoryresponseto Helicobacter pylori, agramnegativebacterium,wasreducedinOGG1deficientmice. OGG1 / mice displayed less gut inflammation and histological lesions compared to WT mice, as well as a lowered tendancy to recruit polymorphonuclear cells (neutrophils, basophils and eosinophils) to the guttissue(OGG1 /33% vs. OGG1 +/+ 100%).Inthesemiceareductionin the mRNA expression of iNOS was also observed (Touati et al., 2006). TheseresultsthensuggestthatOGG1hasaroleintheexpressionofpro inflammatory proteins in response to Gramnegative bacteria (Mabley et al., 2005a; Touati et al., 2006). In contrast it has been reported, that when exposed to diesel exhaust particles (DEP; inhaled 20 mg/m 3) the differencebetweenthemacrophageandneutrophilpopulationinBALfluid betweenwildtypeandOGG1 /micewasnegligible,althoughtherewasa ~58% reduction in IL6 mRNA production in OGG1 / lung tissue when comparedtothatofOGG1 +/+ (Risom etal., 2007).

1.7. OxidativeDamage Thenumberofneutrophilsandmacrophagesatthesiteofinjuryduring inflammationincreasedramatically.Whenthesecellsdietheyaresubject to necrotic lysis and release reactive oxygen species into the area. The original purpose of these molecules was bactericidal, but they are also damaging to the host tissues and can damage anything they come into contact with (Smith, 1994). This includes DNA which has its own repair systems in place, the one most associated with oxidised bases is base exscisionrepair(Slupphaug etal., 2003).

1.7.1. ReactiveOxygenSpecies DNAdamageisclassifiedasanyalterationtoDNAstructureorchemistry. The agents that react with DNA to cause this damage come from two sources, exogenous sources ( i.e outside of the body) including ionizing radiation,solarradiationandenvironmentalcarcinogenssuchastobacco

34 Ph.D.Thesis2012AlanCarter smoke, and endogenous sources ( i.e . inside the body) such as the by productsofaerobicrespiration(Droge,2002).Perhapsthemostimportant of these is oxidative stress due to both the metabolism of xenobiotic compoundsandtheubiquitousnatureofendogenousROS(Hazra etal., 2002a). Whilsteachofusisdependentonoxygenforrespiration,thereductionof oxygeninnormalaerobicrespirationcausesROStobeformedasenergy is produced by the electron transport chain in the inner mitochondrial membrane (Figure 1.7) (Turrens, 2003). Additionally, as previously mentioned, ROS are also released in mammalian cells as part of the inflammatoryresponse(Beutler,2004). TherearemanymethodsofreducingtheamountofROSwithinthecell, for example the enzymes catalase, superoxide dismutase and the glutathione Stransferase family of enzymes, as well as reducing agents likevitaminsA,CandE(Oakley,2005;Slupphaug etal., 2003).

Figure1.7:ProductionofSuperoxideRadicalandHydrogenPeroxidebythe ElectronTransportChain Complexes I, II and III of the electron transport chain can leak electrons creating superoxideradical(O 2).Thiscanthenaidintheproductionofhydrogenperoxidewhich canalsobeleakedintothecytosolofthecell(Turrens,2003).

35 Ph.D.Thesis2012AlanCarter

AnoverviewofthemainstepsofgeneratingandreducingROSarefound inTable1.1.Theformationofhydrogenperoxide(H2O2)iscatalysedby iron(Figure1.8),andtoalesserextentcopperandnickel,intosuperoxide radicals via the Fenton reaction (Imlay et al., 1988; Lloyd and Phillips 1999).Asaresulttherearedefencemechanismswithin the cell that sequester Fe 2+ ions to protect the the cell from superoxide damage (Tenopoulou etal., 2005). Some ROS such as the superoxide radical (O 2 ), and H2O2 are also key secondary messengers, important to the function of the cell and thus a balancemustbestruckbetweenreducingoxidativedamage,yetallowing cellularsignallingtocontinue(Dalton etal., 2000).Ifthelevelsofthese damagingmoleculesoverwhelmtheprotectionswithinthecellitcanresult in various types of damage including base damage and single and doublestrandbreaks. Table1.1:ThegenerationofmajorROSandmajoravenuesofprotection a GenerationofROS + H2O →H2O +e + ● H2O +H 2O →OH +H 3O ● ● OH +OH →H2O2 ● eaq +O 2→O2 ● + 2O 2 +2H →O2+H 2O2 ProtectionagainstROS ● + 2O 2 + 2H → O2 + H 2O2 – catalysed by superoxide dismutase

2H 2O2→2H 2O+O 2 –catalysedbycatalase aAdaptedfromSlupphaug etal. ,2003

36 Ph.D.Thesis2012AlanCarter

2+ 3 ● H2O2+Fe →Fe +OH +OH Figure1.8:TheFentonReaction 2+ 2+ H2O2isformedbyendogenousmetabolism(Table1.1)andiscatalysedbyFe ,Cu and Ni 2+togeneratereactiveoxygenspeciescapableofdamagingDNA. DNAstructuralalterationsthatincludethehydrolysisofthebasetoleave apurinic/apyrimidinicsites(APsites),theformationofsinglestrandbreaks andtheadditionofoxygenoralkylgroupscanbetermedminordamage astheydonothaltthetranscriptionprocess.Thisdamage,however,ifleft unrepaired,canresultinbasemispairingduringDNAsynthesisleadingto mutations,andcelldeath.Thisdamageisongoingwithin thecellandithasbeencalculatedthatDNAsustainsapproximately800 alterationsperhour(VilenchikandKnudson,Jr.2000). Damage which if unrepaired can halt the transcription process can be termed major damage, and may cause apoptosis and premature aging. These types of damage include doublestrand breaks, that are lethal to the cell if unrepaired and singlestrand breaks which are converted to doublestrandbreaksduringtheprocessofDNAreplication(Slupphaug et al., 2003). BaselesionsarechemicallyalteredformsofthefourDNAbases(adenine, thymine, guanine and cytosine) produced by reactive oxygen species. If the base lesion halts transcription by blocking the progress of RNA polymerase II, then this a potentially lethal lesion (Wallace, 2002). OxidativeGuanineDamage

1.7.2. OxidativeGuanineDamage GuanineisthemostsensitivebasetargetforROSinDNA.Themajorityof thelesionsformedare7,8dihydro8oxoguanine(8oxoG)and6diamino 4hydroxy5formamidoguanine (FapyG) (Bruskov et al., 2002; Fromme

37 Ph.D.Thesis2012AlanCarter andVerdine2004).BotharecreatedwhenROSreactwithcarbonposition 8, forming a doublebond by reducing or oxidising the bond with the adjacent nitrogen to a singlebond (Figure 1.9). Whilst 8oxoG does not block DNA replication the resulting lesion has a high potential to be mutagenic as it can mispair with adenine (see Figure 1.10) and if left unrepaired will cause a GC → TA following DNA replication leadingtomutation(Fromme etal., 2004).As8OxoGissuchacommon lesionmanystudiesuseitasamarkerofDNAdamage(DeBontandvan Larebeke2004).FapyGincontrastcanhaltthereplicationprocessandis potentiallymutagenic(Krishnamurthy etal., 2008;Wallace,2002).

Figure1.9:FormationofOxidisedGuanineProducts ThereactionofROSwithGuanosineproducestheunstableradicalintermediatethatcan eitherbeoxidizedto8OxoGuaorreducedtoFapyG(adaptedfrom(Kalam etal., 2006)).

38 Ph.D.Thesis2012AlanCarter

Figure1.10:8oxoGuapairedwithcytosineandmispairedwithadenine adaptedfromFromme etal., 2004

1.7.3. OxidativeAdenineDamage Similar to the oxidative products of guanine adenine is vunerable to oxidation at carbon position 8, resulting in 7,8dihydro8oxoadenine (8 oxoA) and 4,6diamino5formamidopyrimidine (FapyA) (Figure 1.11; (Kalam etal., 2006)).8oxoAdoesnotblockthereplicationprocessbutit can pair with either thymine or guanine, which can result in AT → CG but this happens comparatively rarely and upon most occasionsitwillpairwiththymine.FapyAcanhaltthereplicationofDNA (Girard etal., 1998;Wallace,2002).

Figure1.11:FormationofOxidisedAdenineProducts. ROSreactwithadeninetoproduce8oxoAorFapyA

39 Ph.D.Thesis2012AlanCarter

1.7.4. OxidativeThymineDamage The major stable product of thymine oxidation in vitro is 5,6dihydroxy 5,6dihydrothymineorthymineglycol(Tg).Itiscreatedintwoformsbut the cis isomerisproducedmoreoften(Figure1.12;(Brown etal., 2008)). Itisformedwhenthedoublebondbetweenthefifthandsixthcarbonis brokenbyROSandanOHgroupisaddedtoeachcarbon(Hazra etal., 2002b). Tg causes significant extrahelical distortions in a double DNA strand, and can block the progress of repair or replicative DNA polymerases along the DNA strand, and when left unrepaired this has beenfoundtobelethal invivo (Aller etal., 2007). IthasbeendemonstratedthatoxidationofthyminecanleadtoTA →CG transversionsinvivo .ThymineglycolcanbebypassedbyDNApolymerase Iinvitro and invivo ,andtheefficiencyofthisbypassdependsonwhether the cis or trans isoform is created (Hayes and LeClerc 1986). This suggeststhatthe cis formmaybeconsideredmoremutagenictothecell, andthatmutagenesisispreferredtoapoptosis(Wallace,2002).

Figure1.12:FormationofOxidisedThymineProducts WhenthyminereactswithROSbothisomersofthymineglycolarecreated,althoughthe cis versionismorecommon(adapted(Miller etal., 2004)).

40 Ph.D.Thesis2012AlanCarter

1.7.5. OxidativeCytosineDamage Cytosinecanformanoxidationproductsimilartothymine,cytosineglycol (Cg).However,Cgisunstableandwillswiftlydegrad invivo toeither5 hydroxycytosine (5OHC) (by dehydration) or uracil glycol (by deamination)whichwillfurtherbedehydratedto5hydroxyuracil(5OHU) (Figure1.13;(Tremblay etal., 2007)).5OHUwillpreferentiallypairwith adenineleadingtoCG → TAtransitions. Invitro ithasbeenshownthat5 OHC has a chance of mispairing with cytosine resulting in CG → GC transversions(Purmal etal., 1994).

Figure1.13:FormationofOxidisedCytosineProducts The reaction of ROS with cytosine leads to cytosine glycol, which in turn can be dehydrated to 5hydroxycytosine, deaminated to uracil glycol or deaminated and dehydratedto5hydroxyuracil(adapted(Tremblay etal., 2007)).

1.7.6. SpontaneousBaseRemoval

Spontaneous depurination occurs when a purine is excised from the deoxyribose sugar by hydrolysis of the Nglycosidic link by ROS. It is estimatedthat5000purinebasesareremovedpercell,perdayfromDNA due to this process. The same process occurs with pyridimines but at a much lower rate (Maynard et al., 2009). In double stranded DNA

41 Ph.D.Thesis2012AlanCarter

Apurinic/apyrimidinicsites(APsites)areefficientlyrepairedbyBER,butin single strand DNA the missing base is replaced at random potentially leadingtotransitionsandtransversions.APsiteshavealsobeenshownto be cytotoxic as they block the activities of replicative DNA polymerases (Maynard etal., 2009).

Figure1.14:FormationofanAPsite. TheguanineisremovedfromthesugarphosphatebackboneoftheDNAstrandby hydrolysis,leavinganAPsite.Adaptedfrom(Sheppard etal., 2000).

1.7.7. DNAstrandbreaks

Singlestrandbreaks(SSB)arecausedbyoxidativedamagetothecarbon bondsonthesugarphosphatebackboneoftheDNAstrand.Whenthese breaks are found opposite each other doublestranded breaks (DSB) are formed. DSBs are also formed when the replication fork encounters blocking lesions, including those formed by ROS, leading a strand break (Shrivastav etal., 2008) SinglestrandbreakscanberepairedbyBER,butDSBsandSSBsinsingle stranded DNA are considered the most severe type of DNA damage (Shrivastav etal., 2008).Failuretorepair,ormisrepairofDSBscanlead to deletions, translocations, and chromosome fusions that enhance genomeinstability.Thesebreakscanleadtomutationswhenbreaksare

42 Ph.D.Thesis2012AlanCarter incorrectly repaired, and trigger apoptosis in order to prevent the propagationofmutantorcancerouscells(Shrivastav etal., 2008).

1.7.8. Lipidperoxidation

LipidsarereadilyoxidisedbyROS,creatingunstablemoleculeswhichafter aseriesofreactionsformlipidperoxides(Figure1.15).Theseareawell established cause of cellular damage including that of DNA (Marnett, 1999). Polyunsaturated fatty acid peroxides decompose to produce α,β unsaturated aldehydes including malondialdehyde (MDA) and 4- hydroxyalkenals (HAE) which react with DNA to form DNA adducts which are used as markers of lipid peroxidation (Marnett, 1999).

Figure1.15:LipidPeroxidation A lipid peroxide is formed in three stages. During the initiation stage a free radical interacts with a hydrogen atom to form a lipid radical and water. In the propagation stage the unstable lipid radicals interact with other lipids at which point their radical interactswithamolecularoxygentocreateadifferentfattyacidandalipidperoxide.The process terminates when the radical interacts with another radical to produce a non radical.Adaptedfrom(Imlay,2003).

43 Ph.D.Thesis2012AlanCarter

Figure1.16:Compositionofmalondialdehydeand4hydrooxyalkenal

1.8. DNARepair Damage to bases which cause a disruption of DNA replication and RNA creationand/orRNAsynthesismayresultincelldeathorbasemispairing (mutation)(Michell etal .,2003).ButastherearesomanyDNAdamage causingagentswithinthecellitisimportantthatmechanismsareinplace to repair any damage that occurs. There are over 130 known genes involvedinDNArepairandmanyofthesearesharedcommoncofactors from processes such as cell cycle regulation, transcription and DNA replication including Proliferating Cell Nuclear Antigen (PCNA) and replicationproteinA(RPA)(Slupphaug etal., 2003;Wood etal., 2001). SeveralDNArepairmechanismshavebeenidentifiedincludingthosethat usetheundamagedstrandoftheDNAmoleculeasatemplateforrepair. These cut and patch type mechanisms include BER (Slupphaug et al., 2003), nucleotide excision repair (NER) (Mitchell et al., 2003) and mismatch repair (MMR) (Golyasnaya and Tsvetkova 2006). These pathwaysvarywidelyinthetypeofdamageremovedandthesizeofthe excisionmade. The importance of DNA repair systems is illustrated by the variety of diseaseswhichareassociatedwiththeirdisruption.Thefirstsuchdisease wasidentifiedin1968whenCleaverestablishedalinkbetweenNERand the skin disease xeroderma pigmentosum (Cleaver, 1968). Since this discovery connections have been formed between a lack of DNA repair andotherdiseases.Cockayne’ssyndrome,characterisedbyasensitivityto

44 Ph.D.Thesis2012AlanCarter light and the appearance of premature aging, and trichothiodystrophy, which causes mental and physical retardation, are also associated with NER (Lehmann, 2003) and Hereditary nonpolyposis colorectal cancer is associatedwithdefectsinMMR(AbdelRahman etal., 2005).Until2003it was thought that base excision repair was not linked to any inherited diseaseduetothelargeoverlapinthefunctionofBERproteinswithother mechanisms(Krokan etal., 2000;Slupphaug etal., 2003).However,links between MUTYH and an autosomal recessive syndrome of adenomatous colorectal polyposis and very high colorectal cancer risk have been observed (Cheadle and Sampson 2003). Additionally, the singlestrand breaks that are created as intermediates in the BER process have been implicated in the progression of neurodegenerative diseases such as spinocerebellar ataxia (Caldecott, 2003). Links have also been made between cancer (e.g. lung, skin, leukaemia and breast) and polymorphismsinBERproteinsalthoughthesetendtobeweak,suchas thatforOGG1whichhasshownnoconsistantconectionswithanyformof cancer(Hung etal., 2005).Polβ,however,hasshownastrongconnection withcancers,as~30%ofhumantumoursexpressPolβvariants(Starcevic etal., 2004).

1.8.1. BaseExcisionRepair BERisthemainmechanismusedtoremovenonhelixdistortingDNAbase lesions (Slupphaug et al., 2003). However BER can also repair the consequences of base deamination, spontaneous hydrolysis of the N glycosidicbondandSSBs(FrommeandVerdine2004) .Repairisinitiated by one of a group of enzymes named DNA glycosylases, which remove damaged bases from DNA leaving the sugar phosphate backbone intact (Hazra et al., 2002a). Many different DNA glycosylases have been identified,andasaresultthereareseveralmethodsofexcisingdamaged basesandrepairingthesubsequentAPsite.Thesecanbesplitintothree major mechanisms of action: (i) monofunctional glycosylase APE1 dependentpathway,(ii)bifunctionalglycosylaseAPE1dependentpathway

45 Ph.D.Thesis2012AlanCarter

and the third pathway is the (iii) APE1 independent pathway and is initiated by the NEIL1 and NEIL2 proteins (Figure 1.17) (Hazra et al., 2007). TherearetwoformsofBER,namelyshortandlongpatchrepair.Short patchrepairresultsintheremovalofonlyasingledamagedbasewhilst longpatchrepairasitsnamesuggestsrepairsalongersectionofDNA(2 15 nucleotides) and recruits many proteins active in DNA synthesis (Robertson etal., 2009).

Figure1.17:MonofunctionalDNAglycosylaseBER(I),bifunctionalAPE1 dependantBER(II)andindependent(III)pathways *representsoxidisedbase.AdaptedfromHazraetal.,2007. AllDNAglycosylasesbeginthereactioninacommonmanner(seeFigure 1.17).ThedamagedbaseislocatedandtheDNAisbentaroundtheDNA glycosylaseprotein.Thebaseisdrawnintotheactivesiteoftheprotein whereitisexcisedbyanucleophilicaminoacidattheactivesiteresulting in the formation of an AP site (Stivers and Jiang 2003). Monofunctional DNA glycosylases, such as Singlestrand selective Monofunctional Uracil

46 Ph.D.Thesis2012AlanCarter

DNAGlycosylase(SMUG1),thenrequireAPE1tocleavetheDNAstrand5′ to the AP site leaving a 5′deoxyribose5phosphate (5′dRP) and 3′OH (Christmann et al., 2003). This configuration blocks normal DNA polymerase activity. Poly (ADPRibose) Polymerase1 (PARP1) then mediatestheattachmentofDNApolymeraseβ(Polβ)totheDNAstrand, which adds a single nucleotide to the 5' end of the nick. The dRP lyase activityofPolβremovesthesugarphosphatemoietyandtheprocessis completed by either DNA Ligases I or III, which repairs the sugar phosphatebackboneoftheDNA. DNA glycosylases such as OGG1 and NTH1 act like monofunctional glycosylasesbutalsohaveanAPlyaseactivitythatincisestheAPsite via βelimination, thus the term bifunctional DNA glycosylases. This process leavesa5′dRPanda3′phosphoα,βunsaturatedaldehyde(PUA).Thisis a substrate for APE1 which cleaves the 3' PUA leaving a 3′OH group (Figure 1.17) (Dianov et al., 2003; Izumi et al., 2003). Pol β and DNA ligase III/XRCC1 can seal the nick and the repair process is complete (Dianov etal., 2003). TheAPEindependentpathwayisproposedtobeusedbybifunctionalDNA glycosylasessuchasNEIL1and2.Thistakesadvantageofthe5'and3' phosphates produced during β,δelimination to utilise polynucleotide kinase(PNK)insteadofAPE1,togeneratethe3′OHgroup(Figure1.17) (Hazra etal., 2007).

1.8.2. DNAGlycosylases The major DNA glycosylases specialised for removal of oxidised base lesions in BER can be split into three families. First are monofunctional glycosylases such as; NmethylpurineDNA glycosylase (MPG) which removesalkylatedbasesfromDNA,UracilDNAglycosylase2(UNG2)and SMUG1 which remove uracil residues fromDNA. Second are bifunctional

47 Ph.D.Thesis2012AlanCarter

DNA glycosylases, such as the mammalian DNA glycosylases OGG1 and NTH1(Douetal., 2003),thatsharefeaturesandmethodsofreactionwith the Escherichia coli gene nth . Proteins of this family contain a helix hairpinhelixmotifandhaveaninternalLysresiduethatactsasanactive site, which carries out βelimination cleaving the DNA strand 3' to the oxidisedbaseandleaving5'phosphateand3'PUAtermini(Hazra etal., 2002a). The third major class of DNA glycosylases share homology with the E.coli Nei(endonucleaseVIII)includinghelix2turnhelixmotifsanda catalyticpro2residue,andaredescribedasNEIL ikeenzymes1,2and3 (NEIL1,NEIL2andNEIL3). Table1.2:HumanDNAglycosylaseslocatedinthenucleiandtheDNAdamage thattheyremove a

Lyase Name Activity KnownSubstrates α OGG1 Yes FaPyG:C>8oxoG:C>8oxoG:T,8oxoA:T 5OHC,Tg:A>Tg:G,5 OHU,5,6 DHU, NTH1 Yes FaPyG:A/G/T,5FoU FaPyA,FaPyG,8 oxoG:C>8 oxoG:G>8 oxoG:T, NEIL1 Yes Tg,5OHC,5,6DHU NEIL2 Yes 5OHU,5,6DHU,5OHC NEIL3 Yes FaPyA,FaPyG ssU>U:G >ss5 HMU:G>U:A>5 HMU:A>eC:G SMUG1 No >5FU:A UNG2 No ssU>U:G>U:A>5FU MUTYH No A:G,A:8oxoG>2OHA:G>>C:A MTH1 No Cpg:T,CpG:U MPG No 3methyladenine>Adenineresidues TDG No U:G,T:G MBD4 No U:G,T:G FaPyG, 2,6diamino4hydroxy5formamidopyrimidine; 8oxoG, 7,8dihydro8 oxoguanine; 5OHC, 5hydroxycytosine; Tg, thymine glycol; 5FoU, 5formyluracil; 5,6 DHU, 5,6dihydrouracil; FaPyA, 4,6diamino5formamidopyrimidine; 5OHU, 5 hydroxyuracil; 5HMU, 5hydroxymethyluracil; 5FU, 5fluorouracil; 2OHA, 2 hydroxyadenine;ss,singlestranded. aadaptedfromSlupphaugetal.,2003

48 Ph.D.Thesis2012AlanCarter

1.8.2.1. OGG1 OGG1isthemammalianhomologueoftheMUTMgenein E.Coli (Arai et al ., 1997). The human DNA glycosylases αOGG1 and βOGG1 are produced by alternative splicing of the same DNA transcript found on chromosome 3p26. The full code for OGG1 consists of 8 exons, and α Ogg1 is a result of the transcription of exons 17 which results in the formationofaproteinofweight39KDa,whilstβOgg1isformedwhen exons16and8aretranscribedandproduceaprotein47KDainweight. ThestructureindicatesthatOGG1containsbothazincfingerandahelix hairpinhelix(HhH)DNAbindingsite(Arai etal., 1997).TheOGG1proteins are found ubiquitously throughout the body in the nucleus and mitochondrion. It is transcribed in greater amounts in thymus, testis, kidneys,intestineandbraintissues(Radicella etal., 1997). InitshumanformαOGG1islocatedinthenucleusandexcises8OxoA opposite T, 8OxoG opposite C and T and both FapyG and meFapyG opposite C (Table 1.2), whereas the mouse form only excises 8oxoG lesionsoppositeCandT(Audebert etal., 2000;Campalans etal., 2007; Dherin etal., 1999).ThestructureofthehOGG1proteinsuggeststhatit makescontactwiththebaseopposite8oxoGthroughhydrogenbondsto hydrogen acceptors of the paired base. This may explain the different levelsofaffinityithasforcertainpairings(BanerjeeandVerdine2006).

HumanβOGG1islocatedinthemitochondrialmatrix,butitsroleinthe repair of mtDNA is unknown as it does not have any detectable DNA glycosylase or AP lyase activity (Hashiguchi et al., 2004). Indeed it has beensuggestedthatwhile8oxoGglycosylaseactivityhasbeendetected in the mitochondrial matrix, this is the result of αOGG1 activity in the mitochondriaratherthanthatofβOGG1(Bohr,2002;Hashiguchi etal., 2004). βOGG1, however, is thought to play a role in the regulation of apoptosiswithinthecell,asanoverexpressionoftheproteinwasshown tohaveaprotectiveeffectwhenthecellswerechallengedwithxanthine

49 Ph.D.Thesis2012AlanCarter oxidaseinducedROS(Dobson etal., 2002;Ruchko etal., 2005).Further studieshavelinkedβOGG1withoxidantinducedapoptosis,notingthatits disruptionincreasesprogrammedcelldeath(Panduri etal., 2009). Whilst Ogg1 expression is not affected by the cell cycle, it has been proposed that Ogg1 expression can be induced by certain exogenous signals such as oxidative stress (Risom et al., 2007). There are many layers of regulation on the activity of OGG1 including product inhibition (Sidorenko etal., 2008),reversiblephosphorylationandnitricoxide(NO) inactivation(Jaiswal etal., 2001).InthepresenceofAPE1theefficiency ofOGG1canimproveupto5fold(Hill etal., 2001)andAPE1maythus have a role in facilitating product dissociation of OGG1. Phosphorylation has also been shown to regulate OGG1 activity and cellular localisation. Theexactlocationofthephosphorylationsiteisyettobeconfirmed,four have been identified, but preliminary in silico analysis has identified serine 326 asalikelytargetforproteinkinaseA(Smart etal., 2006;Svilar etal., 2011).Theadjacentcysteineisabletoformathiolateanionthatis susceptibletooxidation.ThesecondarymessengerNOhasbeenshownto disrupt the zinc finger motif through the process of thiol nitrosylation, whichcausestheejectionofthezincionandirreversiblelossofcatalytic activity(Jaiswal etal., 2001). When there are mutations in the OGG1 gene, incidence of cancer and otheragerelateddiseasesthoughttohavelinkswithDNAdamagearenot clearlyincreased,butthisthoughttobeduetothepresenceofotherBER proteinsactingasbackups,orthatthemutationhasnofunctionaleffect (Osterod et al., 2001). When considering specific polymorphisms alterations at codon 326 (Ser/Cys and Cys/Cys) are the ones most documented.IthasbeenshowninMEFsthatthesepolymorphismsleadto theaccumulationofFaPyGwithinthecell(Bravardetal., 2009;Smart et al., 2006). A higher risk of several cancers has been linked with this

50 Ph.D.Thesis2012AlanCarter polymorphismincludinglung(Kohno etal., 2006),gastric(Farinati etal., 2008),prostate(Chen etal., 2003),andorolaryngeal(Elahi etal., 2002). Converselytherehavebeenseveralstudiesthathaveshownnolinkswith thispolymorphismandtheriskofspecificcancersincludingbreastcancer (Vogel et al., 2003), colorectal (Hansen et al., 2005) and (Hanaoka etal., 2001). ThemouseOGG1geneisfoundonchromosome6andshares83%amino identity with the human αOGG1, evidence for OGG1 activity has been identified in mouse mitochondria. It has been suggested that mOGG1 is distributedthroughoutthecell,towhereitisneeded via activetransport involvingthecellsmicrotubules(Conlon etal., 2004).AgainOGG1isfound ubiquitously in the mouse but is at its highest levels in tissue extracted fromthetestes(Rosenquist etal., 1997). In OGG1 knockout mice reported thus far no significant difference has beenobservedintheviability,appearanceorsurvivalwhencomparedto wildtypemice.Inthe12monthperiodthatthesemicewerestudiedthere wasnoincreasedincidenceofcancerinthemice(Klungland etal., 1999). However,ithasbeenreported,inadifferentstrainofOGG1 /mice,that the incidence of lung cancer increased after 19 months of observation (Sakumi etal., 2003)Itwasalsoreportedthattheaccumulationof8oxoG residuesdidincreasewhencomparedwithwildtypemice.InnuclearDNA there was a tissue specific increase of 10 – 100 % (testes and liver respectively)in8oxoGresidues.Theremovalofoxidisedguaninesfrom the DNA was not halted completely though, and there was significantly slower repair in the knockout line. In themitochondria disruption of the OGG1 gene can cause 8oxoG to accumulate to 20 times the amount foundinnormalcellsithasbeenshownthatthishasnosignificanteffect on the respiratory function of the mitochondria (Stuart et al. 2004, de SouzaPintoetal.,2001).

51 Ph.D.Thesis2012AlanCarter

1.8.2.2. NTH1 Themammalianhomologueof E.coli nth,orendonucleaseIII,isNTH1. The gene encoding the human form of this protein is found on chromosome 16p13 and comprises 6 exons (Martin et al., 2004). The NTH1proteinhasamassof34KDaandisexpressedthroughoutthebody within the nucleus of cells, although it is more highly expressed in the heart,liverandbraintissues,andleastexpressedinmuscletissue(Gros et al., 2002; Hazra et al., 2002b; Ikeda et al., 2002). As well as the conserved HhH DNA binding motif present in other nth like DNA glycosylases,italsohasa4Fe4Sclusterloopmotifwhichhelpstolocate theenzymemoreaccuratelyontotheDNAmolecule(Gros et al., 2002; Izumi etal., 2003).Thetwoironsulphurclustersformapocketwiththe catalyticallyactiveLys 120 andAsp 138 atitsmouth. NTH1expressioniscellcycledependant,withexpressionlowduringthe

G0G1phases,butincreasedatthestartofSphasewhereitreachedits maximumlevel.ThissuggestsalinkbetweenNTH1expressionandDNA synthesis(Luna etal., 2000). LikeOGG1,NTH1isalsosubstrateinhibited andtheadditionofAPEincreasesitsefficiencyatremovingTgfromDNA ~3 fold (Marenstein et al., 2003). NTH1 activity has been shown to be modulatedbyXPG,astructurespecificendonucleaseinvolvedinNER,and P53,thusconnectingBERwithNERandp53dependentdamageresponse pathways.BothoftheseinteractionsstimulateNTH1activity;XPGatthe RNAtranscriptioncomplexandp53duringDNAdamagesensing(Oyama et al., 2004). The transcription factor YB1 has also been shown to increasetherateoflyaseactivity invitro (Marenstein etal., 2003).NTH1 wasshowntobindtoPCNA,butwasnotstimulatedasaresultofsuch binding (Dou et al., 2008). However it has been theorised that the interaction with PCNA, could play a coordinating role during S phase (Oyama etal., 2004)andthatPCNAinthereplicationmachineryrecruits

52 Ph.D.Thesis2012AlanCarter

NTH1toTglesionwhentheDNAreplicationmachinerystalls(Oyama et al., 2004). AsabifunctionalDNAglycosylaseNTH1canremovespecificbaselesions via βelimination (Dizdaroglu et al., 1999). The substrates that NTH1 removesmostefficientlyaretheoxidisedpyrimidinesshowninTable1.2. Of these products thymine glycol (Tg) is toxic, unlike 8oxoG which is mutagenic. Tg halts the progress of replicative DNA polymerases and, if notremoved,canleadtocelldeath(Izumi etal., 2003). The mouse NTH1 gene is located on chromosome 17 and comprises 6 exons.Theresultingproteinhasamassof37kDaandshares84%amino acididentitywithhNTH1andsharessimilarsubstratespecificity(Sarker et al., 1998). Whilst human NTH1 protein is exclusively transported to the nucleus,mouseNTH1proteinistransportedtothemitochondria(Ikeda et al., 2002). NTH1 /micedonotshowanyphenotypicaldifferencetowildtypemicein terms of viability, growth rate, age related differences and cancer risk (ParsonsandElder2003).InthegenomicDNAofNTH1 /miceTgseemed toberemovedatnormalratessuggestingafunctionalbackupthatrepairs oxidised pyridimines is involved. However, Tg was not observed to be removedatallfrommitochondrialextracts(Karahalil etal., 2003;Parsons and Elder 2003). NTH1 / cells showed no increased sensitivity to menadione, H2O2 or Xray treatments, and still removed Tg lesions, althoughitwasreportedthattheydidsoataslowerratewithsubstantial amountsofBERintermediatesdetectedaftertreatmentwhennonewere detectedinWTcells(ParsonsandElder2003).InNTH1/mousethymus, removal of Tg was observed, interestingly this cleavage was greater againstTg:GthanTg:Abasepairs(Ocampo etal., 2002).Howeverthere wasnoTgexcisionactivityobservedinlivermitochondrialextractsfroma differentstrainofNTH1/mice(Karahalil etal., 2003).

53 Ph.D.Thesis2012AlanCarter

1.8.2.3. NEIL1 The fact that NTH1 knockout mice appear phenotypically normal was crucial in the discovery of the NEIL1 and NEIL2 proteins, as it was discovered that in the absence of NTH1 other as yet unknown proteins were repairing Tg (Hazra et al., 2002a). Of these proteins NEIL1 was identified as a backup for NTH1, as the substrates itexcisesaresimilar (Takao etal., 2002a). The NEIL1 gene is located on chromosome 15 at location q24.2 and comprises10exons,thesubsequentproteinhasamassof44KDaandis presentinboththenucleusandthemitochondriaofthecell(Hazra etal., 2002a;Vartanian etal., 2006;Zody etal., 2006). As an APE independent enzyme (Figure 1.17), NEIL1 performs β,δ elimination.WhilstitcontainsaDNAbindingmotif(ahelix2turnhelix),it doesnotcontaintheexpectedzincfingerDNAbindingmotif,althoughit does contain a ‘zincless finger’ which has been proposed to fill a similar role(Doublie etal., 2004).ThesuggestedactivesiteisaconservedPro2 attheNterminal(Figure1.18)(Hazra etal., 2002a).

Figure1.18:SequencealignmentofcriticaldomainsofNEIL1andNEIL2with E.coli NeiandFpg adaptedfromHazra etal., 2007 NEIL1isabifunctionalDNAglycosylase/APlyaseproteinthatremovesa wide range of oxidised bases from DNA (Table 1.2) (Shinmura et al., 2004; Takao et al., 2002a). It has been suggested that as NEIL1 can excisethesamesubstratesasOGG1thatitcouldbeafunctionalbackup.

54 Ph.D.Thesis2012AlanCarter

However,itexcises8oxoGfromdoublestrandedDNAatamuchslower ratethanOGG1(Hazra etal., 2002a;Morland etal., 2002). ExpressionofhumanNEIL1variesthroughoutthebodywithlevelshigher inthepancreas,liverandthymusthanthetestisandmuscle(Hazra etal., 2002b).Significantlyitisexpressed67timesmoreabundantlyduringthe

SphaseofthecellcyclethanduringtheG 0G1phase.Thiscontrastswith that of other DNA glycosylases such as OGG1 whose expression is not significantly affected by the cell cycle (Hazra et al., 2002a). This co ordinated change in expression and the wide range of lesions repaired, suggest that NEIL1 is involved in the repair of damaged bases at the replication fork (Takao et al., 2002a). This is further supported by the workofDou etal .whoshowedthatNEIL1(andNEIL2)canfunctionas DNAglycosylasesinabubblestructureofDNAandonsingleanddouble strandedDNA,andindeedthecatalyticactivityofNEIL1isgreaterwhen repairingsinglestrandedDNA(Dou etal., 2003). FEN1,PCNAandCSBproteinshavebeenshowntoincreasetheactivityof NEIL1 in vitro (Dou et al., 2003; Hegde et al., 2008; Muftuoglu et al., 2009). NEIL1 has also been shown to interact with DNA polβ and DNA ligaseIIIα.ThissuggeststhattheenzymemayhavearoleinDNArepair coordinationratherthanbeingalessefficientbackupforOGG1(Dou et al., 2003). Interestingly, whilst no direct interaction has been observed between NEIL1 and OGG1, the presence of NEIL1 has been shown to increasetheefficiencyofOGG1 invitro ,andisduetotheNEIL1protein higheraffinityforAPsites.ItisalsosuggestedthatNEIL1isactingasa backupforAPE1tostimulate8oxoGrepair(Hazra etal., 2007;Mokkapati etal., 2004b).AstudyofvarioushNEIL1polymorphismsasshownthata reduction in the efficiency of the NEIL1 protein may be involved in the pathogenesisofgastriccancers(Shinmura etal., 2004).

55 Ph.D.Thesis2012AlanCarter

The mouse NEIL1 gene is located on chromosome 9 at location 9c and comprises9exons.Thesubsequentproteinhasamassof44KDaandis presentinthenucleusofthecell(Morland etal., 2002).Expressionlevels forNEIL1varybetweenmousetissueswithlevelshighestintheprostate ovarybrainandspleen.AgaintheexpressionofthemouseNEIL1protein iscellcycledependant,withthegreatestexpressioninSphase(Hazra et al., 2002a).WhencomparedwithWTcontrols,the mortality rate of Neil1- deficient cell lines high in response to low doses of γ-irradiation(3minin a Gammacell40 Cesium irradiator at a dose rate of 0.75 Gy/mim ) (Rosenquist etal., 2003). WhilstNEIL1knockoutmicedonotshowanyimmediateeffectsonweight and viability, Vartanian et al. (2006) reported that a high proportion of micewithinthecolonyhadbeenfoundtoexhibitedsymptomssimilarto thehumanmetabolicsyndrome.Thisoccurredinallofthemaleknockout mice in the study and a large proportion of the female mice, with the malesbeingmuchmoreseriouslyobesethanthefemalesafteraround8 months. Additionally serum levels of leptin were siginificantly higher in NEIL1 / mice. It was suggested that the symptoms associated the with metabolicsyndromemayhavebeencausedbyabuildupofDNAdamage in the mitochondria disrupting metabolic processes (Vartanian et al., 2006).Afurtherbreedingpairfromthiscolonywashousedinadifferent animal facility but the resulting offspring did not display any of the symptoms previously documented (Chan et al., 2009). However more recently the link between NEIL1 and obesity has been renewed due to datashowingasignificantlygreatersusceptabilitytoobesityandreduction in voluntary exercise, and it is now thought that the disruption of the NEIL1proteinisapredisposingfactortoobesity(Sampath etal., 2011).

1.8.2.4. NEIL2 TheNEIL2geneislocatedonchromosome8atpositionp23.1,itcontains fiveexonsandcodesforaproteinwithamassof37KDaandislocated

56 Ph.D.Thesis2012AlanCarter mainly in the nucleus (Nusbaum et al., 2006). The protein sequence indicates several conserved sequences that are also found in the NEIL1 protein including a catalytic proline terminal, the catalytic lysine residue, theH2THbindingmotifandadditionallyazincfingermotif(Figure1.18) (Hazraetal., 2007).LikeNEIL1,NEIL2canperformAPEindependant β/δ elimination and acts primarily on 5OHU, as well as other oxidised cytosines(seeTable1.2)(Dou etal., 2003;Hazra etal., 2002b). NEIL2mRNAisfoundubiquitouslythroughoutthebody, but at different levelsdependingonthetissuesexamined.Highgeneexpressionhasbeen reportedinskeletalmuscleandtestis,andlowexpressionlevelsinlung, liver, spleen, thymus, prostate, and ovaries (Morland et al., 2002). The tissuespecificityofthisenzymeseemstocompensateforNEIL1andNTH1 as the latter two enzymes are expressed less in muscle and testis, whereasNEIL2levelsarehigherinthesetwotissues.NEIL2hasagreater affinitywiththereplicationbubblestructureofDNAthanNEIL1,butunlike NEIL1 its expression is not connected to that of the cell cycle. This suggeststhatNEIL2maybeinvolvedinglobalbaseexcisionrepair,butit canbeinferredthatitisconnectedwithDNAreplicationandtranscription duetoitsabilitytobindwithsingleanddoublestrandedDNA(Dou etal., 2003;Hazra etal., 2002b;Takao etal., 2002b). NEIL2activitycanbeincreasedbyinteractionswithYB1,ordecreasedby interacting with pyridoxal5′phosphate (Das et al., 2007b; Grin et al., 2010). NEIL2 has also been shown to stably interact with the p300 transcriptional cofactor which acetylates Lys sites of proteins. The acetylation of Lys 49 of NEIL2 is the most effective target which leads to inhibition of DNA glycosylase and AP lyase activity. Acetylation of other Lys residues does not produce an inhibitory effect, indicating that reversible modification of Lys 49 could regulate the activity of NEIL2 (Bhakat etal., 2004).

57 Ph.D.Thesis2012AlanCarter

ThemouseNEIL2geneislocatedonchromosome14D1.Itcontainsfive exonsandcodesforaproteinwithamassof37KDaandislocatedmainly inthenucleus(Church etal., 2009).TodatenoNEIL2 /micehavebeen reported.

58 Ph.D.Thesis2012AlanCarter

1.9. Hypothesis

“If DNA glcosylases, specifically NEIL1, NEIL2, OGG1 and NTH1, are involvedintheregulationofendotoxininducedinflammationandthenthe knockoutofthesegenes,inmurinemodels,willresultinareductioninthe inflammatoryresponsetoendotoxin.”

Inordertotestthishypothesisthefollowingobjectiveswillbecarriedout: I. The molecular characterisation of new NEIL1 / and NEIL2 / knockoutmousestrains. II. The identification of any phenotypes in the gross physiology of NEIL1 /andNEIL2 /knockoutmousestrains. III. ThemaintainanceofcoloniesofNEIL1 /,OGG1 /andNEIL2 /mice (Chapter3). IV. Creating murine embryonic fibroblasts (MEFs) from WT, OGG1 / NEIL1 /andNEIL2 /mousestrains. V. UsingtheresultingMEFstrainsinconjunctionwithpreexistingMEF cultures(NTH1 /and[OGG1/NTH1] /)asmodelsofinflammation to identify the magnitude and the nature of this reduction in inflammatoryresponseduetothedisruptionofbaseexcisionrepair enzymes by measuring the levels of IL6, IL10 and MIP1α releasedfromtheMEFsafterexposuretoLPS(Chapter4). VI. Identifying the extent to which the knockout of NEIL1 and OGG1 reduces the immune response to LPS induced inflammation in wholeanimalmodelsby: a. Establishing whether levels of cytokines IL6, IL12, IL10 and IL4 differ between NEIL1 /, OGG1 / and WT mouse serum,atbasalandLPStreatedlevels.

59 Ph.D.Thesis2012AlanCarter

b. Establishing whether levels of MPO, MDA and GSH are alteredbetweenNEIL1 /,OGG1 /andWTmousetissues,at basalandLPStreatedlevels(Chapters5&6).

60 Ph.D.Thesis2012AlanCarter

2. MaterialsandMethods

2.1. Materials

2.1.1. Buffercomposition Thecompositionsofthevariousbuffersandsolutionsusedarecontained in Tables 2.1 and 2.2. All buffers were made in double distilled water

(ddH 2O). Table2.1:MolecularBiologyBuffers Use Name Compostion 0.45MTrisHCLpH8.2,0.45Mboricacid,7.9nM 5xTBE EDTA. 6x DNA 3.6mMbromophenolblue,1.2Msucrose,120mM loading electrophoresis EDTA. buffer Agarose 0.81.5%(w/v)agarosein0.5TBE,0.8mM gel ethidiumbromide. 150mMNaCl,50mMTrisHClpH8.0,12mMsodium RIPA deoxycholate,0.1%(w/v)SDS,1%(v/v)Tritonx Protein buffer 100. extraction Celllysis 50mMTrisHClpH8.0,200mMNaCl,1mMEDTA,1 buffer mMDTT,1/1,000(v/v)proteaseinhibitorcocktail. 17%(v/v)Protogel,125mMTrisHClpH6.8,0.1% Loading (w/v)SDS,2mMammoniumpersulphate,0.85mM gel N,N,N,Ntetramethylethylenediamine(TEMED). 40%(v/v)Protogel,375mMTrisHClpH8.8,0.1% Resolving (w/v)SDS,2mMammoniumpersulphate,0.85mM gel Protein TEMED. electrophoresis 5xSDS 0.3MTrisHClpH6.8,0.25MDTT,20%(v/v) loading glycerol,10%(w/v)SDS,0.05%(w/v)bromophenol buffer blue. 10xSDS running 0.25MTrisBase,1.92Mglycine,1%w/vSDS. buffer Transfer 25mMTrisBase,0.192MGlycine,20%(v/v) buffer methanol. 10xTBS 0.5MTrisHClpH7.5,1.5MNaCl. TBS(T) 1xTBS,0.1%(v/v)Tween20 Blocking Westernblot 5%(w/v)skimmedmilkpowder(Marvel)inTBS(T). solution Coomassie 0.25%(w/v)CoomassieBlueR250,40%(v/v) Bluestain methanol,10%glacialaceticacid. Gel 20%(v/v)methanol,5%(v/v)glacialaceticacid. destain

61 Ph.D.Thesis2012AlanCarter

Table2.2:ProteinAnalysisBuffers

Use Name Composition 0.2Msodiumcarbonate,0.2Msodium Carbonatebuffer bicarbonatepH9.6. IL6ELISA 25lofAmplexRed(25mg/ml),5.7l AmplexRedmastermix H2O2,ddH 2Oto10ml. 0.5%(w/v)hexadecyltrimethylammonium MPOWorkingbuffer bromide,10mM3N MPOassay morpholinopropanesulfonicacid. 1.6mM3,3’,5,5’Tetramethylbenzidine,1 MPODetectionbuffer mMH 2O2. MDAassay MDAWorkingbuffer 5mMTrispH7.4,1.15%(w/v)KCl. Potassiumphosphate

EDTA(KPE)buffer 1.36%(w/v)KH 2PO 4 solutionA GSHassay KPEbuffersolutionB 1.7%(w/v)K 2HPO 4 16%solutionA,84%solutionB,0.33% KPEbuffer EDTApH7.5.

2.1.2. Tissueculturemedia Thecompositionsofthetissueculturemediausedare detailed in Table 2.3.Allmediawasfiltersterilised(0.22m;Millipore,UK)beforeuse. Table2.3:TissueCultureMedia Name Composition Dulbecco'sModifiedEagleMedium:F12Nutrientmixture(DMEM:F12), MEF 10%(v/v)heatinactivatedfetalcalfserum(PAABiotechnology,UK),2 MediaA mMLglutamine,0.11MNaHCO 3,1xPenicillinstreptomycin. Dulbecco'sModifiedEagleMedium:F12Nutrientmixture(DMEM:F12), MEF 10%(v/v)heatinactivatedfetalcalfserum,2mMLglutamine,0.11M MediaB NaHCO 3.

2.1.3. PCRprimers AllprimerswereobtainedfromMWG,Germany.

62 Ph.D.Thesis2012AlanCarter

Table2.4:PCRGenotypingPrimers Shadedareasindicatecombinationsofprimersthatwerenotused. Target WTSize KOSize Annealing Name Position Sequence(5'3') Gene (bp) (bp) Temp( oC) 1907f Exon2 CAACTATCTGCGGGCAGAGAT 1108 57 3015r Intronbetweenexons5and6 GGAGACAACTCTGGAGTCAAC NEIL1 GTTTAAACTTTCACCACATTGATGACGTGC 807f Intronbetweenexons1and2 GG 1226 57 nNEOr WithinNeoTKcassette GCAGCCTCTGTTCCACATACAC 410f Intronbetweenexons1and2 CTTGGACCAGAGATACTTCTCAG 553 57 963r Intronbetweenexons1and2 GGGTTAGTTAGACTACAGACT NEIL2 871f Intronbeforeexon1 GCGAGTACTCTCCCTTATACTG 1341 57 nNEOr WithinNeoTKcassette GCAGCCTCTGTTCCACATACAC 6333f Intronbetweenexons4and5 GTGGCTGACTGCATCTGCTT 323 58 6656r Intronbetweenexons5and6 GCATAAGGTCCCCACAGATTC OGG1 2372f Exon3 GCTTCCCAAACCTCCATGC ~1000 58 oNEOr WithinNeoPgkcassette GCCGAATAGCCTCTCCACCCAAGC 2956f Exon4 TGAGCTGGTAGCCTTGCCAGGTG 60 597 NTH1 3530f Intronbetweenexons4and5 GCACAGTCAAGCATGATTATAAG ~1800 60 ntNEOr WithinNeoPgkcassette GCTCTGATGCCGCCGTGTTCCG

63 Ph.D.Thesis2012AlanCarter

Table2.5:RTPCRPrimers

Annealing Target Size Name Position Sequence(5'3') Temp Gene (bp) (oC) 328f Exon1 CTTGCCCTTTGCTTCGTAGACATC NEIL1 217 57 545r Exon2 GGATCTCTGCCCGCAGATAGTT 534f Exon4 GTTTAAACTTTCACCACATTGATGACGTGCGG GAPDH 222 58 765r Exon5 GCAGCCTCTGTTCCACATACAC 12926 Exon2 CAGTGGGTCAAGGAACAGAAGC TLR4 540 60 13443 Exon2 GACAATGAAGATGATGCCAGAGC

64 Ph.D.Thesis2012AlanCarter

2.1.4. Molecularbiologyreagents AllreagentsobtainedfromSigmaAldrichexcept: AMVreversetranscriptase(10U/l):RocheAppliedBiosciences,UK. Reversetranscriptionrandomprimers,RNasin(40U/l):Promega,UK. RestrictionendonucleasesXmn1(10U/Xl)andassociatedbuffers:New EnglandBiolabs,UK. BIOTaqpolymerase(10U/l)andassociatedbuffer,BioXActlongDNA polymerase(10U/l)andassociatedbuffer,dNTPsandHyperLadderI: Bioline,UK. DirectPCR(cell)andDirectPCR(ear)lysisbuffer:ViagenBiotech,US. RNeasyminikit,DNeasybloodandtissuekit:Qiagen,UK.

2.1.5. Proteinanalysisreagents AllreagentsobtainedfromSigmaAldrichexcept: PrecisionplusproteinallbluestandardsandDCproteinassay: BioRad,UK. Protogel(30%Acrylamide/0.8%bisacrylamide)solution:National Diagnostics,US. Enhancedchemiluminescent(ECL)advancedwesternblotdetectionkit, andHiBond0.45XmECLnitrocellulosemembrane:Amersham,UK. Antibodies,Abcam,UK. Horseradishperoxidase(HRP)conjugatedgoatantirabbitsecondary antibodies:Dakocytomation,Denmark. NylonMembranes,positivelycharged:RocheAppliedSciences,UK. LabelingandDetectionDIGsystemforinsituhybridiasation:Roche AppliedSciences,UK.

65 Ph.D.Thesis2012AlanCarter

ELISAKits–eBioscience,UK HeparinSodium(withpreservative)25,000i.u./5ml,WockhardtUKLtd. AmershamHyperfilm–Amersham,UK

2.1.6. Equipment Thefollowingequipmentwasused: Multimodescanner:TyphoonTM9400(accompanyingsoftwareforimage quantification:ImageQuantTLTM):GEHealthcare,UK. Spectrophotometricplatereader:SPECTRAmaxPLUS384(software: SOFTmaxPRO):MolecularDevices,US. NanoDrop1000spectrophotometer:ThermoFisherScientific,UK. PAGEelectrophoresisandwesternblot:MiniProtean3cellvertical electrophoresissystemandMiniTransBlotcellblottingsystem:BioRad, UK. Sonicator:SonopulsHD2070MS72sonicator,Bandelinelectronics, GmbH&Co.,Germany. Fluorescentplatereader:FluoroSkanAscent(accompanyingsoftware: AscentSoftwareTMversion2.4):ThermoScientific,UK. PCRMachines:TechneTC3000G,Geneflow;DNAThermalCycler480, PerkinElmer.ThermalCycler,HybaidPCR,OmniGene.

2.1.7. TransgenicMouseandMEFsources NEIL1 /andNEIL2 /knockoutmiceweregeneratedbyDr.RhodElderusing published protocols (PerezCampo et al ., 2007). OGG1 / mice had been designed previously (Klungland et al., 1999) and were obtained from embryosstoredatthePattersonInstitute.AllMEFsusedofthesegenotype

66 Ph.D.Thesis2012AlanCarter werederivedfromthesemiceandinadditionfromfromNTH1 /(Elderand Dianov2002)and[NTH1/OGG1] /(Karahalil etal., 2003)mice.

2.2. Methods

2.2.1. MouseColonyManagement Heterozygous (HET) NEIL1, putative NEIL2 and OGG1 female mice were backcrossedtoaC57Bl/6Jmale.AHETmalefromtheresultingoffspringwas selected at randomto breed tofurther C57B1/6J femalesfor afurther five generations. Various HET mice were intercrossed and produced mice for initial phenotypic characterisation. Knockout x knockout (KO x KO) and wildtype x wildtype (WT x WT) mice were interbred to produce mice for experimentalpurposessuchasthecreationofMEFs.Allmicewerehousedin solidflooredcageswherefoodandwaterwereprovided adlibitum .

2.2.2. MouseColonyCharacterisation TheoffspringofHETXHETcrosseswerehousedinboxesseparatedbysex andlitter,andthesebecamethecharacterisationgroup.Mousebodyweight was then measured at monthly intervals and mice were also examined to detect outward phenotypic changes. After 12 months the NEIL1mice were sacrificed by cervical dislocation and scalp to tail length of the mouse measured.Majororganswerealsotakenandtheweightsoftheheart,lungs, liver, kidney, spleen, omentum fat, reproductive organs (testes and both ovariesanduterisinmaleandfemalemicerespectivly)andadrenalglands measured.Sixmaleandsixfemalemiceofeachgenotypehadbloodsamples takenbycardiacpuncturewhilstunderterminalanaesthetic(isoflurane)tobe usedwithcytokineELISA’s.

67 Ph.D.Thesis2012AlanCarter

2.2.3. LPSInducedOrganDamage ForMPO,MDAandGSHassays,thewildtype,NEIL1 /andOGG1 /micetobe treated with LPS were first weighed individually, theninjected i.p. with the appropriateamountofLPS(20mg/kg)inphosphatebufferedsaline(PBS;pH 7.4).After12hthemiceweresacrificedbycervicaldislocationandtheheart, lungs,liver,kidneys,andasectionofileumwereremovedandsnapfrozenin liquidnitrogen.Thesewerethenstoredat80 oC.

2.2.4. InductionofImmuneResponse For cytokine assays the wildtype, NEIL1 / and OGG1 / mice to be treated with LPS were first weighed individually, then injected i.p. with the appropriate amount of LPS (2 mg/kg) in PBS. After 1, 6 or 24 h the mice were placed under terminal anaesthetic (isoflurane) and exsanguinated by cardiac puncture after which they were killed by cervical dislocation. The bloodwasstoredonicewithheparin(0.05ml/mlblood).Bloodsampleswere then centrifuged for 15 min at 8000 g and the supernatant removed to a separateEppendorf.Bothcellsandsupernatantwerethanstoredat80 oC.

2.2.5. EstablishmentofMEFculturesfrommouseembryos Inordertoestablishwildtype,NEIL1 /andOGG1/MEFcelllinesWTxWT andKOxKOpairingsweresetupinordertoproducetherequiredoffspring. The females of these pairings were checked daily for vaginal plugging that would indicate that mating had occurred. Thirteen days after plugging was observed the pregnant mouse was killed by cervical dislocation, the uterus removed,andplacedinfilteredphosphatebufferedsaline(PBS). The individual embryos were then removed from the uterus and separated from the placenta. The head was cut off and stored for genotyping.

68 Ph.D.Thesis2012AlanCarter

Additionally the umbilical chord and internal organs (heart, liver, kidney & gut)wereexcisedfromtheembryo,andtheembryowasthenwashedinPBS toremoveanyremainingdebris.Usingascalpelbladetheremainingtissue wasmincedfinely,and1mlof0.5g/mltrypsinadded.Toensuresufficient primarybreakdownoftheembryo,thetrypsin/embryomixturewasaspirated through a 1000 l pipette tip. The mixture was then incubated in a water bathfor30minat37°C,mixingat10minintervals. In order to wash out the trypsin the mixture was diluted in 6 ml of MEF mediaA,andwasthencentrifugedfor5minat126g.Atthispointajellylike substance may have formed in the supernatant and this was kept and the rest of the supernatant discarded, and cells from the pellet and jelly resuspendedin1mlMEFmediaA.Thecellswerethenplatedonto25cm 2 (T25)ventedcellcultureflasksandincubatedwith3mlofMEFmediaAina humidifiedatmospherecontaining5%CO 2and3%O 2.Afteraday,whenthe cellshadreachedconfluence,theywerewashedwithPBS,250lofTrypsin addedandthecellsincubatedat37°C.Whenallcellshaddetachedfromthe flask,2mlofMEFmediaAwasaddedandthemixturetransferredtoasterile centrifugetube.Cellswerecentrifugedfor5minat126 g,thesupernatant discardedandthepelletwasresuspendedin1mlofMEFmediaA.Thiswas thenplacedinanewT25and3mlofprimaryMEFculturemediumAadded. Whenthecellsinthisflaskhadgrowntoconfluencetheywereremovedfrom theflaskbytrypsinisationandaftercentrifugationinMEFmediaA,thecells were resuspended in media containing 10% dimethyl sulfoxide (DMSO), transferredtoalabelledcryotubeandplacedonicefor30minbeforebeing placedinstorageina80 oCfreezer.

69 Ph.D.Thesis2012AlanCarter

2.2.6. MEFculture / / NTH1 and [OGG1/NTH] MEFs were taken from stocks held in liquid N 2. Cellswerethawedrapidlyina37°Cwaterbath,and6mlofMEFmediaB, held at room temperature,added slowly. To wash out the DMSO, the cells werecentrifugedat126 gfor5min,thesupernatantdiscardedandthecells resuspended in MEF media B. All MEFs were incubated at 37°C in 75 cm 2

(T75)ventedflasks inahumidifiedatmospherecontaining5%CO 2and3%

O2. Cells were passaged upon reaching confluence by washing cells in PBS, trypsinisingthemwith750lofTrypsinEDTAandincubatingat37°C.When all the cells had been detached from the flask, 6 ml of MEF media B was added and the mixture transferred to a sterile centrifuge tube. Cells were centrifugedfor5minat126 g,thesupernatantdiscardedandthepelletwas resuspendedin1mlofMEFmediaB.TheMEFswerethencountedusinga haemocytometerand6x10 4cellsplatedinanewT75flaskcontaining10ml ofmediumB. At regular stages, stocks of MEFs were frozen for future use; cells were pelletedbycentrifugationandthesupernatantdiscarded.Thecellswerethen resuspendedin1mlofMEFmediaB containing10%DMSO,andtransferred toalabelledcryotube,whichwasplacedonicefor30minbeforestorageina 80 oCfreezer.

2.2.7. TreatmentofMEFswithLPS Duplicate samples of 2 x 10 5 MEF cells of each genotype WT, OGG1 /, NTH1 /,[OGG1/NTH1] /andNEIL1 /)wereplatedinseparatewellsina24 wellplate.Controlswereincubatedwith1mlofMEFmediaBonly,whilethe

70 Ph.D.Thesis2012AlanCarter experimentalsamplesweretreatedwith1mlofMEFmediaBcontaining0.25 g/ml purified LPS from Escherichia coli serotype 127:B8. Plates were then incubatedfor18hbeforethesupernatantwasaspiratedintocleanEppendorf tubesandfrozen.

2.2.8. GenomicDNAextraction DNAwasextractedfromavarietyofsources,includingearpunches,headsof embryos and MEF cells. Such material was placed into a clean 0.5 ml Eppendorf tube. One hundred and fifty microlitres of the appropriate DirectPCRLysisReagentwasadded(DirectPCRearforearpunchandhead pieces,DirectPCRcellforcells).Thesampleswerethenincubatedfor5–6h at 55°C with occasional agitation (~ every 2 h) to ensure all the material came into contact with the lysis solution. At the end of the incubation, sampleswereexaminedvisuallytoensurethatcompletelysisofthematerial hadoccurred.Ifnotthemixturewasthenleftuntillysishadbeencompleted (uptoovernight).Afterlysis,thetemperaturewasincreasedto85°Cfor45 mintoinactivatetheProteinaseK.DNAconcentrationwasdeterminedprior tostoragebymeasuringtheabsorbanceof thesolutionat260nmusinga Nanodrop spectrophotometer. For quality control purposes, the ratio of absorbance at λ = 260 and 280 nm and at λ = 260 and 230 nm were monitored and values from 1.8 to 2.2 were accepted as good quality indicators.

2.2.9. PolymeraseChainReaction(PCR)Genotyping

For each 50 l reaction, 1.5 l of the appropriate DNA solution (section 2.2.8)wasused,towhichwasadded;5lof10xTaqbuffer,0.5lofdNTPs (25 mM), 1 l of forward primer (10 pmol/l), 1 l of reverse primer (10 pmol/l), 0.2 l of Taq DNA polymerase and 38.8 l of H 2O. The PCR

71 Ph.D.Thesis2012AlanCarter amplification cycle was as follows; 95 oC for 1 min; 95 oC for 30 s (denaturing), ~60 oC (varies according to primer used; Table 2.4) for 30 s (annealing), and 72 oC for 1 min (elongation) for 30 cycles; 72 oCfor 5 min and25 oCfor1s.

2.2.10. AgaroseGelElectrophoresis

Agarosegelswerepreparedbymeltingagarosein0.5xTBEinamicrowave. 6lofloadingbufferwasaddedtoeach50lPCRreactionand15lofthis wasthenaddedintoeachwell.Inordertoestimatefragmentsize,onewell wasloadedwith3lofaDNAmarker(HyperLadderI).ForDNAfragments below1kba1.5%agarosegelwasusedwhilstforthosefragmentsabove1 kba0.8%agarosegelwasrequired.Electrophoresiswasperformedin0.5x TBE at 90 V for approximately 45 min. Results were visualised by using a Typhoon TM laser,scanningat532nm.

2.2.11. RNAextraction FortotalRNAextraction,2x10 5MEFcellsweretrypsinised(section2.2.6) andpelletedinacentrifugeat8000 gfor10min.ARNeasyminiprepkitwas usedaccordingtomanufacturer’sinstructions.Cellsweredisruptedbyadding 600lofbufferRLTandthemixturehomogenisedbypassingthelysateat least5timesthroughablunt20–gaugeneedleattachedtoasyringe.600l of70%ethanolwasaddedtothehomogenisedlysatewhichwasmixedby pipettingand700loftheresultingmixtureaddedtoanRNeasyspincolumn placedina2mlcollectiontube.Thiswascentrifugedat8000 gfor15sand the flow through discarded. Seven hundred microlitres of buffer RW1 was addedtothespincolumn,themixturecentrifugedat8000 gfor15sandthe flow through discarded. The column membrane was washed by adding 500lofbufferRPEandcentrifugingat8000 gfor15sanddiscardingthe flowthrough;thisstepwasrepeatedbutwiththiscentrifugationsteplasting

72 Ph.D.Thesis2012AlanCarter

2mininordertodrythemembrane.Thespincolumnwasplacedinaclean 1.5 ml collection tube and 30 l of RNase free water was added to the column.Thiswascentrifugedat8000 gfor2mintoelutetheRNA.TotalRNA concentration was determined by measuring the optical density of the solutions at λ= 260 nm using an ND1000 spectrophotometer (NanoDrop Technologies).

2.2.12. Reversetranscription(RT) 1.5gofRNAwasdissolvedin11.75lofRNasefreewaterandincubated for10minat70°C.ThemRNAwasreversetranscribedintofirststrandcDNA by adding 4 µl MgCl 2 (25 mM), 2 µl 10x reverse transcriptase buffer, 1 µl dNTPs(10mM),1µlrandomprimersand0.25µlAMVreversetranscriptase. Thesampleswerethenincubatedatthefollowingtemperatures:25 oCfor10 min,42 oCfor1h,95 oCfor5min and0 oC for10mins.ThePCRstepwas performedwithTaqDNApolymeraseaspreviouslydescribed(section2.2.9) using1µlofcDNAwithanannealingtemperatureof60 oC.

2.2.13. ProteinAnalysis

2.2.13.1. Proteinextractionfrommousetissues Approximately5mgofmousetissuewasaddedintoacleanmortar,which was kept cool over ice, 300 l cold RIPA buffer added and the organ was disruptedusingapestel.Thesolutionwastransferredtoa1.5mlEppendorf tubeandagitatedfor2honice.Thesamplewascentrifugedat8000gfor 20minat4°C,andthesupernatantwasremoved.20lofthesupernatant wasusedforproteinquantification(see2.2.13.2).Anadditionalsupernatant aliquot,tobeusedforthewesternblot,wasdilutedin1xSDSPAGEloading bufferanddenaturedbyheatingto95°Cfor5min.

73 Ph.D.Thesis2012AlanCarter

2.2.13.2. Proteinquantification Diluted protein samples (10 l, 1/5 1/25 dilution) and a range of bovine serum albumin (BSA) protein standards (10 l, 0 – 2.0 g/l) were mixed with 200 l of BioRad DC protein assay reagent, in triplicate, in a 96well plate.Theabsorbanceat595nmwasmeasuredineachwellusingaplate reader. Protein concentration in the supernatant was determined using the standardcurve.

2.2.13.3. Westernblot Upto50gofcelllysate(see2.2.13.1)in1xSDSbufferwasseparatedona 12or16%polyacrylamidegel(Protogel)byelectrophoresisfor1hat200V, in SDS running buffer. A blue prestained molecular weight marker was included in each gel. A positive control in the form of protein from a WT animal was also included. The proteins were then transferred onto a nitrocellulose membrane by electroblotting for 1 h at 100 V, in ice cold western blotting transfer buffer. The membrane was then incubated in blockingsolutionfor1hatRTandthenincubatedwithprimaryantibodyin blockingsolution(dilution:1/2000)for1hatroomtemperature.Afterthree washes in TBS(T), the membrane was incubated with HRP conjugated secondaryantibodyinblockingsolution(dilution:1/1,000)for1hatRT.The blotwasthenwashedthreetimesinTBS(T)priortoECLdetectionaccording tothemanufacturer’sinstructions.Briefly,themembranewasdrainedand1 ml of a 50:50 mixture of reagent A and reagent B was poured over the membrane and incubated for 5 min at room temperature. The membrane wasdrainedoftheexcessECLreagentandexposedtoECLsensitivefilm.

74 Ph.D.Thesis2012AlanCarter

2.2.13.4. ELISA ToeachwellofaMaxisorp96wellplate,50lofcarbonatebuffercontaining 25 g/ml rat monoclonal anti(mouse)interleukin6 IgG was added, and incubated overnight at 4 oC. Each well was washed twice with PBS and blocked with 100 l of PBS containing 5% (w/v) nonfat milk (NFM) and incubatedatroomtemperatureforafurther2h.Eachwellwaswashedtwice with PBS before triplicate samples of 50 l of either, increasing concentrationsofIL6intissueculturemedium,oreachsamplewasaddedto a well. Following incubation for 2 h at room temperature, the plate was washed three times in PBS and 50 l of rabbit polyclonal anti(mouse) interleukin6IgGdiluted1:2000inPBScontaining0.5%(w/v)NFMwasthen addedtoeachwell.Afterincubationatroomtemperaturefor2h,theplate was washed 3 times with PBSTween 20, 50 l of goat antirabbit IgG conjugated with horseradish peroxidase diluted 1:2000 in PBS containing 0.5%(w/v)NFMadded,andtheplateincubatedat4°Cforafurther16h. Plateswerethenwashedafurther3timeswithPBScontaining1%Tween20 and50lofAmplexRedmastermixwasadded.After5mintheplatewas transferred to a Typhoon TM laser system, and fluorescence visualised by scanningat580nm.Astandardcurvewasproducedusingtheresultsfrom theknownlevelsofIL6andthiswasusedtodeterminethelevelsofIL6in thecellsupernatants. AllotherELISAswereobtainedfromeBioscience:theisdescribedinbrief.50 l of sample was placed into each well of a 96 well plate along with a standard curve of the protein to be examined, and incubated overnight at 4oC.Thewellswerethenemptiedandwashed3timesinPBST,100lof blockingsolutionadded,andincubatedfor1hatRT.Againthewellswere emptied, washed 5 times with PBST, 50 l of primary antibody solution addedandincubatedfor2hatRT.Afteranother5washeswithPBST,50l

75 Ph.D.Thesis2012AlanCarter ofthedetectionantibodysolutionwasaddedtothewellsandincubatedfora further30min.Againthewellswerewashed5timeswithPBSTand50lof thedevelopersolutionwasadded.Thedevelopmentwashaltedafter10min bytheadditionof25lof2NH 2SO 4.Theabsorbancewasthenreadat650 nmandcomparedwiththestandardcurvetoidentifytheproteincontentof theoriginalsamples.

2.2.13.5. MyeloperoxidaseAssay The protocol was adapted from Graff et al., 1998. ~25 mg tissue samples wereweighedandplacedin1.5mlEppendorftubescontaining5l/mgMPO workingbuffer.Thiswassonicatedovericefor2sandtheresultingsolution centrifugedat8000 gfor15min.Afterdiscardingthesupernatantthepellet wasresuspendedin500lofMPOworkingbuffer(Graff etal., 1998). Theresultingmixturewassonicatedovericefor20sandthensnapfrozen, afterwhichitwasthawed.Thisprocedurewasrepeatedtwice.Theresulting solutionwascentrifugedat8000 gfor10minandstoredonice. An aliquot of the supernatant was diluted 1:2 in working buffer and a DC protein assay was performed (Section 2.2.13.2). To 10 l of diluted supernatant190lofdetectionbufferwasaddedandtheabsorbancereadat 650nmevery30sfor2mins.Thiswascomparedtotheproteinresultfrom theDCassaytogivearesultmeasuredinmU(MPO)/mgprotein.

2.2.13.6. MalondialdehydeAssay The protocol was adapted from Mabley et al., 2005a. Tissuesamples were weighed (~20 mg) and placed in MDA working buffer (100mg/ml) insidea 1.5mlEppendorftube.Thiswasthensonicatedfor5s.Inaseparate1.5ml Eppendorf,75lofhomogenatewasplacedtowhichwasadded546l0.8%

76 Ph.D.Thesis2012AlanCarter

(w/v)thiobarbuticacid,75l8.1%(v/v)SDS,546l20%(v/v)aceticacid

(pH 3.5) and 225 l distilled H 2O. An external standard was created using 1,1,3,3tetramethoxypropane (0 – 14 mmol). All solutions were heated to 90 oCfor45minandtheabsorbancemeasuredonamicroplatereaderat532 nm. Protein in each sample was measured using a DC protein assay (see 2.2.12.2). MDA were adjusted to give a result measured in nMol(MDA)/mg protein(Mabley etal. ,2005a).

2.2.13.7. GlutathioneAssay The protocol was adapted from Rahman et al., 2006 . Tissue samples (~20 mg)wereweighedandplacedin1.5mlEppendorftubescontaining5l/ml 0.6% (w/v) sulfosalcylic acid solution (if assaying liver 5% (w/v) metaphosphoricacidwasaddedaswell).Themixturewassonicatedoverice for5 sand centrifuged at 3000 g at 4 oCfor 10 min.The supernatant was thenremovedandstoredat4 oCupto1hbeforeuse.Sampleswerediluted

1/20inddH 2Oimmediatelybeforeuse(Rahman etal., 2006). 20lofthedilutedsampleswereaddedtowellsona96wellplate.2mgof both 5,5’dithiobis(2nitrobenzoic acid) (DTNB) and Nicotinamide adenine dinucleotide phosphate (NADPH), and 40 l of glutathione reductase (GR) wereeachaddedtoseparatevialsof3mlKPEbuffer.DTNBandGRsolutions were mixed together equally and 120 l added to each well. The samples wereincubatedatroomtemperaturefor30sand60lofNADPHsolution wasadded.Absorbancewasreadat412nmimmediatelyandevery30sfor 2 min. Results were compared to a standard curve of glutathione (GSH). ProteincontentwasmeasuredusingaDCproteinassay(2.2.13.2)andGSH levelsreportedasnmol(GSH)/mgprotein.

77 Ph.D.Thesis2012AlanCarter

2.2.14. StatisticalAnalysis Inordertocomparenumbersofpupsofeachgenotypeineachlitterachi squaredtestwasperformed.Tocomparesurvivalratesofeachgenotypea logrankanalysiswasperformed. When comparing cell cytokine production and mouse cytokine production onewayANOVAswereperformed.ANOVAswereperformedwhencomparing weights,andastherewere3groupsofmice(WT,HETandKO)aLDSpost hoctestwasperformed.Whencomparingorgandamageresults(MPO,MDA andGSH)factorialanalyseswereperformedusinga3wayANOVA.Sample sizewascalculatedusingastatisticalpowerof0.8.A p<0.05wasconsidered statisticallysignificant.

78 Ph.D.Thesis2012AlanCarter

3. Mousemodels:Generationandcharacterisation

3.1. Introduction The first NEIL1 / mice were reported in 2006; there was no immediate difference observed in weight or viability of the mice when compared to NEIL1 +/+ mice. However, after 610 months all the male mice in the third generationbecamesignificantlyoverweightwhencomparedtotheWTmice (meanweight50g vs. 28g),andthefemalemicewerealsooverweight,but toalessseveredegree(mean32g vs. 28g).Theabdominalcavityofboth maleandfemaleNEIL1 /micewasfoundtocontainextensivefatdeposits, andtheirliversweresignificantlylargerduetofatstorage.Theplasmaofthe NEIL1 / mice also contained elevated concentrations of leptin, which is usuallynotedwithelevatedfatdeposits,butnotinsulin(atfastingandfed conditions)whichwouldalsobeexpected(Hoffler etal., 2009).Increasedfat deposits and hyperleptinemia were consistent with the human disease metabolicsyndrome.ItissuggestedbyVartanian etal. thatthebuildupof DNA damage in the mitochondria of the NEIL1 / mice was disrupting the metabolic processes. Other intermittent phenotypes observed included reduced subcutaneous fat deposits, skin ulcerations, joint inflammation, infertility and cancers (Vartanian et al., 2006). However when mice taken fromthiscolonywerebredinadifferentanimalfacility,noobesephenotype was observed in any of the mice bred there despite several years of continuousbreeding(Chan etal., 2009).Thissuggestedthattheremayhave been another reason for the increased fat content in this strain of NEIL1 / mice.In a follow up paper the samegroup, at Oregon Healthand Science University,haveshownthatwithanincreaseinoxidativedamage(causedby ahighfatdiet)agreaterpercentageofmaleandfemalemiceexhibitmarkers the metabolic syndrome, such as increased weight and hyperleptinemia (Sampath et al., 2011). This supports the mitochondrial damage model

79 Ph.D.Thesis2012AlanCarter previously mentioned which suggested that the metabolic syndrome phenotype is not caused wholly by the absence of the NEIL1 gene, but its removal does increase the mouse’s susceptibility to the symptom. The removal of anyprotein which repairs oxidative damagein the mitochondria couldthencontributetothecondition(Sampath etal., 2011).Indeed,inone strain of OGG1 / mice it has been reported that male OGG1 / mice were significantly heavier than OGG1 +/+ mice after 24 28 weeks (Arai et al., 2006). MoreworkhasbeendonetoidentifytheeffectsoftheknockoutofOGG1 in vivo . An OGG1 / mouse was first documented in 1999, and there were no significant differences in viability, and they were indistinguishable from OGG1 +/andOGG1 +/+ miceupto18monthsofage(Klungland etal., 1999). InadifferentstrainofOGG1 /miceitwasnotedthatafter19monthsthe incidenceofcancerintheanimalsincreased(Sakumi etal., 2003). IncontrasttothisworkonNEIL1andOGG1,verylittleworkhasbeendone ontheeffectsofNEIL2 invivo ,andwhilstafewbindingpartnershavebeen identified to this date no NEIL2 / mice have been reported (Bhakat et al., 2004;Das etal., 2007b;Grin etal., 2010).

3.1.1. Aims

Theobjectivesofthischapterareto : I. Confirm that the disruption of the NEIL1 and NEIL2 genes have resulted in the absence of NEIL1 and NEIL2 proteins respectively in newlydevelopedstrainsofmice. II. IdentifyanyphenotypeinthegrossphysiologyoftheseNEIL1 /and NEIL2 /mice,especiallypertainingtosymptomssimilartothehuman metabolicsydrome.

80 Ph.D.Thesis2012AlanCarter

III. ConfirmthepresenceoftheOGG1knockoutconstructinthegenomic DNAofOGG1 /mice.

3.2. Results

3.2.1. NEIL1MouseColony

3.2.1.1. PreparationofNEIL1KnockoutMice. The NEIL1 mouse colony was created from two NEIL1 +/ chimeras created fromEScellspreparedbyDr.RhodElder(PerezCampo etal., 2007).Animals inthiscolonyweregenotypedbyPCR(Figure3.1)andsoidentifiedaseither wildtype (NEIL1 +/+ , WT), heterozygous (NEIL1 +/, HET) and knockout (NEIL1 /, KO) mice. The appropriate mice identified from these PCRs were thenusedintheselectivebreedingoftheNEIL1 /lineandbackcrossingtoa

C57/B16Jbackground(Figure3.2).

Figure3.1:PedegreeofNEIL1 TransgenicMice ♂ Chimera 83 was crossed with a ♀ C57/B16J mouse to produce a litter of WT and HET animals.Thena ♂C57/B16JandHET ♀29werebredtogethertoproduceabackcross,from the resulting litter ♂ 130 was used to further backcross the animals. HET male 20 was crossed with HET ♀ (22 and 25) to produce a litter containing WT, HET and KO animals. ThesemicewerethenbeusedtoproducefurtherWT(140x121),KO(139x146)andHET (138x119&120)litters.

81 Ph.D.Thesis2012AlanCarter

3.2.1.2. ConfirmationofGenotype. InordertoconfirmthedisruptionoftheNEIL1geneatthetranscriptionlevel RTPCR was performed on cDNA isolated from liver tissue excised from NEIL1 / (KO) and NEIL1 +/+ (wildtype) mice (Figure 3.3A). The PCR primers weredesignedtoamplifyasectionofDNA449bpinlengthspanningexons1 –3.ThisampliconwasonlyobservedinthePCRusingtheNEIL1 +/+ sample foritssourcecDNA.ThisconfirmedthattherewasnocompleteNEIL1cDNA insamplescreatedfromRNAextractedfromtissuestakenfromNEIL1 /mice, whilstitwasdetectedinthecDNAcreatedfromWTanimals.APCRspanning exons4and5oftheGAPDHgenewasusedasacontrol,thisfragmentwas predictedtobe222bpinlength.ItspresenceinbothWTandKOsamples confirmedthatthesamplescontainedviablecDNA.

Figure3.2:DiagramoftheNEIL1KnockoutConstructandGenotyping Results (A)TotestfortheWTgene,theprimers1907–3015wereused,givingrisetoabandof 1108bp.Primer1907wasdesignedtoannealtotheregionintheNEIL1genetobedeleted. For the KO allele the primers used were 201 – 807 (1226 bp) where the 201 primer is complementary to a sequence in the TK/Neo cassette. (B) The PCR genotyping results for offspringofNEIL1HETxHETcrosses.Formice2and3,onlythe1108bpbands(leftlane) areobtainedanditisthusaWT,whilstformouse4onlythe1226bpband(rightlane)is obtainedidentifyingitasaKOmouse.However,mouse1showsbothbandsandistherefore aHET.

82 Ph.D.Thesis2012AlanCarter

A Western blot was then used to show the presence or absence of NEIL1 proteininsamplestakenfromNEIL1WTandKOmice.Abandindicatinga protein~44KDa(NEIL1weighs43.7KDa)wasdetectedinthesamplestaken frommaleandfemaleNEIL1WTanimals.InthesamplestakenfromNEIL1 KOanimalsnobandwasobserved(Figure3.3). (A)

(Bi) (Bii)

Figure3.3:ConfirmationofaNEIL1NullPhenotype (A)RTPCRofRNAextractedfromliverofNEIL1WTandKOmice.PCRwasperformed usingprimers328–545(exon12,217bp)forNEIL1andprimers534765(exon45, 222bp)for GAPDH(picturecourtesyof DumaxVorzet).Theabsenceofabandinthe NEIL1laneoftheNEIL1KOindicatesthatNEIL1RNAisnotbeingproducedintheliver ofthesemice.(Bii)10gofliverproteinfrommale and female Wt and Neil1 / were separatedona12%SDSPAGEgel.(Bi)Theproteinsweretransferredontonitrocellulose membraneandthemembraneprobedwithNeil1 /antiserum.Abandcorrespondingto NEIL1(43.7kDa)isevidentintheWTlaneofmalesandfemalesonly,indicatingthatthe NEIL1proteinisnotproducedintheknockoutanimal.

83 Ph.D.Thesis2012AlanCarter

3.2.1.3. ViabilityandMortalityofNEIL1mice. ThenumberofpupsproducedfromNEIL1HETXHETcrosseswereproduced inaratioof31:47:20(WT:HET:KO).Thiswasnotsignificantlydifferentfrom theexpectedratioof1:2:1( p=0.27byChisquaredtest;Figure3.4).

50 47

40 31 30 20 20

Numberof Animals 10

0 WT HET KO Genotype Figure3.4:ThedistributionofgenotypesfromHETxHETbreedingpairsofNEIL1 TransgenicMice. There was no difference between the genotype distribution (1:1.5:0.6) and the expected result(1:2:1; p=0.27). Tofurtherexaminetheviabilityofthemiceacomparisonofthelittersizes fromWTXWT,HETXHETandKOXKOpairswasperformed.Nosignificant difference in litter size was observed ( p=0.18). Neither were there any significantdifferencesinthenumberofmalesorfemalemiceproducedper litter( p=0.28and0.54respectively;Figure3.5). TocomparemortalityratesHETXHETlitterswereseparatedintomalesand femalesandfed adlibitum ,datesofdeathwererecordedandusedtocreate theKaplanMeiersurvivalcurves.Ofthemiceonly5malesdiedduringthe courseoftheexperiment(2WT,1HET,2KO),and3females(2WT,0HET, 1KO),andalldeceasedmicewerefounddeadintheircages.Nosignificant

84 Ph.D.Thesis2012AlanCarter

differenceinmortalitywasobservedbetweenWT,HETandKOmiceineither male( p=0.92)orfemale( p=0.20)animals(Figure3.6). (A)(12 p=0.18) 10 8 6 4 2 Average Litter Size Average 0 WT HET KO Genotype (B)(C) 7 7 (6 p=0.54)(6 p=0.28) 5 5 4 4 3 3 Litter 2 2 1 1

AverageFemales per 0 0 WT HET KO Litter per Males Average WT HET KO Genotype Genotype Figure3.5:AveragelittercompositionfromNEIL1colony (A)Combinedlittersizes,(B)amountoffemalesperlitter,(C)amountofmalesperlitter. Littersizeandcompositiondidnotdiffersignificantlywithgenotype(n=16(WT),10(HET), 13(KO)).

3.2.1.4. NEIL1MouseWeights MicefromHETXHETcrosseswerehousedbysexintheiroriginallittersand fed adlibitum .Theirweightsweremeasuredeverymonthfortwelvemonths. Therewasnoevidencethattheweightoftheanimalsvariedbygenotypeat anytimepoint(Figure3.7). Aftertwelvemonthstheanimalsweresacrificed,measuredfromscalptotail and organs collected and weighed. When examined several mice had

85 Ph.D.Thesis2012AlanCarter symptoms of disease. A single male NEIL1 +/+ mouse had a splenic growth andaNEIL1 /malemousehadacystonitsgut,thatwasnotconnectedto any abnormal growth. One NEIL1 / female mouse had cataracts over each eye,onefemaleNEIL1 +/mousehadalargecystconnectedtoatumouron its stomach, and a NEIL1 +/+ mouse had many smaller cancers along the lengthofitsintestines. (A)Male

(B)Female

Figure3.6:Mortalityratesof(A)Maleand(B)FemaleTransgenicMice SurvivalcurvesforNEIL1miceoverthecourseof370days,LogRankanalysisindicatesno significantdifferenceinthemortalityrateofmale( p=0.92;n=53)orfemale( p=0.20;n=43) WT,HETandKOmice.

86 Ph.D.Thesis2012AlanCarter

(A)Male

50 45 40 35 30 WT 25 20 HET Weight(g) 15 KO 10 5 0 2 3 4 5 6 7 8 9 101112 Age (month) (B)Female

50 45 40 35 30 25 WT 20

Weight(g) HET 15 10 KO 5 0 2 3 4 5 6 7 8 9 101112 Age (Month) Figure3.7:NEIL1transgenicmaleandfemalemouseweightsover12 months Meanvaluesandstandarderrorofmeanfor54micesplitbetween(A)male(n=30)and(B) female mice (n=48); two way ANOVA indicates no significant difference at any time point (Male p>0.06,Female p>0.35) Thelength,BMI,andorganweightsofthemiceareshowninFigures3.810. NosignificantdifferenceswereobservedduetogenotypeinBMIorscalpto taillengths(Figure3.8). Inmalemice,asignificantdifferencewasobservedinthetotalweightofthe sex organs between NEIL1 / and NEIL1 +/ mice (KO 209.6 ±13.7 mg; HET 244.9±7.9mg; p=0.03).Thiswasalsoshownwhenadjustedasaproportion oftotalbodyweight(KO0.5±0.0%;HET0.6±0.0%; p=0.06).Infemale

87 Ph.D.Thesis2012AlanCarter mice,evidenceofasignificantdifferenceintheweightofthesexorganswas observed between HET and KO when adjusted for length (KO 5.8 ±0.9 mg/mm;HET4.4±0.4mg/mm; p=0.08). 100 100 (A) ♂scalptotail (B) ♀scalptotaillength 95 length 95 90 90 85 85 Length (mm) Length 80 (mm) Length 80 75 75 WT HET KO WT HET KO Genotype Genotype 0.03 0.03 (C)0.025 ♂BMI 0.025(D) ♀BMI 0.02 0.02 0.015 0.015 BMI BMI 0.01 0.01 0.005 0.005 0 0 WT HET KO WT HET KO Genotype Genotype Figure3.8:LengthandBMIofNEIL1TransgenicMice Mice were sacrificed at 12 months and weight and length measured (male n=19 WT, 22 HET,7KO;femalen=9WT,19HET,9KO).A–Bshowmeanweightsandstandarderror andC–Dshowsmeanorgansize(±SEM)asapercentageofbodyweight.Nosignificant differenceduetogenotypewasdetectedinscalptotailmeasurement(male p=0.51;female p=0.07)orBMI(male p=0.27;female p=0.41). TherewasasignificantdifferenceinmalemouseommentumweightwithKO mice (1124.3 ±102.7 mg) having significantly less ommentum fat than WT mice(1537.5±56.6mg; p=0.03).Thiswasalsothecasewhenconsidering the spleen as a percentage of total bodyweight (KO 2.7 ±0.2 %; WT 3.4 ±0.1 %; p=0.02)and the scalp to tail length of the animal (KO20.5 ±1.6 mg/mm;WT17.2±0.6mg/mm; p=0.02;Figure3.9).

88 Ph.D.Thesis2012AlanCarter

(A) Organweight 3500 40 (p=0.05) 3000 20 2500 0 (p=0.03) WT

Weight(mg) Adrenals HET 2000 KO 1500 Weight (mg) Weight (p=0.07)( p=0.03) 1000 500 0 Heart Lungs Spleen Liver Kidneys Sex Organs Abdominal Fat Ommentum Tissue Fat (B) Organweightasapercentageofbodyweight

8

7 0.1

6 0.05

%Total 0 5 Bodyweight Adrenals (p=0.02) WT 4 HET KO 3 (p=0.06) % Total Bodyweight % Total 2 1 0 Heart Lungs Spleen Liver Kidneys Sex Organs Abdominal Fat Ommentum Fat Tissue (C) Organweightpermmlength

35

30

25 0.4 (p=0.02) 20 0.2 WT 0 HET mg/mm mg/mm 15 Adrenals KO 10 5

0 Heart Lungs Spleen Liver Kidneys Sex Organs Abdominal Fat Ommentum Fat Tissue Figure3.9:MaleNEIL1transgenicmouseorganweightcomparisons Miceweresacrificedat12monthsandtheirorgansremovedandweighed(malen=19WT,22 HET, 7 KO). Panel A shows total tissue weights by genotype, panel B tissue weight as a percentage of body weight by genotype and panel C organ weight to length by genotype. TherewasevidenceofadifferencebetweenWTandKOintheweightofadrenalglandsand kidneys( p=0.07).TherewasasignificantdifferencebetweenHETandKOintheweightsof themousesexorgans( p=0.03)andevidenceofadifferencewhenseenasapercentageof bodyweight( p=0.06).TherewasasignificantdifferencebetweenWTandKOforommentum fatineachcase( p<0.03).

89 Ph.D.Thesis2012AlanCarter

(A)Organweight

3500 (p=0.03) 3000 40 2500 20 2000 0 WT HET Weight(mg) 1500 Adrenals KO Weight (mg) Weight

1000 (p=0.08) 500 0 Heart Lungs Spleen Liver Kidneys Sex Organs Abdominal Ommentum Fat Fat Tissue (B) Organweightasapercentageofbodyweight

8 (p=0.01) 7 0.15 6 0.1 0.05 5 %Total 0 WT

Bodyweight 4 Adrenals HET KO 3

% Total bodyweight Total % (p=0.08) 2 1 0 Heart Lungs Spleen Liver Kidneys Sex Organs Abdominal Fat Ommentum Fat Tissue (C)Organweightpermmlength

40 (p=0.02) 35 0.6 30 0.4

25 0.2

mg/mm 0 WT 20 HET Adrenals KO 15 mg/mm length mg/mm

10 (p=0.09) (p=0.08)

5

0 Heart Lungs Spleen Liver Kidneys Sex Organs Abdominal Fat Ommentum Fat Tissue Figure3.10:FemaleNEIL1transgenicmouseorganweightcomparisons Miceweresacrificedat12monthsandtheirorgansremovedandweighed(femalen=9WT,19 HET, 9 KO). Panel A shows total tissue weights by genotype, panel B tissue weight as a percentageofbodyweightbygenotypeandpanelCorganweighttolengthbygenotype.In eachcasethereweresignificantdifferencesbetweenHETandKOforadrenalglands( p< 0.03). TherewasalsoevidenceofadifferenceinspleenweightsbetweenWTandKOineachcase (p<0.09). Evidence of a significant difference was observed between HET and KO in the weightofthesexorganswhenconsideringlength( p=0.08).

90 Ph.D.Thesis2012AlanCarter

InfemalemicetheadrenalglandsweresignificantlyheavierinNEIL1 /mice (27.8±7.2mg)thaninNEIL1 +/mice(17.3±1.4mg; p=0.03),thiswasborn outwhenconsideringtheweightasaproportionofbodyweight(KO0.8±0.2 %; HET 0.5 ±0.1 %; p=0.01) and when compared to length (KO 0.3 ±0.1 mg/mm; HET 0.2 ±0.0 mg/mm; p=0.02). There was also evidence of a differenceinmaleadrenalglandweight,wheretheNEIL1 /mice(27.8±7.2 mg)wereheavierthantheNEIL1 +/+mice(17.3±1.4mg; p=0.03). InfemalemicetherewasevidencethatthespleensinNEIL1KO(139.3±14.4 mg)miceweresignificantlylighterthantheNEIL1 +/+ mice(230.4±43.7mg; p=0.08).Thiswasalsothecasewhenconsideringthespleenasapercentage oftotalbodyweight(KO0.4±0.0%;WT0.7±0.2%;p=0.08)andthescalp to tail length of the animal (KO 1.7 ±0.2 mg/mm; WT 2.8 ±0.6 mg/mm; p=0.09;Figure3.10).

3.2.2. NEIL2MouseColony

3.2.2.1. Genotyping The NEIL2 mouse colony was bred from NEIL2 +/ chimeras created from constructedEScellspreparedbyDr.RhodElder(PerezCampo etal .,2007). AnimalsinthiscolonyweregenotypedbyPCR(Figure3.11)andsoidentified aseitherwildtype(NEIL2 +/+ ,WT),heterozygous(NEIL2 +/,HET)andknockout (NEIL2 /, KO) mice. The appropriate mice identified from these PCRs were thenbeusedintheselectivebreedingoftheNEIL2/lineandbackcrossingto aC57/B16Jbackground.

91 Ph.D.Thesis2012AlanCarter

(A) Pme l Fse l Pac l Asc I 476 -812 269 4248

Tk/Neo -871 1 kb 3.28 kb 3.8 kb 4343 201 963 410 (B)

Figure3.11:TheNEIL2KnockoutConstructandGenotypingResults . (A)DiagramofNEIL2construct.TotestfortheWTgene,theprimers410–963wereused, givingrisetoabandof553bp.Primer410wasdesignedtoannealtotheregiontobedeleted intheNEIL2gene.FortheKOalleletheprimersusedwere871–201(1.3kb)wherethe201 primeriscomplementarytoasequenceintheTK/Neocassette.(B)PCRgenotypingresultsfor offspring of NEIL2 HET x HET crosses. For mouse 3, only the 553 bp band (left lane) is obtainedanditisthusaWT,whileformouse1onlythe1.2kbband(rightlane)isobtained andisthusaKOmice.However,mouse2showsbothbandsandisthereforeaHET.

3.2.2.2. WesternandRTPCR Theconfirmationofgenotypewasperformedbyacolleague(Saad,WM),the resultsofwhicharegiveninbriefbelow. InordertoconfirmthedisruptionoftheNEIL2geneatthetranscriptionlevel RTPCR was performed on cDNA produced from mRA obtained from liver, testes and skeletal muscle tissue excised from NEIL2 / (KO) and NEIL2 +/+ (wildtype)mice(Figure3.12A).ThePCRprimersweredesignedtoamplifya sectionofDNA ~600bpinlength.ThisampliconwasobservedinallthePCRs using animals identified as NEIL2 +/+ and NEIL2 / by genotyping when comparedtoapositivecontro,althoughtherewerevariancesinthestrength ofthebandproduced.SpecificallythebandsforWTskeletalmuscleandKO

92 Ph.D.Thesis2012AlanCarter liverweremuchlighterthanothersproducedfromthesameamountofsource cDNA.ThisindicatedthatNEIL2mRNAwasstillbeingproducedintheputative NEIL2 /mouse. (A)RTPCR

(Bi) (Bii)

Figure3.12:ConfirmationofaNEIL2NullPhenotype (A)RTPCRofRNAextractedfromNEIL2WTandputativeKOmice.PCRwasperformedon tissuestakenfromliver,testesandskeletalmuscle.Thereisabandpresentineachlaneat ~600bpindicatingthepresenceofcDNAcorrespondingtoNEIL2mRNA.(Bi)10µgofprotein extracts from WT and Neil2 /livers(male)andproteincontrol(+ve)wereseparated on a 12% SDSPAGEgel.(Bii)Theproteinwastransferonto a nitrocellulose membrane and the membranewereprobedwithNeil2 / primaryantibody,abandcorrespondingtoNEIL1(36.9 kDa)isevidentintheWT,KOandpositivecontrollanes,indicatingthattheNEIL1proteinis producedintheputativeknockoutanimal(datacourtesyofSaadWM). A Western blot was used to identify the absence of the NEIL2 protein in samplestakenfromNEIL2WTandKOmice.Abandindicatingaprotein~37 KDa(NEIL2weighs36.9KDa)wasshowninthesamplestakenfromNEIL2 +/+ andNEIL2 /miceaswellasthepositivecontrol.ThisindicatedthattheNEIL2 proteinwasstillbeingproducedinitsundisruptedformintheputativeNEIL2 / mice(Figure3.12).

93 Ph.D.Thesis2012AlanCarter

3.2.3. OGG1MouseColony

3.2.3.1. OGG1MouseGenotyping OGG1 / embryos were removed from storage in liquid nitrogen and thawed andimplantedintoafemalemousetobebroughttoterm.Theseanimalswere then bred with WT (C57/B16J) mice to produce OGG1 +/ mice. Animals from theselitterswereinterbredtoproducewildtype(OGG1 +/+ ,WT),heterozygous (OGG1 +/,HET)andknockout(OGG1 /,KO)mice.Animalsinthiscolonywere genotypedbyPCR(Figure3.17)andsoidentifiedasWT,HETandKOmice. The appropriate mice identified from these PCRs were then used in the selectivebreedingofOGG1 +/+ andOGG1 /forexperimentation. (A) Xho I Xho I Hind lI Hind II -100 303 I762 l 1197 3 1.8 0 6 Pgk-kb Neo 3.1 4.7 kb kb 2327 663 NEO (B)

Figure3.13:DiagramoftheOGG1KnockoutConstructandGenotypingResults (A)DiagramofOGG1knockoutconstruct.TotestfortheWTgene,theprimers2327–663 wereused,givingrisetoabandof323bp.Primer1907wasdesignedtoannealtothedeleted regionintheNEIL1gene.FortheKOalleletheprimersusedwereNEO–2327(~1000bp) where the NEO primer is complementary to a sequence in the TK/Neo cassette. (B) PCR genotypingresultsforoffspringofNEIL1HETxHETcrosses.Foranimal2,onlythe323bp bandisobtainedanditisthusaWT,whilstforanimal3onlythe1000bpbandisobtained identifyingitasaKOmouse.However,animal1showsbothbandsandisthereforeaHET.

94 Ph.D.Thesis2012AlanCarter

3.3. Discussion

InordertoidentifyphenotypesdisplayedbyDNAglycosylasedeficientmice,a newstrainofNEIL1 /micehasbeencreated.PCR,RTPCRandwesternblot proceduresindicatethatdisruptionoftheNEIL1genehasprovedasuccess. The PCR test to identify changes in genomic mouse DNA of the mice has proved the existence of both the WT gene and the correctly placed KO cassettewithinthecolony(Figure3.1).RTPCRhasalsoindicatedthelackof NEIL1mRNAproductionwithinthetestedanimals(Figure3.3). Furthermore, the western blotting indicates that the NEIL1 protein, whilst presentinNEIL1 +/+ animals,isnotdetectedinthetissuesoftheNEIL1 /mice. ThebandproducedfromsamplestakenfromWTanimalsisattheexpected position on the blot to be identified as the NEIL1 protein (Figure 3.3; 43.7 kDa),butthereisalsoalighterbandat~28kDa.WhentheNEIL1proteinwas first reported the western blot identifying it had severalbandsoneofwhich wasaround25kDa(Takao etal., 2002a). WhenconsideringthemeanweightsofotherC57BL/6micecoloniesinwhich themouseweightsrarleyexceed35g(males)and30g(females)(Arai etal., 2006;Goodrick etal., 1990),comparedtothistheweightsofthemiceinthis colonyareveryhigh,especiallythoseofWTmaleswhoat12monthshavea meanweightof47.7g.Sowhilstthisdoesnotdirectlysupportthetheorythat thelackoftheNEIL1proteinleadstotheonsetofmetabolicsyndrome,these animalsarealreadyverylarge,afactorthatperhapseclipsesanydifferences thatwouldbeshownfromtheknockoutoftheNEIL1gene. The NEIL1 / mice reported here did not display a comparatively obese phenotype when compared to their WT siblings, nor was the extensive abdominalfatdescribedbyVartanian etal .,(2006)foundintheNEIL1 /mice. Indeed, the ommentum fat content of the NEIL1 / was significantly lighter than that of the NEIL1 +/+ mice. Previous observations of NEIL1 / mice have also described enlarged livers and kidneys due to fatty deposits within them

95 Ph.D.Thesis2012AlanCarter

(Vartanian et al., 2006). This was not observed in the newly developed NEIL1 / mice. Indeed there was a suggestion that the kidneys of the male NEIL1 /micewerelighterthanthoseoftheNEIL1 +/+ micealthoughthiswas foundtobenonsignificantafteradjustmentforweightandlength. Significantdifferenceswereobservedbetweenweightsofreproductivetissues andadrenalglands.Changesintheweightsofreproductivetissuesareoften synonymous with changes in the output of the hormones associated with them, ( eg. testosterone in males) or a signof greater hormone output from othersources( eg .FSHinfemales;(HewittandKorach2003;Jin etal., 2008)). Theincreaseinthesizeoftheadrenalglandsissuggestiveofanincreasein adrenalinproduction.Allofthesehormonesaffectbehaviour,andintherecent paperbySampath etal .(2011)smallchangesinbehaviourwerenotedtothe mousecircadianrhythms.Themiceseemedtobeactiveformoreofthelight dark cycle, but they did not engage in much exercise during this time, preferringtoeat. One reason for the apparent differencesin the two NEIL1 /strains could be the genes foreign to C57BL/6 mice flanking the NEIL1 gene. This problem stemsfromthefactthattheEScellsthatareusedtocreatethechimerafor the knockout are usually from a different strain of mice (Tc1) to the backgroundthattheKOgenewillbebackcrossedonto(C57BL/6).Thus,not onlythedisruptedgenewillbetransmittedtotheirprogenitorsbutanygenes that are on the same allele. When comparing the knockout animals created withthismethodwithwildtypeanimals,mostofthesetransmittedgeneswill not pose a problem, due to their independence from the knockout gene (Wolfer etal., 2002). However,foranygeneslinkedtothetargetedgenea“linkagedisequilibrium” will be created, because the null mutation will be flanked by two foreign genes, and the wildtype flanked by two C57BL/6 genes. This could causeaneffectthatwouldbeconfusedforanovertphenotype.Thiscanbe

96 Ph.D.Thesis2012AlanCarter overcome by using C57BL/6 to create the ES cells, or by breeding an (C ) extensivelybackcrossedknockout(10generations)withthestraintheEScells werecreatedfromandcomparingthephenotypeoftheresultingmicetothat ofthosebeinginvestigated(Wolfer etal., 2002).TheEScellsforourNEIL1 / mice were taken from TC1 mice, and those from the previously reported NEIL1 / colony used ES cells from CJ7 mice which could account for the differenceinphenotype.

(A)

(B )

Figure3.14:Thecreationoftransgenicmicecanresultinlinkagedisequilibrium ThecloneddisruptedC57BL/6geneofinterestisinsertedintotheEScellDNA(A),andthe resultingES cellsarecombinedwithblastocyststocreatechimerascontainingthedisrupted gene. The resulting chimera is bred with a C57BL/6 mouse (B) and through this and successivebackcrossestheallelecontainingthedisruptedgeneisintegratedintotheC57BL/6 DNA (C). However, the flanking genes on the Tc1 allele will always be associated with the knockout. ThesuccessoftheproductionoftheNEIL1knockoutmodelwastemperedby the conflicting results in the NEIL2 genotyping, RTPCR and western blot. Indeed,boththeNEIL1andNEIL2strainswerecreatedbythesamemethod outlinedbyPerezCampo etal., (2007)andasoneofthestrainshasachieved theknockoutofitstargetgeneitisunlikelytobeaflawinthetechnique.As thegenewasinheritednormally(i.e. theratioofWT:HET:KOmicewaswithin expected amounts, data not shown) it indicates that at whatever point the Neo/Tk insert has been placed in the genome it has not caused reduced viability in the “knockout” mice, which is further supported by the lack of

97 Ph.D.Thesis2012AlanCarter significant difference observed in the mortality of NEIL2 +/+ , NEIL2 +/ or the putativeNEIL2 /mice. Several reasons for the failure of the knockout can be postulated: (i) the Tk/Neoinsertislocatedinthewrongposition,(ii)therecouldbeaduplicate NEIL2gene,(iii)conservedportionsoftheNEIL2genearebeingsplicedfrom another region of the genomic DNA. None of these explain fully why PCR genotyping gives the expected sized bands for the primers used and why apparentlyKO,HETandWTNEIL2animalsarecreated.Inordertodetermine the actual positioning of the Tk/Neo insert the technique fluorescent in situ hybridizationcouldbeusedwhichwouldatleastconfirmthattheinsertwason thecorrectchromosome.Afurtherassaythatcouldbeperformedwouldbean activityassayonpurified“NEIL2”proteinobtainedfromputativeNEIL2 /mice. This would confirm that the protein identified on the western blot was a functional NEIL2, rather than a similar sized, and shaped protein that the antibodyrecognized. ThelackofastrongobservablephenotypeintheNEIL1knockoutanimalsis hardlysurprising,asinmostcasesthedeletionofaDNAglycosylaseresultsin verylittleovertphenotypicchange(Table3.1).Thisistheorizedtobedueto theoverlappingfunctionsoftheDNAglycosylasesmeaning that they act as functional backups for each other (Parsons and Elder 2003). These backups mean that BER is available to the cell even if there are dysfunctional DNA glycosylases,asknockoutsofmoredownstreamBERproteinswhichcannotbe functionallybackedup,suchasAPE1,Pol β,DNAligaseI&IIIandXRCC1are lethal to the cell (Larsen et al., 2007). There is one exception to this trend, TDG, which has been found to be embryonic lethal when disrupted in the mousegenome.ThisissuggestedtobeduetoTDG’sactivityinmaintaining chromatin throughout cell development, and that the knockout of this gene resultsinthelossofepigeneticcontrol(Cortazar etal., 2011).Inmostcasesit takesadoubleknockoutoftwoDNAglycosylaseswhichexcisesimilarlesions tocauseamajorresponsesuchasthatof[OGG1/MUTYH] /whichcausesthe

98 Ph.D.Thesis2012AlanCarter

50% survival age to drop to 10.3 months, when compared to OGG1 /, MUTYH / and WT animals whose 50% survival age was never below 18 m. Increasedtumorincidenceinthe[OGG1/MUTYH] /micefromtwomonthsof age was suggested to be due to the build up in mutations in the codon 12 regionoftheKRasoncogene(Xie etal., 2004). ThisimpliesthequestionwhichtwoDNArepairgeneswouldbebesttoknock outinamousemodel.Futureworkcouldbebestservedbyconsideringthe propertiesofNEIL1,inordertotestthehypothesisthatitisdamagewithinthe mitochondriathatcausesthesymptomsofmetabolicsyndrome,anotherDNA glycosylase that operates in the mitochondria, such as OGG1 in which one strainofknockoutmicehasalsoshownincreasedweightofKOmice(Arai et al., 2006),couldbeknockedout.WhenaworkingNEIL2modelispresentedit wouldbegoodtocreatea[NEIL1/NEIL2] /tostudytheeffectsofthelossof singlestrandBERwithinthecell.

99 Ph.D.Thesis2012AlanCarter

Table3.1:SummaryofPhenotypesofDNAGlycosylaseDeficientMice.

DNA Glycosylase Type GrossPhenotype MolecularCharachterisics Reference Increasedlevelsoflung,liverandstomachcancers Nonsignficantincreasein8OxoG (Sakumi et al., 2003; MTH1 Monofunctional (16.1% vs.WT4.4%) Tsuzuki etal.,2001) Noovertphenotypeat24months Increasedalkylationsensitivity (Elder et al., 1998; MPG Monofunctional Engelward etal.,1997) After24monthsincreaseddispositiontoBcell 12months1.5foldincreaseinC:G (Nilsen et al., 2003; Nilsen UNG Monofunctional lymphoma(28% vs.1.3%) →T:Atransitions etal.,2000) After18monthsincreasedlung,liverandstomach Increased8oxodGTPinthe MUTYH Monofunctional cancers(59.5% vs.34.9%) nucleotidepool (Tsuzuki etal.,2001) SMUG1 Monofunctional Noovertphenotype IncreasedmutationrateinEScells (Hirano etal.,2003) TDG Monofunctional Embryoniclethal Lethal (Cortazar etal.,2011) MBD4 Monofunctional NoovertPhenotype IncreasedMutationfrequency (Millar etal.,2002) NoovertPhenotypeto18months Increasedlevelsof8OxoGin genomicandmtDNA (Klungland etal.,1999) Ogg1 Bifunctional/monofunctional Greaterincidenceoflungcancersafter19months(48% (Arai etal.,2006;Sakumi et vs.11.1%) al.,2003) ReducedtumorgenesiscomparedtoOGG1 /mice(0% Increased8OxoGingenomicDNA OGG1/MTH1 Bifunctional vs.14.3%) (Sakumi etal.,2003) Increasedtumourincidenceafter2months(31.4% vs. Nosignificantdifferenceinrepair OGG1/MUTYH Bifunctional/monofunctional 4.3%) efficincynoted (Xie etal.,2004) Noovertphenotype Nosignificantdifferenceinrepair (Elder and Dianov 2002; NTH1 Bifunctional efficincynoted Ocampo et al.,2002;Takao etal.,2002b) OGG1/NTH1 Bifunctional/bifunctional Noovertphenotype Nosignificantdifferencesnoted (Elder etal.,2004) Sporadicsymptomsofhumanmetabolicsyndrome IncreasedmtDNADamage NEIL1 Bifunctional andDeletions (Vartanian etal.,2006) Increaseintumours,especiallylung(74%)andliver SimilarDNAdamagepatternsas NEIL1/NTH1 Bifunctional/bifunctional (43%)after24months NEIL1 (Chan etal.,2009) NEIL2 Bifunctional Noknownknockoutavailable n/a NEIL3 Bifunctional Noknownknockoutavailable n/a

100 Ph.D.Thesis2012AlanCarter

4. CytokineOutputofDNAGlycosylaseDisruptedCells

4.1. Introduction

ThecreationofanewstrainofNEIL1 /micehasbeendescribedandnoovert phenotype was found in unchallenged animals (Chapter 3). Other mouse knockoutmodelsofthebifunctionalDNAglycosylasesOGG1andNTH1have alreadybeencreatedandnoobservableovertphenotypewasalsoobserved intheseanimals(ElderandDianov2002;Klunglandetal., 1999).Neitherwas there any overt phenotype described in the double knockout of [OGG1/NTH1](ParsonsandElder2003). SeveralproteinslinkedtoBERhavebeenidentifiedashavinglinkswiththe inflammatoryresponseincludingPARP1,APE1,OGG1andMUTYH.PARP1 andAPE1knockoutsreducetheinflammatoryresponse via anattenuationof theredoxsensitivetranscriptionfactorNFκβtranscriptionfactor(Ando etal., 2008; Virag and Szabo 2002). There is also a reduction in inflammation noted in the OGG1 /models of LPS induced inflammation and Helicobacter Pyloriinducedgutinflammation(Mabley etal., 2005b;Touati etal., 2006). Previously MEF’s have been used in the study of the DNA repair/damage responseofKOmice,althoughno invitrostudieshavebeencarriedoutto identify any alterations in MEF response to LPS in any DNA glycosylase deficient models. (Elder and Dianov 2002; Le Page F. et al., 2000). Additionally fibroblasts are a good model when studying the inflammatory response, as they participate in the inflammatory and wound healing processesbyproducingvariouscytokinesandimmunemediatorsinresponse toLPSandotherantigens(Ivor,1994).TheinflammatoryresponsetoLPSis initiatedthroughtheTLR4receptor,thecellularresponseincludestherelease ofvarioussignallingmoleculesincludingIL1,IL6,IL8,IL10,MCP1,MIP

101 Ph.D.Thesis2012AlanCarter

1α,TNFαandNO(KurtJones etal., 2004;Shirota etal., 2006;Tominaga et al., 1997).

4.1.1. Aims

ToidentifyifthedisruptionofBERenzymes(specificallythebifunctionalDNA glycosylases OGG1, NTH1 and NEIL1), affects the release of inflammatory cytokinesandchemokinesfromMEF’sbymeasuringthelevelsofIL6,IL10 andMIP1α.

4.2. Results

4.2.1. TLR4mRNATranscriptionAnalysis To confirm that the MEFs would be responsive to LPS challenge via the TLR4/MyD88 pathway, total mRNA was extracted and an RTPCR reaction wasperformedtotestforTLR4geneexpression,usingtheprimersdesigned byKurtJones etal. (2004)bothofwhicharefoundinexon2andgiveriseto abandof540bp(Figure4.1).Thisbandispresentineachcelllineindicating thepresenceofTLR4transcription.

Figure4.1:RTPCR forTLR4 The 540 bp fragment indicating TLR4 transcription was identifiedin WT, NTH1 /, OGG1 /, NTH/OGG1 /andNEIL1/MEFs.

102 Ph.D.Thesis2012AlanCarter

4.2.2. CytokineOutputfromLPSChallengedMEFCells Figures 4.2 – 4.4 show the concentration of the cytokines IL6, IL10 and MIP1αinthesupernatanttakenfromMEFsculturedwithandwithoutLPS. WT (324.2 ± 31.7 pg/ml) cells have the greatestbasal IL6 output (Figure 4.2A). NTH1 / and NEIL1 / MEFs showed significantly lower levels of IL6 within the supernatant, with NEIL1 / having the lowest level (71.6 ± 16.5 pg/ml, p=0.01),22% that of WT MEFs, followed by NTH1 / (194.3 ± 34.4 pg/ml, p=0.03).ThesupernatantofOGG1 /MEFs(232.6±59.5pg/ml)and [OGG1/NTH1] / MEFs(257.4±64.9pg/ml)hadlowerIL6contentbutthis was not significantly different to that of the WT cells ( p=0.12 and p=0.25 respectively). There were no significant differences in treated IL6 levels betweenWTandKOMEFs(Figure4.2B; p>0.29),althoughallbutoneresult is between 43 53% (NEIL1 / 1407.9 ± 488.4 pg/ml OGG1 / 1726.3 ± 827.8 pg/ml) of the WT (3267.6 ± 606.7 pg/ml). Levels using [OGG1/NTH1] / MEFswerehigher(4563.3±1681.9pg/ml) andwere 139% of the WT result. The increase in IL6 levels following LPS treatment was approximately10foldusingWTMEFs(10.1fold),slightlylowerusingOGG1 / (7.4 fold) and NTH1 / MEFs (8.5 fold), and was much greater using [OGG1/NTH1] /(17.7fold)andNEIL1 /(19.7fold)celllines(Table4.1). BasalIL10 levels differed significantly fromWT (131.7± 22.1 pg/ml) only forOGG1 /MEFs(203.7±44.8pg/ml;Figure4.3A; p<0.01).Fortheother cell lines, the mean IL10 concentration was 65 93% of the wildtype concentration([OGG1/NTH1] /,85.3±16.0mg/mlNTH1 /,123.0±21.6 pg/mlrespectively;p>0.30).IL10levelsafterLPStreatmentweresimilarin the knockout cell lines when compared to the WT cells. OGG1 / MEFs producedmoreIL10thanWTcellsandeachoftheothercelllineswas60 87%lower.TheincreasesinIL10afterLPStreatmentcanbesplitbetween twogeneralcategories(Table4.2),WT(10.1fold),OGG1 /andNEIL1 /(7.1

103 Ph.D.Thesis2012AlanCarter and 7.2 fold respectively), and NTH1 / (4.8 fold) and [OGG1/NTH1] / (4.4 fold). BasalMIP1αlevelsinknockoutMEFSsweresignificantlylowerthanthosein thespernatantofWTMEFs(262.95±21.7pg/ml;Figure4.4A).OftheKO MEFs,thecelllinewiththehighestoutputwas[OGG1/NTH1] /(77.1±21.1 pg/ml),followedbyNTH1 /(53.7±15.3pg/ml),NEIL1 /(29.9±6.3pg/ml) andOGG1 /cells(25.3±5.4pg/ml; p<0.02).AfterLPStreatment,MIP1α levels in the supernatant of KO MEFs were significantly different from WT. NTH1 / MEFs(1651.1±346.8pg/ml) hadthehighestconcentrationofMIP 1αfollowedby[OGG1/NTH1] /(1455.7±466.4pg/ml),OGG1 /(1223.4± 561.7pg/ml)andNEIL1 /cells(360.5±180.9pg/ml; p<0.03;Figure4.4B). InWTcells,theincreasefrombasalratetotreatedlevelofcytokinewas12.9 fold(Table4.3)butalloftheotherincreases,exceptforthatofNEIL1,was much higher, the greatest of which was produced by OGG1 / MEFs (48.5 fold),followedbyNTH1 /(18.9fold),[OGG1/NTH1] /(18.9fold)andNEIL1 / (12.1fold).

104 Ph.D.Thesis2012AlanCarter

(A)IL6releasedfromuntreatedcells (p=0.25) (p=0.12) (p=0.03) (p<0.01) (B)IL6releasedfromLPStreatedcells (p>0.29)

Figure4.2:IL6outputofwildtypeandknockoutMEFcelllines Cellsweretreatedwith0.1mg/mlLPSandincubatedfor18h,andthesupernatantwasthenassayed forIL6byELISA.PanelsABshowlevelsofIL6releasedbythedifferentcelllinestested(A)without LPStreatmentand(B)withLPStreatment(+/SEM,N=5).SignificantresultsarenotedforNEIL1 / (p<0.01)andNTH1 /(p=0.03)basalresultswhencomparedtowildtype. Table4.1:ComparisonofIL6resultsbetweenuntreatedandtreatedDNAglycosylase deficientMEF cells a

IL6(pg/ml) Mean CellType Untreated Treated increase 324.1± 3267.6± WT 10.1 31.7 606.8 232.6± 1726.3± OGG1 / 7.4 59.5 827.8 194.3± 1657.9± NTH1 / 8.5 34.1 969.2 257.4± 4563.3± [OGG1/NTH1] / 17.7 64.9 1681.9 71.6± 1407.9± NEIL1 / 19.7 16.5 488.4 aMean+/SEM,N=5.

105 Ph.D.Thesis2012AlanCarter

(A)IL 10releasedfromuntreatedcells (P<0. 01) (p=0.40) (p=0.34) (p=0.75) (B)IL10releasedfromLPStreatedcells (p>0.20)

Figure4.3:IL10outputofwildtypeandknockoutMEFcelllines Cellswereincubatedwith0.1mg/mlLPSfor18h,andthesupernatantwasthenassayedforIL10by ELISA. Panels AB show levels of IL10 released by the different cell lines tested (A) without LPS treatment and (B) with LPS treatment (+/ SEM, N=5). There was a significant difference in basal resultsbetweenWTandOGG1 /(p<0.01). Table4.2:ComparisonofIL10resultsbetweenuntreatedandtreatedDNAglycosylase deficientMEFcells a

IL10(pg/ml) Mean CellType Untreated Treated Increase 89.6± 906.7± WT 10.1 14.8 192.5 185.2± 1319.0± OGG1 / 7.1 33.2 432.9 163.2± 789.9± NTH1 / 4.8 33.8 315.7 122.3± 541.6± [OGG1/NTH1] / 4.4 28.8 239.0 100.4± 724.0± NEIL1 / 7.2 24.8 374.8 a Mean+/SEM,N=5.

106 Ph.D.Thesis2012AlanCarter

(A)MIP1αreleasedfromuntreatedcells (p<0.02)

(B)MIP1αreleasedfromLPStreatedcells (p=0.03) (p<0.01) (p=0.03) (p<0.01)

Figure4.4:MIP1αoutputofwildtypeandknockoutMEFcelllines Cellswereincubatedwith0.1mg/mlLPSfor18h,andthesupernatantwasthenassayedforMIP1αby ELISA. Panels AB show levels of MIP1α released by the different cell lines tested (A) without LPS treatment and (B) with LPS treatment (+/ SEM, N=5). Basal MIP1α levels were reduced when comparedtoWTineachcase(p<0.02).IntreatedlevelsMIP1αwassignificantlylowerineachcase (p<0.03).

Table4.3:ComparisonofMIP1αresultsbetweenuntreatedandtreatedDNAglycosylase deficientMEFcells a

MIP1α(pg/ml) Mean CellType Untreated Treated Increase 3400± WT 263±21.7 12.9 556.4 1223.4± OGG1 / 25.3±5.4 48.5 561.7 53.7± 1651.1± NTH1 / 30.7 15.3# 346.8 77.1± 1455.7± OGG1/NTH1 / 18.9 21.1 466.4 360.5± NEIL1 / 29.9±6.3 12.1 180.9 aMean+/SEM,N=5.

107 Ph.D.Thesis2012AlanCarter

4.3. Discussion Fibroblast cells are good indicators of level of inflammatory response, althoughthey are only onecelltype and as such are limited.Disruption of bifunctional DNA glycosylases reduces the basal and LPS treated output of MIP1αfromallKOMEFswhencomparedtoWTMEFs.Additionally,OGG1 / cellshadhigherbasalIL10levels,NTH1 /cellshadlowerbasalIL6levelsas didNEIL1 /cells(Table4.4). Table4.4SummaryofResultsfromcytokineassays IL-6 IL-10 MIP1α Celltype Untreated LPS Untreated LPS Untreated LPS OGG1 / ↑ ↓ ↓ NTH1 / ↓ ↓ ↓ [OGG1/NTH1] / ↓ ↓ NEIL1 / ↓ ↓ ↓ ↑=SignificantincreasecomparedtoWT ↓=SignificantDecreasecomparedtoWT ToexplorepossiblecausesfortheIL6resultsitisbesttoidentifypossible connectionsbetweenthoseMEFSwhichshowedmarkedreductionsinoutput ofIL6namelyNTH1 /andNEIL1 /.NEIL1andNTH1bothremoveoxidised cytosines and Tg from DNA, but in experiments to detect these oxidative compoundsinlivertissue,therewasnosignificantdifferencebetweeneither NTH1 /,NEIL1 /or[NTH1/NEIL1] /andthecontrolmice(Chan etal., 2009). Itwassuggestedthatthismighthavebeenduetoacomplemntaryenzyme, namelyNEIL2,removingtheoxidisedcytosineproducts.Additionally,asthe NERsystemhasbeenshown invivo to removeTgatabiologicallysignificant rate, it may compensate for the lack of BER Tg removal (Reardon et al., 1997).Evenwiththesebackuprepairsystemsinplace[NTH1/NEIL1] /mice had a higher incidence of both lung and liver tumours, which was seen as evidence of a previously unknown base damage type that was not being excisedduetotheabsenceofthesegenes(Chan etal., 2009).Itwasalso

108 Ph.D.Thesis2012AlanCarter surmisedthatthisunidentifieddamagetypewouldbehighlydamagingasit causedtheinitiationofcancersinthenormallyresistantlivertissues(Chan et al., 2009). If there is such an oxidised base it may be that its reduced excision from the DNA causes a reduction in the basal release of the proinflamatory cytokine IL6. Both NTH1 and NEIL1 are capable of β eliminationintheBERprocess,althoughNEIL1isalsothoughttobecapable of APE1 independent β,δelimination (Elder and Dianov 2002; Takao et al., 2002b), but there are no protein intermediates that would be specific to these two proteins in the BER system to account for why only cells from thesestrainsproducedareducedbasalIL6level. PCNAisaproteinwhichbindstobothNEIL1,increasingNEIL1activity,and NTH1,theactivityofwhichremainsunchanged(Douetal., 2008;Oyama et al., 2004).ThisproteinlinksbothNEIL1andNTH1totheSphaseasPCNA plays a role in DNA replication at this point (Kisielewska et al., 2005). Additionally,duetothepositivecorrelationbetweenPCNAconcentrationand severityofinflammation,PCNAhasbeenusedasamarkerforinflammation in inflammatory bowel disease and several types of cancer including liver (Ding et al., 2005; Harrison et al., 1993). As basal IL6 is also linked to embryonic development and organ regeneration (Chan et al., 2009; Lee, 1992),thiscouldindicatethatadisruptionintheNTH1andNEIL1genesmay haveadeleteriouseffectatthisstage,althoughourownandpreviouswork withNTH1andNEIL1micedoesnotsuggestone(Chapter3)(Chan etal., 2009; Elder and Dianov 2002; Ocampo et al., 2002; Takao et al., 2002a; Vartanian etal., 2006). WhenconsideringtheoutputofIL6itisinterstingthatthedoubleknockout of[OGG1/NTH1] /showedagreaterfoldincrease(17.5)inoutputthanboth OGG1 / (8.5) and NTH1 / (7.4) cells (Table 4.1). It would be logical to conclude thatas the OGG1 / and NTH1 / cells bothdisplayedreductions in

109 Ph.D.Thesis2012AlanCarter

IL6outputcomparedtoWTcells,thatthedoubleknockoutoftheseproteins wouldshowasimilar,ifnotaddativeeffect.Howeverthereisaprecedentfor doubleknockoutsofDNAglycosylasesleadingtounexpectedresults.Astrain of OGG1 / mice was reported to exhibit increased carcinogenesis after 19 months; the double [OGG1/MTH1] knockout was expected to increase the mouse susceptibility to cancer. However, whilst the double knockout did increase the occurrence of oxidised base lesions significantly no cancers foundintheanimals(Sakumi etal., 2003).Thereasoningforthisunexpected result was suspected to be either (i) a build up of oxidised purines suppressing tumourgenesis by interfering with oncogenic processes or that (ii)atumoursuppressorgenewastransferredfromtheEScellsonthesame allele as the disrupted MTH1 gene, and was not removed through backcrossing((Sakumi etal., 2003);Seecommentsonlinkagedisequilibrium, section3.5)). AsbothsingleknockoutcelltypesusedinthisstudyshowedadecreasedIL6 response it would suggest that the unexpected result may be due to increased oxidised bases in the DNA. It has already been reported that an increase in oxidised lipids inanarea can stimulate an immune response of increasedIL8andMIP1α(BerlinerandWatson2005).However,ifasimilar effect was in effect here it would most probably alsoresult ina significant increase in MIP1α output which is not shown here. It would still be interesting however, to identify if there was a change in immune response fromcellswithgreaterlevelsofDNAbaseoxidation. Another potential reason for this unexpected result may be is due to the difference in passagenumber between the[OGG1/NTH1] / stockthat were thawedfromstocksofimmortalisedcellsandtheWT,OGG1 /andNEIL1 / MEFswhichwereallcreatedfromprimarycells;andtheNTH1 /whichwere thawed from stocks at passage 10. The immortalised cells may have

110 Ph.D.Thesis2012AlanCarter spontaneously mutated to increase IL6 production, especially as they are fromamodelthatisalreadypronetomutationduetothedisruptionofBER processes. TheincreasedoutputofbasalIL10fromtheOGG1 /miceisinterestingas IL10ismostoftenseenasan antiinflammatorycytokine,itisa signofa concerted antiinflammatory response from any of the cells rather than a blanketeffectreductionseeninothercelllinessuchasthetreatedNTH1 / cells. ThereductioninMIP1αoutputsofbothbasalandtreatedDNAglycosylase knockout cells was reduced significantly in all cases. A reason for the seeminglyreducedlevelsofMIP1αcouldbethattheWTcellsthattheDNA glycosylase knockout cells are compared to are producing an abnormally large amount of MIP1α. However, other work with LPS as a ligand has shownsimilarlevelsofMIP1αbeingproducedfromWTMEF’s(KurtJones et al., 2004).AreductioninMIP1αwouldindicatethatlessneutrophilswould berecruitedtotheareaofinflammation.Thiswouldcauseanetreductionin theamountofROSaccumulatedintheregionandthuslessMPO,MDAand moreGSHtobeobservedindicating,lessDNAdamageoccurring. The IL6 released from OGG1 /, NTH1 / and NEIL1 / cells after stimulation alsoseemedlessthanthatofWTcells,althoughnotsignificantly.Thiscould be explained by a suppression of NFκβ, but, this would result in a global suppressionofcytokineproduction(Donadelli etal., 2000).TheriseinIL10 output in OGG1 / cells would suggest a controlled change in inflammatory response. NEIL1 /cellshadthelowestoutputofMIP1αbothatbasalandLPStreated levels, indicating that the neutrophil response and thus ROS levels in the

111 Ph.D.Thesis2012AlanCarter inflammatory response would be lower than in other strains of animals. WhilsttheeffectivenessofMEF’sasamodelofimmunereactionshasalready been discussed (section 4.1), the fact remains that they are colonies of a single cell type and that as such only the accumulation of the measured cytokinescanbeknown,therearenomechanismsinplaceforthedispersal andclearingofunwantedcytokines. Invivo experimentswillbeabletogive moredetail,onthecytokineresponseinthebodyatspecifictimepointsand givemoredetailsonhowthisresponserelatestoneutrophilinfiltrationand oxidativedamage.

112 Ph.D.Thesis2012AlanCarter

5. EffectsofNEIL1GeneKnockoutonEndotoxinInduced Inflammation

5.1. Introduction ThefirstproteinlinkingBERtotheinflammatoryresponsewasPARP1ina model of septic shock. Septic shock was induced via. caecal ligation and puncture,whichresultedintheextrusionofgutcontentsintotheperitoneal cavity inducing a multibacterial response (Soriano et al., 2002; Virag and Szabo 2002). In PARP1 / mice there was a reduction in the plasma concentrationofTNFα,IL6andIL10cytokineswhencomparedtothatof PARP1+/+ mice.TherewasalsoareductioninMPOactivityandMDAlevelsin PARP1/ mice indicating that there was a protective effect against the deleterious effects of inflammation in the PARP1 knockout (Soriano et al., 2002).OGG1 /micehavealsoshownresistancetothedeleteriouseffectsof inflammationinducedbyLPSand HelicobacterPylori ,withanimalsdisplaying decreasedmortalityandreducedgutinflammationrespectively(Mabley etal., 2005a;Touati etal., 2006). NEIL1 / mice have been described as having symptoms of metabolic syndrome, a human disease which has been associated with raised serum levelsoftheinflammatorymarkersIL6,TNFαandfibrinogen(Mabley etal., 2005a;Touati etal., 2006).Howeverinlaterstudiesthisphenotypehasbeen shown to be inconsistent and it has been suggested that the absence of NEIL1 increases susceptibility to increased weight (metabolic syndrome; (Chan etal., 2009;Sampath etal., 2011)).AnewNEIL1 /mousestrainhas recentlybeendeveloped(Chapter3),andtheseanimalswillthusbeusedto identify if the NEIL1 protein modifies LPS induced inflammation in order to further study the links between LPS induced inflammation and the BER pathway.

113 Ph.D.Thesis2012AlanCarter

5.1.1. Aims ToidentifytheextenttowhichNEIL1determinestheimmuneresponseto LPSby: 1) EstablishingwhetherseumlevelsofIL6,IL12,IL10andIL4differ between NEIL1 / and NEIL1 +/+ mice, at baseline or after LPS treatment. 2) Identifying whether any LPS induced changes in MPO activity, GSH levelsandMDAlevelsdifferbetweenNEIL1 /andNEIL1 +/+ mice. 3) Determining if the effects of oxidative damage caused by age are alteredinNEIL1 /micewhencomparedtoNEIL1 +/+ mice.

5.2. Results

5.2.1. CytokineOutputinLPSChallengedNEIL1/Mice Figures 5.1 – 5.4 present interleukin concentrations present in the blood serumofmiceinjectedwithLPS(2mg/kg i.p. )after0,1,6and24h(mean ±SEM;n=6).IL4concentrationswerenotsignificantlydifferentatanytime pointwhencomparingmaleNEIL1 +/+ andNEIL1 /mice(Figure5.1A).There was,however,asignificantdifferencebetweenWTandKOfemalemiceat6 h;heretheNEIL1 +/+ micehadmoreIL4withintheserumthanNEIL1 /mice (216.9±37.0pg/mlvs. 63.9±15.9pg/ml;Figure5.1B; p<0.01). IL6 concentrations were significantly different between male WT and KO miceatbaseline(WT340.8±12.0pg/ml vs. KO7.3±5.6pg/ml; p<0.01),1 h(WT5383.5±378.2pg/ml vs. KO6690.0±492.7pg/ml; p=0.04)and24 h(WT390.6±458.6pg/ml vs. KO29.0±17.7pg/ml; p<0.01).At0and24 htheWTconcentrationofIL6washigherthanKOlevels,whilstat6hthe KO levelswerehigher thanWT levels(Figure 5.2A). There weresignificant

114 Ph.D.Thesis2012AlanCarter differences between concentrations of IL6 intheserum offemaleWT and KO mice at 1 (WT 7143.1 ± 605.3 pg/ml vs. KO 5518.7 ± 504.0 pg/ml; p=0.05) and 24 h (WT 2684.6 ± 819.4 pg/ml vs. KO 72.4 ± 16.4 pg/ml; p<0.01).InbothofthesecasesIL6levelsweregreaterinWTserumthan KOserum(Figure5.2B) (A)MaleIL4levels

350

300 WT 250 KO

200

150 IL-4 (pg/ml) IL-4 100

50

0 0 1 6 24 Time (h) (B)FemaleIL4Levels

350 WT 300 KO ** 250 200

150

IL-4 (pg/ml) IL-4 100 50

0 0 1 6 24 Time (h) Figure5.1:IL4concentrationsinbloodserumtakenfromNEIL1transgenicmice Mice were treated with LPS (2 mg/kg i.p. ), sacrificed at the appropriate time and blood removed by cardiac puncture for analysis by ELISA (mean ± SEM; n=6). Panels A and B show serum IL4 levels at 0, 1, 6 and 24 h in male and female mice respectively. (* p≤0.05; ** p≤0.01). (A) No significant difference was observed between WT and KO ♂ mice( p>0.14).(B)TherewasasignificantdifferenceinIL4levelsbetween ♀WTandKO miceat6h( p<0.01).

115 Ph.D.Thesis2012AlanCarter

(A)MaleIL6Levels

8000 * WT 7000 KO 6000 5000 4000 3000 IL-6 (pg/ml) IL-6 2000 1000 ** ** 0 0 1 6 24 Time (h) (B)FemaleIL6Levels

9000 8000 * WT 7000 KO 6000 5000 4000 **

IL-6 IL-6 (pg/ml) 3000 2000 1000 0 0 1 6 24 Time (h) Figure5.2:IL6concentrationsinbloodserumtakenfromNEIL1transgenicmice Mice were treated with LPS (2 mg/kg i.p. ), sacrificed at the appropriate time and blood removed by cardiac puncture for analysis by ELISA (mean ± SEM; n=6). Panels A and B show serum IL6 levels at 0, 1, 6 and 24 h in male and female mice respectively. (* p≤0.05;**p≤0.01).(A)AsignificantdifferenceinIL6levelswasobservedbetweenWT andKO ♂miceat0( p<0.01),1h(p=0.04)and24h( p<0.01).(B)Therewasasignificant differenceinIL6levelsbetween ♀WTandKOmiceat1( p=0.05)and24h( p<0.01). IL10 concentrations did not differ significantly between male WT and KO mice( p>0.11).Thereweresignificantdifferencesbetweenconcentrationsof IL10 in the serum of female WT and KO mice at 6 h (WT 446.2 ± 185.4 pg/ml vs. KO138.2±57.7pg/ml; p=0.02)and24h(WT34.3±9.3pg/ml vs. KO24.7±1.6pg/ml; p<0.01).InbothofthesecasesIL10levelswere greaterinWTserumthanKOserum(Figure5.3B).

116 Ph.D.Thesis2012AlanCarter

(A)MaleIL10Levels

20000 WT KO 15000

10000 IL-10 (pg/ml) IL-10 5000

0 0 1 6 24 Time (h) (B)FemaleIL10Levels

20000 WT KO 15000

10000 * IL-10 (pg/ml) IL-10 5000 ** 0 0 1 6 24 Time (h) Figure5.3:IL10concentrationsinbloodserumtakenfromOGG1transgenicmice Mice were treated with LPS (2 mg/kg i.p. ), sacrificed at the appropriate time and blood removed by cardiac puncture for analysis by ELISA (mean ± SEM; n=6). Panels A and B show serum IL10 levels at 0, 1, 6 and 24 h in male and female mice respectively. (* p≤0.05; ** p≤0.01). (A) No significant difference was observed between WT andKO ♂ mice( p>0.11).(B)TherewasasignificantdifferenceinIL10levelsbetween ♀WTandKO miceat6( p=0.02)and24h( p<0.01). IL12 concentrations were significantly different between male WT and KO miceat6h(WT23.8±3.8pg/ml vs. KO36.0±0.7pg/ml; p<0.01).Atthis timepointtheKOconcentrationofIL12washigherthanWTlevels(Figure 5.4A).TherewasnosignificantdifferencebetweenNEIL1 +/+ andNEIL1 /in

IL12levelsatanytimepointinfemalemice( p>0.67).

117 Ph.D.Thesis2012AlanCarter

(A)MaleIL12Levels

500 WT KO 400 **

300

200 IL-12 (pg/ml) IL-12 100

0 0 1 6 24 Time (h) (B)FemaleIL12levels

500 WT KO 400

300

200 IL-12 (pg/ml) IL-12 100

0 0 1 6 24 Time (h) Figure5.4:IL12concentrationsinbloodserumtakenfromNEIL1transgenic mice Mice were treated with LPS (2 mg/kg i.p. ), sacrificed at the appropriate time and blood removed by cardiac puncture for analysis by ELISA (mean ± SEM; n=6). Panels A and B show serum IL12 levels at 0, 1, 6 and 24 h in male and female mice respectively. (* p≤0.05;**p≤0.01).(A)AsignificantdifferencewasobservedbetweenWTandKO ♂mice at 6 h ( p<0.01). (B) There was no evidence of a significant difference in IL12 levels between ♀WTandKOmice( p>0.67).

5.2.2. MyeloperoxidaseactivityinLPSchallengedNEIL1 /mice The MPO activity in various tissues of male and female WT and NEIL1 KO micefollowingtreatmentwithavehicleorLPSisshowninTable5.1.Figures 5.5 – 5.9 present MPO activity in the heart, lung, liver, kidney and ileum

118 Ph.D.Thesis2012AlanCarter respectively. Panel A of thesefigures shows the main effects of comparing treatment(vehicle vs .LPS),genotype(WT vs .NEIL1KO)andsex(male vs . female).PanelsBDshowtheinteractionsof(B)treatmentandgenotype, (C)treatmentandsexand(D)genotypeandsex.PanelEshowsthethree wayinteractionbetweentreatment,genotypeandsex. In the heart there were no three or twoway interactions in MPO activity. Therewasanoverallsexdifferencewiththetissuesfromfemalemice(2.62 ±0.58mU/mgprotein)havingmuchlowerMPOactivitythanthosefromthe males(12.06±1.16mU/mgprotein;Figure5.5A; p=0.01). Similarly in the lung tissues there were no three or twoway interactions. Treated animals (118.08 ±17.08 mU/mg protein) had greater MPO activity than those of the vehicle treated animals (70.84 ±11.09 mU/mg protein; Figure5.6A; p=0.02). Whilsttherewasnothreewayinteractionobservedinthelivertissues,there wasasignificanttreatmentxsexinteraction.Bothmaleandfemalemouse liver tissues have similar levels of MPO activity when challenged with LPS therewereradicallydifferentlevelsofMPOactivityatbasallevelsmeaning that whilst activity increased in female mice (5.14 fold), levels actually decreased in male mice (0.87 fold; Figure 5.7C; p=0.05). Evidence of a significanttreatmentxgenotypeinteractionwasobservedshowingthatwhile treatment caused an increase in MPO activity, this increase was greater in NEIL1 +/+ mice(1.9fold)thanNEIL1 /mice(1.5fold;Figure5.7B; p=0.08). Therewerenosignificantdifferencesobservedinkidneytissues(Figure5.8). Thethreewayinteractioninileumtissueswassignificant.Invehicletreated femaleanimalsandvehicletreatedandLPStreatedmaleanimals

119 Ph.D.Thesis2012AlanCarter

Table5.1:MPOactivityintissuesofNEIL1transgenic miceexposedtoLPS

Vehicle Treated Treatment x Tissue Male Female Male Female Sex x WT KO WT KO WT KO WT KO Genotype 10.28 12.20 1.31 1.99 10.73 15.03 3.03 4.12 Heart (±0.80) (±0.72) (±0.41) (±0.97 (±1.10) (±4.77) (±1.67) (±1.45) p=0.70 76.41 130.70 35.67 40.60 119.11 121.52 139.77 91.91 Lung (±23.19) (±24.68) (±3.91) (±7.55) (±33.10) (±35.03) (±56.43) (±30.24) p=0.99 17.00 18.85 1.76 2.69 16.85 14.25 10.17 3.62 Liver (±2.23) (±5.21) (±0.40) (±2.21) (±3.39) (±2.42) (±2.58) (±0.98) p=0.30 16.18 13.47 8.49 7.64 25.26 16.44 9.77 18.63 Kidney (±4.84) (±3.10) (±2.94) (±2.15) (±15.90) (±3.84) (±2.74) (±4.20) p=0.35 40.17 19.85 26.71 24.97 22.32 39.99 84.54 39.01 Ileum (±22.39) (±5.09) (±3.54) (±5.03) (±10.69) (±10.43) (±21.80)* (±4.55)* p=0.02 MiceweretreatedwithLPS(20mg/kg i.p.)oravehicle(PBS),sacrificedafter12hoursandtissuesremovedforanalysis.Resultsareshownas tissueMPOactivity(mU/mgprotein;mean±SEM;n=6).

120 Ph.D.Thesis2012AlanCarter

25 (A)MainEffects

(20 p=0.17)(p=0.12)( p=0.01) 15 10 protein) 5

Mean MPO activity (mU/mg (mU/mg activity MPO Mean 0 Treatment Genotype Sex 25 25 Male (B)TreatmentXGenotype WT (C)TreatmentXSex Female (20 p=0.59) KO (20 p=0.91) 15 15 10 10 Protein) Protein) 5 5 0 0 Mean MPO activity (mU/mg Mean MPO activity (mU/mg Vehicle Treated Vehicle Treated Group Group Male WT (D)GenotypeXSex25 (E)TreatmentXGenotype(25 ♂&♀) (p=0.39) Female (p=0.70) KO 20 20 15 15 10

10 Protein)

Protein) 5 5 0

0 Mean MPO activity (mU/mg Male Male Female Female Mean MPO activity (mU/mg WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure5.5:MPOactivityinhearttissuesofNEIL1transgenicmiceexposedto LPS Mice were treated with LPS (20 mg/kg i.p. ), sacrificed after 12 hours and tissues removedforanalysis(mean±SEM;n=6).PanelAMaineffectsoftreatment,genotype andsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatmentandsex andgenotypeandsexrespectively.PanelEshows3wayinteractionsbetweentreatment, genotype and sex. MPO activity was significantly higher in ♀ animals (vs. ♂; Panel A; p<0.01 ).Noothersignificanteffectsobserved.

121 Ph.D.Thesis2012AlanCarter

250 (A)MainEffects

(200 p=0.02)( p=0.86)( p=0.09)

150 100

protein) 50

Mean MPOMean activity (mU/mg 0 Treatment Genotype Sex 250 250 Male (B)TreatmentXGenotype WT (C)TreatmentXSex Female (200 p=0.20) KO (200 p=0.13) 150 150 100 100 Protein) Protein) 50 50 0 0 Mean MPO activity (mU/mg

Mean MPO activity (mU/mg Vehicle Treated Vehicle Treated Group Group Male WT (D)GenotypeXSex250 (E)TreatmentXGenotype(250 ♂&♀) (p=0.22) Female (p=0.99) KO 200 200 150 150 100

100 Protein) Protein) 50 50 0 0 Mean MPO activity (mU/mg Male Male Female Female

Mean MPO activity (mU/mg WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure5.6:MPOactivitylevelsinlungtissuesofNEIL1transgenicmice exposedtoLPS Mice were treated with LPS (20 mg/kg i.p. ), sacrificed after 12 hours and tissues removedforanalysis(mean±SEM;n=6).PanelAMaineffectsoftreatment,genotype andsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatmentandsex andgenotypeandsexrespectively.PanelEshows3wayinteractionsbetweentreatment, genotypeandsex.MPOactivityweresignificantlyhigherinvehicletreatedanimals( vs. treatment;PanelA; p<0.01)noothersignificanteffectswereobserved.

122 Ph.D.Thesis2012AlanCarter

30 (A)MainEffects

(25 p=0.24)( p=0.19)( p=0.01) 20 15 protein) 10 5

Mean MPO activity (mU/mg activity MPO Mean 0 Treatment Genotype Sex 30 30 Male (B)TreatmentXGenotype WT (C)TreatmentXSex 25 Female (25 p=0.08) KO (p=0.05) 20 20 15 15 Protein) Protein) 10 10 5 5 0 0 Mean MPO activity (mU/mg Mean MPO activity (mU/mg Vehicle Treated Vehicle Treated Group Group Male WT (D)GenotypeXSex30 (E)TreatmentXGenotype(30 ♂&♀) Female KO (25 p=0.23) (25 p=0.30) 20 20 15 15

Protein) 10

Protein) 10 5 5 0

0 MeanMPO activity (mU/mg Male Male Female Female

Mean MPO activity (mU/mg WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure5.7:MPOactivityinlivertissuesofNEIL1transgenicmiceexposedto LPS Mice were treated with LPS (20 mg/kg i.p. ), sacrificed after 12 hours and tissues removedforanalysis(mean±SEM;n=6).PanelAMaineffectsoftreatment,genotype andsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatmentandsex andgenotypeandsexrespectively.PanelEshows3wayinteractionsbetweentreatment, genotypeandsex.AntreatmentXsexinteractionwasobserved(PanelC; p=0.05).MPO activity was significantly higher in ♀ animals ( vs. ♂; Panel A; p<0.01 ). No other significanteffectswereobserved.

123 Ph.D.Thesis2012AlanCarter

50 (A)MainEffects

(40 p=0.16)( p=0.84)( p=0.12) 30 20 protein) 10

Mean MPO activity (mU/mg activity MPO Mean 0 Treatment Genotype Sex 50 50 Male (B)TreatmentXGenotype WT (C)TreatmentXSex Female (40 p=0.83) KO (40 p=0.99) 30 30 20 20 Protein) Protein) 10 10 0 0 Mean MPO activity (mU/mg Mean MPO activity (mU/mg Vehicle Treated Vehicle Treated Group Group Male WT (D)GenotypeXSex50 (E)TreatmentXGenotype(50 ♂&♀) (p=0.25) Female (p=0.35) KO 40 40 30 30 20

20 Protein) Protein) 10 10 0

0 Mean MPO activity (mU/mg Male Male Female Female

Mean MPO activity (mU/mg WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure5.8:MPOactivityinkidneytissuesofNEIL1transgenicmiceexposedto LPS Mice were treated with LPS (20 mg/kg i.p. ), sacrificed after 12 hours and tissues removedforanalysis(mean±SEM;n=6).PanelAMaineffectsoftreatment,genotype andsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatmentandsex andgenotypeandsexrespectively.PanelEshows3wayinteractionsbetweentreatment, genotypeandsex.Nosignificanteffectswereobserved.

124 Ph.D.Thesis2012AlanCarter

120 (A)MainEffects

100 (p=0.03)( p=0.13)( p=0.11) 80 60

protein) 40 20

Mean MPO activity (mU/mg MPO Mean 0 Treatment Genotype Sex 120 120 Male (B)TreatmentXGenotype WT (C)TreatmentXSex 100 Female (100 p=0.86) KO (p=0.04) 80 80 60 60 Protein)

Protein) 40 40 20 20 0 0 Mean MPO activity (mU/mg Mean MPO activity (mU/mg Vehicle Treated Vehicle Treated Group Group Male WT (D)GenotypeXSex120 (E)TreatmentXGenotype(120 ♂&♀) Female KO (100 p=0.18) (100 p=0.02) 80 80 60 60

Protein) 40 Protein) 40 20 20 0

0 Mean MPO activity (mU/mg Male Male Female Female Mean MPO activity (mU/mg WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure5.9:MPOactivityinileumtissuesofNEIL1transgenicmiceexposedto LPS Mice were treated with LPS (20 mg/kg i.p. ), sacrificed after 12 hours and tissues removedforanalysis(mean±SEM;n=6).PanelAMaineffectsoftreatment,genotype andsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatmentandsex andgenotypeandsexrespectively.PanelEshows3wayinteractionsbetweentreatment, genotypeandsex.AtreatmentXsexinteractionwasobserved(PanelC);asignificantly lowerincreaseinMPOactivityinLPStreatedKO ♀’s( vs .treatedWT ♀’s; p=0.04).MPO activity was significantly higher in vehicle treated animals ( vs. treatment; p=0.03). No othersignificantdifferenceswereobserved.

125 Ph.D.Thesis2012AlanCarter there was no significant difference in MPO activity due to genotype, however LPS treated female NEIL1 +/+ mice (84.5 ± 21.8 mU/mg) had greaterMPOactivitythanNEIL /mice(39.0±4.5mU/mg;Figure5.9E; p=0.02).

5.2.3. MalondialdehydecontentinLPSchallengedNEIL1 /mice TheMDAlevelsinvarioustissuesofmaleandfemaleWTandNEIL1KO mice following treatment with a vehicle or LPS are shown in Table 5.3. Figures5.105.14presentMDAlevelsintheheart,lung,liver,kidneyand ileum respectively. Panel A of these figures shows the main effects of treatment(vehicle vs. LPS),genotype(WT vs .NEIL1KO)andsex(male vs. female). Panels B D show the main effect interactions of (B) treatment and genotype, (C) treatment and sex and (D) genotype and sex. Panel E shows the three way interaction between treatment, genotypeandsex. Therewerenosignificantthreeortwowayinteractionsinhearttissues. Therewasasexdifferenceinthatfemalemousehearttissueshadmore MDA(6.71±0.98nmol/mgprotein)thanmalemice(2.99±0.99nmol/mg protein; Figure 5.10A; p=0.01). There were no significant differences foundinlungtissue(Figure5.11). Inthelivertherewasnosignificantthreewayinteraction.Howeverthere was a treatment x genotype interaction observed. Both genotypes had increases in MDA levels when treated with LPS, the MDA content of NEIL1 +/+ (1.1 fold) increased less than NEIL1 / (1.6 fold; Figure 5.12B; p<0.01).TherewasalsoasexdifferenceobservedbetweenMDAlevelsin which male liver MDA levels (0.78 ±0.15 nmol/mg protein) were lower than those in the liver of female mice (1.21 ±0.15 nmol/mg protein; Figure5.12A; p=0.02).

126 Ph.D.Thesis2012AlanCarter

Table5.2:MDAlevelsintissuesofNEIL1transgenicmiceexposedtoLPS Vehicle Treated Treatment x Tissue Male Female Male Female Genotype x WT KO WT KO WT KO WT KO Sex 3.10 2.64 4.45 7.35 2.81 3.41 6.79 8.25 Heart (±0.54) (±0.61) (±0.71) (±2.53) (±0.46) (±0.90) (±1.52) (±3.03) p=0.55 4.78 4.25 5.37 4.96 5.75 4.99 4.74 4.45 Lung (±0.47) (±0.63) (±0.53) (±0.64) (±0.42) (±0.22) (±1.11) (±0.74) p=0.80 0.51 0.27 1.14 0.94 0.80 1.56 0.99 1.78 Liver (±0.11) (±0.03) (±0.35) (±0.30) (±0.18) (±0.45) (±0.37) (±0.17) p=0.98 2.34 2.42 1.79 2.33 3.50 3.35 1.80 3.83 Kidney (±0.55) (±0.28) (±0.45) (±0.47) (±0.74) (±0.59) (±0.16) (±1.19) p=0.30 7.02 7.28 6.75 11.69 10.51 10.05 6.84 9.86 Ileum (±1.65) (±0.85) (±1.02) (±2.51) (±2.23) (±1.78) (±1.70) (±1.97) p=0.80

MiceweretreatedwithLPS(20mg/kg i.p.)oravehicle(PBS),sacrificedafter12hoursandtissuesremovedforanalysis.Resultsareshownas tissueMDAlevels(mU/mgprotein;mean±SEM;n=6).

127 Ph.D.Thesis2012AlanCarter

12 (A)MainEffects

10 (p=0.37)( p=0.28)( p=0.01) 8 6 4 2 0 Mean MDA (nmol/mg MDA Mean protein) Treatment Genotype Sex 12 12 Male (B)TreatmentXGenotype WT (C)TreatmentXSex 10 Female (10 p=0.92) KO (p=0.50) 8 8 6 6 Protein) Protein) 4 4 2 2 Mean MDA (nmol/mg Mean MDA (nmol/mg 0 0 Vehicle Treated Vehicle Treated Group Group Male WT (D)GenotypeXSex12 (E)TreatmentXGenotype(12 ♂&♀) Female KO (10 p=0.31) (10 p=0.55) 8 8 6 6

Protein) 4 Protein) 4 2 2

Mean MDA (nmol/mg 0 Mean MDA (nmol/mg 0 Male Male Female Female WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure5.10:MDAlevelsinhearttissuesofNEIL1transgenicmiceexposedto LPS Mice were treated with LPS (20 mg/kg i.p. ), sacrificed after 12 hours and tissues removedforanalysis(mean±SEM;n=6).PanelAMaineffectsoftreatment,genotype andsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatmentandsex andgenotypeandsexrespectively.PanelEshows3wayinteractionsbetweentreatment, genotypeandsex.MDAlevelsweresignificantlyhigherin ♀(vs. ♂;PanelA p<0.01). Noothersignificanteffectswereobserved.

128 Ph.D.Thesis2012AlanCarter

7 (A)MainEffects 6 (p=0.69)( p=0.26)( p=0.92)

5 4 3 2 1 0 MeanMDA (nmol/mg protein) Treatment Genotype Sex 7 7 Male (B)TreatmentXGenotype WT (C)TreatmentXSex 6 6 Female (p=0.98) KO (p=0.11) 5 5 4 4 3 3 Protein) Protein) 2 2 1 1 Mean MDA (nmol/mg Mean MDA (nmol/mg 0 0 Vehicle Treated Vehicle Treated Group Group Male WT (D)GenotypeXSex7 (E)TreatmentXGenotype(7 ♂&♀) Female (6 p=0.68) (6 p=0.80) KO 5 5 4 4 3 3 Protein)

Protein) 2 2 1 1

Mean MDA (nmol/mg 0 Mean MDA (nmol/mg 0 Male Male Female Female WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure5.11:MDAlevelsinlungtissuesofNEIL1miceexposedtoLPS Mice were treated with LPS (20 mg/kg i.p. ), sacrificed after 12 hours and tissues removedforanalysis(mean±SEM;n=6).PanelAMaineffectsoftreatment,genotype andsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatmentandsex andgenotypeandsexrespectively.PanelEshows3wayinteractionsbetweentreatment, genotypeandsex.Nosignificanteffectswereobserved.

129 Ph.D.Thesis2012AlanCarter

2.5 (A)MainEffects

2 (p=0.01)(p=0.13)( p=0.02) 1.5 1 0.5 0 Mean MDA (nmol/mg protein) Treatment Genotype Sex 2.5 2.5 Male (B)TreatmentXGenotype WT (C)TreatmentXSex Female (2 p=0.01) KO (2 p=0.24) 1.5 1.5 1 1 Protein) Protein) 0.5 0.5 Mean MDA (nmol/mg Mean MDA (nmol/mg 0 0 Vehicle Treated Vehicle Treated Group Group Male WT (D)GenotypeXSex2.5 (E)TreatmentXGenotype(2.5 ♂&♀) (p=0.92) Female (p=0.98) KO 2 2 1.5 1.5 1

1 Protein) Protein) 0.5 0.5

Mean MDA (nmol/mg 0

Mean MDA (nmol/mg 0 Male Male Female Female WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure5.12:MDAlevelsinlivertissuesofNEIL1transgenicmiceexposedto LPS Mice were treated with LPS (20 mg/kg i.p. ), sacrificed after 12 hours and tissues removedforanalysis(mean±SEM;n=6).PanelAMaineffectsoftreatment,genotype andsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatmentandsex andgenotypeandsexrespectively.PanelEshows3wayinteractionsbetweentreatment, genotypeandsex.Atreatmentxgenotypeinteractionwasobserved(PanelB; p<0.01). MDA levels were significantly higher in treated animals ( vs. vehicle treated; Panel A p<0.01),and ♀(PanalA vs. ♂).Noothersignificanteffectswereobserved.

130 Ph.D.Thesis2012AlanCarter

6 (A)MainEffects

5 (p=0.03)( p=0.13)( p=0.26) 4 3 2 1 0 Mean MDA (nmol/mg MDA Mean protein) Treatment Genotype Sex 6 6 Male (B)TreatmentXGenotype WT (C)TreatmentXSex 5 Female (5 p=0.45) KO (p=0.72) 4 4 3 3 Protein) Protein) 2 2 1 1 Mean MDA (nmol/mg Mean MDA (nmol/mg 0 0 Vehicle Treated Vehicle Treated Group Group Male WT (D)GenotypeXSex6 (E)TreatmentXGenotype(6 ♂&♀) Female KO (5 p=0.11) (5 p=0.30) 4 4 3 3

Protein) 2

Protein) 2 1 1

Mean MDA (nmol/mg 0

Mean MDA (nmol/mg 0 Male Male Female Female WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure5.13:MDAlevelsinkidneytissuesofNEIL1transgenicmiceexposedto LPS Mice were treated with LPS (20 mg/kg i.p. ), sacrificed after 12 hours and tissues removedforanalysis(mean±SEM;n=6).PanelAMaineffectsoftreatment,genotype andsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatmentandsex andgenotypeandsexrespectively.PanelEshows3wayinteractionsbetweentreatment, genotype and sex. MDA levels were significantly higher in treated animals ( vs. vehicle treated;PanelA; p<0.01).Noothersignificanteffectwasobserved.

131 Ph.D.Thesis2012AlanCarter

16 (A)MainEffects 14 12 (p=0.34)( p=0.10)( p=0.95) 10 8 6 4 2 0 Mean MDA (nmol/mg MDA Mean protein) Treatment Genotype Sex 16 16 Male WT (B)TreatmentXGenotype14 (C)TreatmentXSex14 Female KO (12 p=0.57) (12 p=0.09) 10 10 8 8 6 6 Protein) Protein) 4 4 2 2 Mean MDA (nmol/mg Mean MDA (nmol/mg 0 0 Vehicle Treated Vehicle Treated Group Group Male WT 14 16 (D)GenotypeXSex Female (E)TreatmentXGenotype( ♂&♀) (12 p=0.09) (14 p=0.80) KO 12 10 10 8 8 6 6 Protein)

Protein) 4 4 2 2 MeanMDA (nmol/mg 0 Mean MDA (nmol/mg 0 Male Male Female Female WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure5.14:MDAlevelsinileumtissuesofNEIL1transgenicmiceexposedto LPS Mice were treated with LPS (20 mg/kg i.p. ), sacrificed after 12 hours and tissues removedforanalysis(mean±SEM;n=6).PanelAMaineffectsoftreatment,genotype andsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatmentandsex andgenotypeandsexrespectively.PanelEshows3wayinteractionsbetweentreatment, genotypeandsex.Nosignificanteffectwasobserved.

132 Ph.D.Thesis2012AlanCarter

Inthekidneyandlivertissuestherewerenosignificantthreeortwoway interactions. In the kidney there was a significant difference observed betweenvehicletreatedandLPStreatedmousetissuesasvehicletreated animals (2.22 ±0.02 nmol/mg protein) have lower MDA levels than LPS treated animals (3.12 ±0.37 nmol/mg protein; Figure 5.13A; p=0.03). There were no significant interactions or differences observed in MDA levelsinileumtissues(Figure5.14).

5.2.4. GlutathionelevelsinLPSchallengedNEIL1 /mice TheGSHlevelsinvarioustissuesofmaleandfemaleWTandOGG1KO mice following treatment with a vehicle or LPS are shown in Table 5.3. Figures5.15–5.19presentGSHlevelsintheheart,lung,liver,kidneyand ileum respectively. Panel A of these figures shows the main effects comparingtreatment(vehicle vs .LPS),genotype(WT vs. NEIL1KO)and sex(male vs .female).PanelsBDshowtheinteractionsof(B)treatment andgenotype,(C)treatmentandsexand(D)genotypeandsex.PanelF showsthethreewayinteractionbetweentreatment,genotypeandsex. There were no threeway interactions observed in the results for any tissue.Therewasagenotypexsexinteractionintheheart.WhilstGSH levels were lower in NEIL / animals than NEIL1 +/+ animals there was a greater reduction in the female animals (0.6 fold) than the males (0.8 fold; Figure 5.15D; p<0.01). There was also a decrease in GSH levels observed due to treatment, with vehicle treated mice (0.34 ±0.03 nmol/mgprotein)havinggreaterGSHlevelsthanLPStreatedmice(0.27 ±0.04nmol/mgprotein;Figure5.15A; p=0.01).

133 Ph.D.Thesis2012AlanCarter

Table5.3:GSHlevelsintissuesofNEIL1transgenicmiceexposedtoLPS

Vehicle Treated Genotype x Tissue Male Female Male Female Treatment x WT KO WT KO WT KO WT KO Sex 0.22 0.23 0.56 0.35 0.18 0.08 0.53 0.30 Heart (±0.01) (±0.02) (±0.04) (±0.03) (±0.03) (±0.03) (±0.03) (±0.06) p=0.35 4.13 3.53 5.12 4.27 4.52 2.01 2.57 2.69 Lung (±0.65) (±0.45) (±0.38) (±0.40) (±1.51) (±0.84) (±0.22) (±0.39) p=0.13 3.18 1.25 4.60 4.10 0.15 0.13 2.15 1.06 Liver (±1.09) (±0.32) (±1.04) (±0.92) (±0.00) (±0.01) (±0.33) (±0.13) p=0.14 0.24 0.43 0.23 0.09 0.45 0.66 0.08 0.23 Kidney (±0.06) (±0.06) (±0.14) (±0.03) (±0.06) (±0.09) (±0.02) (±0.13) p=0.22 0.97 1.84 0.68 0.83 1.40 2.36 0.28 0.59 Ileum (±0.35) (±0.80) (±0.10) (±0.18) (±0.41) (±0.74) (±0.04) (±0.05) p=0.94

MiceweretreatedwithLPS(20mg/kg i.p.)oravehicle(PBS),sacrificedafter12hoursandtissuesremovedforanalysis.Resultsareshownas meantissueGSHlevels(mU/mgprotein;±SEM;n=6).

134 Ph.D.Thesis2012AlanCarter

0.7 0.6 (A)MainEffects 0.5 (p=0.01)( p=0.01)( p=0.01) 0.4 0.3 0.2 0.1 0 Mean GSH (nMol/mg protein) Treatment Genotype Sex 0.7 0.7 Male (B)TreatmentXGenotype WT (C)TreatmentXSex 0.6 0.6 Female (p=0.13) KO (p=0.24) 0.5 0.5 0.4 0.4 0.3 0.3 Protein) Protein) 0.2 0.2 0.1 0.1 Mean GSH (nMol/mg Mean GSH (nMol/mg 0 0 Vehicle Treated Vehicle Treated Group Group Male WT (D)GenotypeXSex0.7 (E)TreatmentXGenotype(0.7 ♂&♀) Female (0.6 p=0.01) (0.6 p=0.35) KO 0.5 0.5 0.4 0.4 0.3 0.3 Protein)

Protein) 0.2 0.2 0.1 0.1 Mean GSH (nMol/mg 0 Mean GSH(nMol/mg 0 Male Male Female Female WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure5.15:GSHlevelsinhearttissuesofNEIL1transgenicmiceexposedto LPS Mice were treated with LPS (20 mg/kg i.p. ), sacrificed after 12 hours and tissues removedforanalysis(mean±SEM;n=6).PanelAMaineffectsoftreatment,genotype andsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatmentandsex andgenotypeandsexrespectively.PanelEshows3wayinteractionsbetweentreatment, genotype and sex. (Panel A) An genotype X sex interaction was observed (Panel D; p<0.01).GSHlevelsweresignificantlylower( p<0.01)invehicleKO ♂’s( vs .vehiclewt ♂’s)andintreatedKO ♂’sand ♀’s( vs .treatedWT ♂’sand ♀’s).PanelA:GSHlevels weresignificantlyhigher( p<0.01)invehicletreatedanimals( vs. treatment),WT( vs. KO) and ♀(vs. ♂).

135 Ph.D.Thesis2012AlanCarter

7 (A)MainEffects 6 (p=0.01)( p=0.05)( p=0.81) 5 4 3 2 1 0 Mean GSH (nmol/mg protein) Treatment Genotype Sex 7 7 Male (B)TreatmentXGenotype WT (C)TreatmentXSex 6 6 Female (p=0.62) KO (p=0.11) 5 5 4 4 3 3 Protein) Protein) 2 2 1 1 Mean GSH (nmol/mg Mean GSH (nmol/mg 0 0 Vehicle Treated Vehicle Treated Group Group Male WT (D)GenotypeXSex7 (E)TreatmentXGenotype(7 ♂&♀) Female (6 p=0.21) (6 p=0.13) KO 5 5 4 4 3 3 Protein) 2 Protein) 2 1

1 Mean GSH (nmol/mg 0

Mean GSH (nmol/mg 0 Male Male Female Female WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure5.16:GSHlevelsinlungtissuesofNEIL1transgenicmiceexposedto LPS Mice were treated with LPS (20 mg/kg i.p. ), sacrificed after 12 hours and tissues removedforanalysis(mean±SEM;n=6).PanelAMaineffectsoftreatment,genotype andsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatmentandsex andgenotypeandsexrespectively.PanelEshows3wayinteractionsbetweentreatment, genotype and sex. GSH levels were significantly higher (Panel A; p<0.05) in vehicle treatedanimals( vs. treatment),and ♂(vs. ♀).Noothersignificanteffectwasobserved.

136 Ph.D.Thesis2012AlanCarter

(A)MainEffects 6

5 (p=0.01)( p=0.05)( p=0.01) 4 3 2 1 0 Mean GSH (nmol/mg Mean protein) Treatment Genotype Sex 6 6 Male (B)TreatmentXGenotype WT (C)TreatmentXSex 5 Female (5 p=0.43) KO (p=0.43) 4 4 3 3 Protein) Protein) 2 2 1 1 Mean GSH (nmol/mg Mean GSH (nmol/mg 0 0 Vehicle Treated Vehicle Treated Group Group Male WT (D)GenotypeXSex6 (E)TreatmentXGenotype(6 ♂&♀) Female KO (5 p=0.83) (5 p=0.14) 4 4 3 3

Protein) 2

Protein) 2 1 1 Mean GSH (nmol/mg 0 Mean GSH (nmol/mg 0 Male Male Female Female WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure5.17:GSHlevelsinlivertissuesofNEIL1transgenicmiceexposedto LPS Mice were treated with LPS (20 mg/kg i.p. ), sacrificed after 12 hours and tissues removedforanalysis(mean±SEM;n=6).PanelAMaineffectsoftreatment,genotype andsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatmentandsex andgenotypeandsexrespectively.PanelEshows3wayinteractionsbetweentreatment, genotype and sex. GSH levels were significantly higher (Panel A; p<0.05) in vehicle treatedanimals( vs. treatment),WT( vs. KO)and ♀(vs. ♂).Noothersignificanteffect wasobserved.

137 Ph.D.Thesis2012AlanCarter

0.8 (A)MainEffects 0.7 0.6(p=0.06)( p=0.07)( p=0.01) 0.5 0.4 0.3 0.2 0.1 0 Mean GSH (nmol/mg protein) Treatment Genotype Sex 0.8 0.8 Male (B)TreatmentXGenotype WT (C)TreatmentXSex 0.7 0.7 Female (p=0.18) KO (p=0.05) 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 Protein) Protein) 0.2 0.2 0.1

0.1 Mean GSH (nmol/mg Mean GSH (nmol/mg 0 0 Vehicle Treated Vehicle Treated Group Group Male WT (D)GenotypeXSex0.8 (E)TreatmentXGenotype(0.8 ♂&♀) Female (0.7 p=0.09) (0.7 p=0.22) KO 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 Protein) Protein) 0.2 0.2 0.1

0.1 Mean GSH (nmol/mg 0 Mean GSH (nmol/mg 0 Male Male Female Female WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure5.18:GSHlevelsinkidneytissuesofNEIL1transgenicmiceexposedto LPS Mice were treated with LPS (20 mg/kg i.p. ), sacrificed after 12 hours and tissues removedforanalysis(mean±SEM;n=6).PanelAMaineffectsoftreatment,genotype andsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatmentandsex andgenotypeandsexrespectively.PanelEshows3wayinteractionsbetweentreatment, genotypeandsex.AtreatmentXsexinteractionwasobserved(PanelC; p=0.05).GSH levelsweresignificantlylowerin♀(vs. ♂;PanelA; p<0.01).Noothersignificanteffect wasobserved.

138 Ph.D.Thesis2012AlanCarter

3.5 (A)MainEffects 3 (p=0.78)( p=0.05)( p=0.01) 2.5 2 1.5 1 0.5 0 Mean GSH (nmol/mg Mean protein) Treatment Genotype Sex 3.5 3.5 Male (B)TreatmentXGenotype WT (C)TreatmentXSex 3 3 Female (p=0.84) KO (p=0.17) 2.5 2.5 2 2 1.5 1.5 Protein) Protein) 1 1 0.5 0.5 Mean GSH (nmol/mg Mean GSH (nmol/mg 0 0 Vehicle Treated Vehicle Treated Group Group Male WT 3.5 3.5 (D)GenotypeXSex Female (E)TreatmentXGenotype( ♂&♀) (3 p=0.24) (3 p=0.94) KO 2.5 2.5 2 2 1.5 1.5 Protein)

Protein) 1 1 0.5 0.5 Mean GSH (nmol/mg 0 Mean GSH (nmol/mg 0 Male Male Female Female WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure5.19:GSHlevelsinileumtissuesofNEIL1transgenicmiceexposedto LPS Mice were treated with LPS (20 mg/kg i.p. ), sacrificed after 12 hours and tissues removedforanalysis(mean±SEM;n=6).PanelAMaineffectsoftreatment,genotype andsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatmentandsex andgenotypeandsexrespectively.PanelEshows3wayinteractionsbetweentreatment, genotypeandsex.GSHlevelsweresignificantlylower(PanelA; p<0.05)inWTanimals (vs. KO)and ♀(vs. ♂).Noothersignificanteffectwasobserved.

139 Ph.D.Thesis2012AlanCarter

In lung tissue there were no twoway interactions but there was a differenceobservedupontreatmentandwithgenotype.LPStreatedmice (2.95±0.44nmol/mgprotein)hadlowerGSHlevelsthanvehicletreated mice (3.12 ±0.30 nmol/mg protein; Figure 5.16A; p=0.01) and NEIL1 / mice(3.12±0.37nmol/mgprotein) hadlowerGSHlevelsthanNEIL1 +/+ mice(4.08±0.42nmol/mgprotein;Figure5.16A; p=0.05). In liver tissue there were again no significant twoway interactions. However,thereweresignificantdifferenceswithtreatment,genotypeand sex (Figure 5.17A). There was a significantly lower level ofGSH in LPS treatedmouseliver(3.28±0.48nmol/mgprotein)whencomparedtothe liverofvehicletreatedmice(0.87±0.19nmol/mgprotein; p=0.01).There was significantly less GSH in the liver of NEIL1 / (1.63 ±0.38 nmol/mg protein) mice when compared to NEIL1 +/+ mice (2.52 ±0.48 nmol/mg protein; p=0.04), and male mouse livers (1.18 ±0.36 nmol/mg protein) hadlessGSHthanfemalelivers(2.97±0.44nmol/mgprotein; p=0.01). Thetreatmentxsexinteractionwassignificantinkidney.Whilsttherewas anincreaseinGSHlevelsinmalemice(1.6fold)duetoLPStreatment, there was no real change in female mice (0.93 fold; Figure 5.18C; p=0.05). In the ileum there were no significant twoway interactions, but there weresignificantdifferenceswithgenotypeandsex.Therewassignificantly greaterGSHintheileumofNEIL1 /(1.41±0.29nmol/mgprotein)mice whencomparedtoNEIL1 +/+ mice(0.83±0.15nmol/mgprotein; p=0.05), andmalemouseilealtissues(1.64±0.29nmol/mgprotein)had greater GSHlevelsthanfemaletissues(0.59±0.06nmol/mgprotein; p=0.01).

140 Ph.D.Thesis2012AlanCarter

5.2.5. AgerelatedcytokineoutputNEIL1 /mice Figures 5.20 – 5.23 detail IL concentrations in mouse blood of animals sacrificedat68weeksand12months.PanelAshowstheagexgenotypex sexinteraction,panelsB–Ddetailagexgenotype,agexsexandgenotypex sexinteractionsrespectivelyandpanelEshowsthemaineffects. TherewerenosignificantdifferencesobservedinIL4concentrationsalthough therewasevidenceofasignificanteffectinthesexxageinteractionasfemale mouse IL4 levels increased with age (2.20 fold), whilst male IL4 levels decreasedslightly(0.78fold; p=0.07). TherewasnoevidenceofanagexgenotypexsexinteractioninIl6levels. The genotype x age interaction was significant in that whilst the blood IL6 concentration was similar at 12 months, it was significantly higher at 68 weeksinWTmice(28.14±7.54pg/ml)thanNEIL1KOmice(15.88±9.78 pg/ml),meaningthatthereductionduetoagewasconsiderablygreaterinWT mice( p>0.01).Thereisasignificantgenotypexsexinteractionobservedin IL10levelsaswhilstIL10levelsreducedduetodisruptionoftheNEIL1gene infemalemice(0.54fold)levelsitactuallyincreasedinmalemice(1.73fold; p=0.02).TherewerenosignificantdifferencesinIL12concentration.

5.3. Discussion

Previous work has identified several BER related genes that are associated withmodulatingtheinflammatoryresponse(Ando etal., 2008;Mabley etal., 2005a; Touati et al., 2006; Virag and Szabo 2002). Here we show that the disruptionoftheNEIL1genereducesinitialIL6production,butlevelsofpro and antiinflammatory cytokines indicate an overall increase

141 Ph.D.Thesis2012AlanCarter

10 (A)GenotypexAge 10 WT 6 - 8 Weeks (♀&♂) (B)GenotypexAge KO 8 12 Months (p=0.45)8 6 (p=0.63) 6 4 4 IL-4 (pg/ml) IL-4

2 IL-4(pg/ml) 2 0 0 Male WT Male KO Female Female KO 6-8 w eeks 12 months WT Age Male 10 Male (D)GenotypexSex10 (C)SexxAge (p=0.14) Female 8 Female 8 (p=0.07) 6 6 4 4

IL-4 (pg/ml) IL-4 (pg/ml) IL-4 2 2 0 0 WT KO 6-8 w eeks 12 months Age Genotype

(E)MainEffects10 (p=0.32)(p=0.70)(p=0.75) 8 6

4

IL-4(pg/ml) 2 0 Age Genotype Sex Figure5.20:IL4concentrationsinbloodserumtakenfromNEIL1transgenicmice Mice were sacrificed at the appropriate time and blood removed by cardiac puncture for analysis by ELISA (mean ± SEM; n=6). Panel A shows 3way interactions between age, genotype and sex, panels B–D show interactions between age x genotype, age x sex and genotypexsexrespectivelyandpanelsEshowsmaineffectsofage,genotypeandsex.No significantinteractionswereobservedintheIL4resultsalthoughtherewasevidenceofasex xageinteraction(PanelC; p=0.07)

142 Ph.D.Thesis2012AlanCarter

45 45 (A)GenotypexAge( ♂&♀) (B)GenotypexAge WT 40 40 6 - 8 Weeks 35 (p=0.30) 35 (p<0.01) KO 30 12 Months 30 25 25 20 20 15

IL-6(pg/ml) 15

10 IL-6(pg/ml) 10 5 5 0 0 Male WT Male KO Female Female 6-8 weeks 12 months WT KO Age

Male (C)SexxAge45 45 (D)GenotypexSex Male Female 40 (p=0.87) 40 (p=0.55) 35 35 Female 30 30 25 25 20 20 15 15 IL-6(pg/ml) IL-6(pg/ml) 10 10 5 5 0 0 WT KO 6-8 w eeks 12 months Age Genotype

(E)MainEffects45 40 (p<0.01)(p=0.03)( p=0.56) 35 30 25 20 15 IL-6(pg/ml) 10 5 0 Age Genotype Sex Figure5.21:IL6concentrationsinbloodserumtakenfromNEIL1transgenicmice Mice were sacrificed at the appropriate time and blood removed by cardiac puncture for analysis by ELISA (mean ± SEM; n=6). Panel A shows 3way interactions between age, genotype and sex, panels B–D show interactions between age x genotype, age x sex and genotypexsexrespectivelyandpanelsEshowsmaineffectsofage,genotypeandsex.There wasasignificantagexgenotypeinteraction( p<0.01),therewerealsosignificantdifferences inthemaineffectsofage( p<0.01)andgenotype( p=0.03).

143 Ph.D.Thesis2012AlanCarter

50 6 - 8 Weeks 50 (A) GenotypexAge (B)GenotypexAge WT 40 (♂&♀) 12 Months 40 (p=0.97) KO (p=0.80) 30 30 20 20

IL-10 (pg/ml)

10 IL-10(pg/ml) 10 0 0 Male WT Male KO Female Female WT KO 6-8 weeks 12 months Age

(C)SexxAge Male 50 50 (D)GenotypexSex (p=0.21) Female (p=0.02) 40 40

30 30

20 20 IL-10(pg/ml)

IL-10(pg/ml) Male 10 10 Female 0 0 WT KO 6-8 w eeks 12 months Age Genotype (E)MainEffects50 40 (p=0.92)(p=0.73)( p=0.10)

30 20

IL-10(pg/ml) 10 0 Age Genotype Sex Figure5.22:IL10concentrationsinbloodserumtakenfromNEIL1transgenic mice Mice were sacrificed at the appropriate time and blood removed by cardiac puncture for analysis by ELISA (mean ± SEM; n=6). Panel A shows 3way interactions between age, genotype and sex, panels B–D show interactions between age x genotype, age x sex and genotypexsexrespectivelyandpanelsEshowsmaineffectsofage,genotypeandsex.There wasasignificantgenotypeandsexinteraction(p=0.02).

144 Ph.D.Thesis2012AlanCarter

(A)GenotypexAge(45 ♂&♀) (B)GenotypexAge10 WT 40 (p=0.94) (p=0.36) 6 - 8 Weeks 8 35 KO 30 12 Months 6 25

20 4 15 IL-12(pg/ml) 10 2 5 0 0 6-8 weeks 12 months Male WT Male KO Female WT Female KO Age

Male (C)SexxAge10 10 (D)GenotypexSex Male (p=0.61) (p=0.86) Female 8 8 Female 6 6

4 4 IL-12(pg/ml) IL-12(pg/ml) 2 2 0 0 WT KO 6-8 w eeks 12 months

Age Genotype

(E)MainEffects 10 (p=0.26)( p=0.64)( p=0.47) 8

6 4

IL-12(pg/ml) 2 0 Age Genotype Sex Figure5.23:IL12concentrationsinbloodserumtakenfromNEIL1transgenic mice Mice were sacrificed at the appropriate time and blood removed by cardiac puncture for analysis by ELISA (mean ± SEM; n=6). Panel A shows 3way interactions between age, genotype and sex, panels B–D show interactions between age x genotype, age x sex and genotypexsexrespectivelyandpanelsEshowsmaineffectsofage,genotypeandsex.No significantdifferenceswereobserved.

145 Ph.D.Thesis2012AlanCarter ininflammation after 6h.Therearetissuespecific differences in tissue GSHcontent:intheheart,lungandliverofNEIL1 /micethereislessGSH implyingmoreROSareproduced,butintheileumtissuesGSHlevelsrise (Table5.5). Table5.4SummaryofNEIL1transgenicmousebloodserumcytokineresults Time(h) 0 1 6 24 Cytokine Male Female Male Female Male Female Male Female IL4 ** ↓ IL6 ** ↑ *↓ *↑ ** ↓ ** ↓ IL10 **↓ *↓ IL12 ** ↑

**= p≤0.01,*=0.05≥ p>0.01,= p≥0.10, ↓/↑ = comparison to WT. The detection of LPS by monocytes initiates an immune signalling cascade;thisismadeupofmanycytokines,andothersignallingproteins (MollerandVilliger2006).TheupregulationofIL6isoneoftheprimary elements in this cascade which goes on to stimulate increased serum levelsofothercytokinesincludingtheT h1 cytokine,IL12,andtheT h2 cell stimulating anti inflammatory cytokines, IL4 and 10 (Moller and Villiger 2006;ReedandMilton2001;Wan etal., 2000).Herewehavefoundthat thebasallevelsofIL6aresignificantlylowerinmaleNEIL1 /mice,and thatinresponsetotheLPSchallengethelevelofIL6at1hintheserum waslowerinNEIL1 /femalemice,indicatingaslowerinitialoutputofIL 6. 6 h after treatment the levels of IL12 (proinflammatory) in male animalshadincreasedbutlevelsoftheantiinflammatorycytokines(IL4 and 10) in female mice had decreased. These results may indicate differing immune responses to compensate for the initially slowed IL6 signalling. These differences in T h1 /T h2 responses between male and female mice can be explained by oestrogens ability to modulate the immuneresponsereducingT h1 activityandincreasingthatofT h2 (Salem, 2004). Alternatively, the disruption of the NEIL1 protein could be modulatingthe

146 Ph.D.Thesis2012AlanCarter

Table5.5:SummaryofNEIL1organdamageresults Tertiary Primaryinteractions SecondaryInteractions Interaction Treatment Treatment Genotype Treatmentx Treatment Genotype Sex x (LPSTreated xSex xSex Genotypex (KO vs.WT) (♀ vs.♂) Genotype vs.Vehicle) (Increasein ♀ (Increasein ♀ (IncreaseinKO vs. ♂) vs. ♂) Sex vs.WT) Heart ** ↓ Lung *↑ MPO Liver *↓ ~↓ *↑ Kidney Ileum *↑ *↓ * Heart ** ↑ Lung MDA Liver ** ↑ *↑ ** ↑ Kidney *↑ Ileum ~↑ ~↓ ~↓ Heart ** ↓ ** ↓ ** ↑ ** ↓ Lung ** ↓ *↓ GSH Liver ** ↓ *↓ ** ↑ Kidney ~↑ ~↑ ** ↓ *↓ ~↓ Ileum *↑ ** ↓ **=p≤0.01,*=0.05≥p>0.01,~=0.10>p>0.05,=p≥0.10, ↓/↑ = comparison.

147 Ph.D.Thesis2012AlanCarter activation of transcription factors such as NFκβ and AP1, maybe via. PARP1 or APE1. In order to discern if this is the case electrophoreticmobilityshiftassayscouldbeperformedusingcellextracts fromculturedcells(AbdelLatif etal., 2004). The chemoattractants such as MIP1α released as part of this signaling cascade induce leukocytes, in particular neutrophils, to the area of invasion. These cells produce an array of bactericidal compounds, includingROSandRNS.Theseoxidizingcompoundsareproduced via. a network of enzymes including superoxide dismutase (SOD) and myeloperoxidase (MPO), the activity of which can be measured as an indication of neutrophil infiltration. In mice treated with LPS (80 mg/kg i.p.)asignificantincreaseinMPOactivitycanbemeasuredafter4hand thisactivitycontinuestoincreaseupto24h(Kabir etal., 2002;Yamashita etal., 2000).InthecaseoftheseNEIL1/micetherewasnosignificant difference in MPO levels compared to NEIL1 +/+ mice, this indicated a reduced chemoattractant activity as suggested in the results from the NEIL1 /cells(section4.2). ROS produced by neutrophils, of course, are not specifically bactericidal and a build up of these compounds can cause cellular damage. One measureofthisdamageisMDAlevels.Previousstudieshaveshownthat when mice are treated with LPS the MDA concentrations in the liver, kidney, lung, gut and heart tissues are raised significantly, although not significantly so in brain tissue (Mabley et al., 2005a; Sebai et al., 2010)accumulationofROSwithinthesystem,whicharethenneutralised via theGSHpathway.Interestinglytherehavebeencasesobservedwhen theimmuneresponsehasshownmarkersofoxidativedamagetoincrease withoutanincreaseinneutrophilaggregation,inthesecasesitisthought tobeduetoanincreaseinNOsecondarymessengersreleasedaspartof inflammation(Pheng etal., 1995).

148 Ph.D.Thesis2012AlanCarter

RaisedlevelsofNOhavebeenshowntoincreasethe creation of Tg in replicated DNA significantly. TG can block the progress of repair or replicative DNA polymerases along the DNA strand (Aller et al., 2007). NEIL1hasbeenimplicatedintheSphaseandrepairwithinthereplication fork.ThusthereducedreleaseofTgfromthessDNA,duetotheknockout of NEIL1, could potentially be extending the Sphase and disrupting production of both cytokines and neutrophils (Orr et al., 2007; Orren et al., 1997). NEIL1hasalsobeenshowntointeractwithseveralproteinsthathaveno effectontheactivityofNEIL1includingDNAligaseIIIα,polβandOGG1 (Mokkapati etal., 2004a).DNAligaseandpolβbothinteractwithXRCC1, and whilst XRCC1 has no catalytic properties of its own it does interact withbothPARP1andAPE1(Mutamba etal., 2011).MutationsinXRCC1 havebeenshowntobeassociatedwithvariousinflammationassociated malignanciesincludinganincreasetheprevalenceofbreastcancer(Duell etal., 2001)andreducedsusceptibilitytooesophageal(Lee etal., 2001), lung(Ratnasinghe etal., 2001)andbladdercancers(Stern etal., 2001). Additionally these proteins also interact with PARP1 (Mutamba et al., 2011), the knockout of which has been shown to reduce the immune responsetoendotoxin(ViragandSzabo2002).However,thisinhibitionis thoughttobeduetoablanketreductioninallcytokineactivityduetothe inhibition of NFκβ and AP1 with which it has been shown to be a co factor with (Kiefmann et al., 2004). This was not observed in the developedNEIL1 /micewhichexhibitedbothincreasesanddecreasesin cytokineproduction. AnumberofproteinshavebeenshowntointeractwithNEIL1increasing itsactivityincludingFEN1,PCNA,CSBandWRN(Das etal., 2007a;Dou etal., 2008;Hegde etal., 2008;Muftuoglu etal., 2009).WRNhasalso

149 Ph.D.Thesis2012AlanCarter beenshowntobelinkedtoinflammation;siRNAinhibitionofthisprotein hasbeenshowntoincreasebothIL6productionandtheactivationofNF κβ(Turaga etal., 2009). AsNEIL1isactivatedbyWRNandtherewasno overallincreaseininflammatorydamageitisprobablethatthisisnotthe pathwaybywhichinflammationismodulated. FEN1 as with many of these proteins does also interact with PARP1 (Bouchard et al., 2003) and has been implicated in autoimmunity disorders,chronicinflammationandcancerformation(Kucherlapati etal., 2002; Lam et al., 2006; Zheng et al., 2007). More recently it was suggested that the upregulation of this protein was responsible for the increased inflammatory mediated cancer risk. The mechanism implicated in this rise in inflammatory signals was the hypomethylation of key promoter signals, leading to the hyperexpression of genes (Singh et al., 2008).ThelackofNEIL1proteintobindwithmaythereforeincreasefree FEN1 proteins within the cell reducing promoter methylation, and thus increasingtheseinflammatorysignals. PCNA interacts with NEIL1 during the Sphase as it playsaroleinDNA replicationatthispoint(Kisielewska etal., 2005).Additionally,duetothe positive correlation between PCNA concentration and severity of inflammation, PCNA has been used as a marker for inflammation in inflammatory bowel disease and several types of cancer including liver (Ding etal., 2005;Harrison etal., 1993). LittleisknownhowtheCSBproteinmayinfluenceinflammatoryresponse but in an experiment in which CSB / mice were exposed to ozone, the basalIL6levelsinthesemicewerehigherandtheIL6responseofthe mice in question was accelerated whilst the accumulation of oxidative damage was decreased (Kooter et al., 2008). Whilst there was an increasedbasalIL6levelinthemaleNEIL1 /mice,theIL6production wasnotacceleratedasitwasintheCSB /mice.Althoughnomechanism

150 Ph.D.Thesis2012AlanCarter for CSB affecting the immune response has been forthcoming, the removaloftheNEIL1proteinmayresultinexcess“free”CSBwithinthe cell. Each of these proteins, including NEIL1 itself, can be linked to inflammation via APE1. This enzymes expression is activated by the presenceofROSsuchasthosereleasedbytheinnateimmuneresponse (Yang et al., 2007).APE1activatestranscriptionfactorsNFκΒandAP1 bythereductionofactivecystineresidues(Ando etal., 2008).Thedown regulationofthedisruptionofAPE1activityhasbeenshowntodecrease theactivationoftranscriptionfactorsNFκΒandAP1(Daily etal., 2001; FungandDemple2005). As the mice got older, basal levels of the cytokine IL6 decreased, however aging is more often cited as causing increased IL6 production (Daynes etal., 1993;Ershler etal., 1993),butthereiscontroversyonthis pointascasesexistwherenochange(Beharka etal., 2001)oradecrease isobserved(Boehmer etal., 2004;GoodmanandStein1994;Sharman et al., 2001). These NEIL1 / mice had initially reduced basal levels of IL6 whichreducedtosimilarlevelsasWTmiceat12months.Adecreasein basalIL6isthoughttobeduetoreducedefficiencyinthetranscription pathways,particularlytheJNKandp38pathways(Boehmer etal., 2004; Goodman and Stein 1994) or due to the deregulation of IL6 with age, duetoinhibitionofNFκβbyanincreaseinT h2 activity(YeandJohnson 2001). Another hypothesis is that in younger mice, IL6 plays a role in developmental processes such as osteoclastogenesis, vascular developmentandthedevelopmentofthebrainandthatthebasallevelof IL6reduceswhenitisnolongerneeded(Sharman etal., 2001). The large numbers of proteins that may link through NEIL1 to inflammation indicate that the BER repair system and inflammation may belinkedatseveralpoints,howevertherearemanypointswheretheBER

151 Ph.D.Thesis2012AlanCarter system“bottlenecks” i.e .afterAPE1hascleavedthe3'PUAleavingagap thatcanberepairedbyPolβandDNAligaseIII/XRCC1. Inconclusion,theknockoutoftheNEIL1geneseemstoslowtheinitiation oftheimmuneresponse,althoughthisiscompensatedforbyanincrease in the proinflammatory cytokine, IL12, in males and a decrease in the antiinflammatoryILs10and4inthebloodserum.Additionallytherewas no difference in levels of MPO or MDA between NEIL1/ and NEIL1 +/+ mice, although there was differences observed between overall GSH, indicating a mild ROS increase. The results shed more light on how previouslyidentifiedBERproteinsmayhavemodulatedinflammationbut moreworkneedtobedonetoidentifythespecificpathway.

152 Ph.D.Thesis2012AlanCarter

6. EffectsofOGG1GeneKnockoutonEndotoxinInduced Inflammation

6.1. Introduction AsoutlinedpreviouslybaseexcisionrepairproteinssuchasPARP1,APE 1 and MUTYH have been implicated in the regulation of the immune systeminresponsetoendotoxin(Sections1.3.1.&1.3.2.)(Casorelli etal., 2010; Virag and Szabo 2002). There is also evidence that another base excision repair protein, OGG1, may have potentially protective effects againstendotoxinorhelicobacterpyloriinducedinflammation(Mabley et al., 2005a; Touati et al., 2006).Thiswasfirstreportedin2005whenit wasshownthatafterLPStreatment(55mg/kg i.p. )themortalityinOGG1 / mice was lower than that in wildtype animals. The levels of the IL-12 andTNFαinbloodplasmawerereducedinOGG1 /micewhencompared withOGG1 +/+ miceaswerelevelsofMIP1α.Additionally,levelsofanti inflammatorycytokinesIL4andIL10wereincreasedintheplasmaofthe OGG1 / mice when compared to OGG1 +/+ mice, indicating an overall suppressionoftheimmunesystem.MPOactivityinheartandlungtissues was significantly reduced in OGG1 / mice, compared to OGG1 +/+ mice afterthemicewerechallengedwith80mg/kgLPS( i.p. ).AdditionallyMDA levelswerealsoreducedinthelung,heartandliverofOGG1 /micewhen compared to their OGG1 +/+ counterparts. These results suggest that the reductioninlevelsofproinflammatorycytokinesandchemokines,andthe increase in antiinflammatory cytokines reduced neutrophil recruitment andactivation,whichinturnattenuatedtheproductionofMDA(Mabley et al., 2005a). The same strain of OGG1 / mice, this time bred onto a Big blue mouse background useful for the observation of mutations (Hill et al., 1999), infected with the gramnegative bacteria helicobacter pylori (H. pylori ) exhibitedless severehistologicallesionsofthegastricmucosathanthose of OGG1 +/+ mice. Additionally, infiltration of polymorphonuclear cells

153 Ph.D.Thesis2012AlanCarter

(neutrophils,basophilsandeosinophils)wasobservedintheguttissueof 33% of OGG1 / micetreated with H. Pylori , compared to 100% of the OGG1 +/+ mice, indicating that the recruitment of these cells was also attenuated(Touati etal., 2006). ThesestudiessupportthehypothesisthatthereisalinkbetweenOGG1 andtheinflammatoryresponse,butthisevidencehasnotbeenconfirmed byothersources.

6.1.1. Aims ToidentifytheextenttowhichOGG1determinestheimmuneresponseto LPSinducedinflammationby: 1. EstablishingwhetherlevelsofIL6,IL12,IL10andIL4differ between OGG1 / and OGG1 +/+ mouse serum, at baseline and afterLPStreatment. 2. IdentifywhetherchangesinMPOactivity,GSHlevelsandMDA levelsinducedbyLPSdifferbetweenOGG1 /andOGG1 +/+ mice.

6.2. Results

6.2.1. CytokineOutputinLPSChallengedOGG1 /Mice Figures 6.1 – 6.4 present interleukin concentrations measured in blood serumofmiceafter0,1,6and24hafterinjectionwithLPS(2mg/kg i.p. ; mean ± SEM; n=6). There was a significant difference in IL4 levels between WT and KO male mice at 6 h, here the OGG1 +/+ (18.1 ± 0.9 pg/ml)micehavingmoreIL4intheirserumthanOGG1 / mice(12.9± 2.4 pg/ml; Figure 6.1A; p=0.05). IL4 concentrations were not significantlydifferentatanytimepointwhencomparingfemaleOGG1 +/+ andOGG1 /mice (p >0.55). Serum IL6 concentrations were significantly different between male WT and KO mice at baseline (WT 5.2 ±1.4 pg/ml vs. KO1.8 ± 0.6pg/ml;

154 Ph.D.Thesis2012AlanCarter p<0.01),atwhichpointtheKOconcentrationofIL6washigherthanWT levels(Figure6.2A). (A)MaleIL4levels

350 WT 300 KO 250 * 200 150

IL-4 IL-4 (pg/ml) 100 * 50 0 0 1 6 24 Time (h) (B)FemaleIL4Levels

350 WT 300 KO 250 200 150

IL-4 IL-4 (pg/ml) 100 50 0 0 1 6 24 Time (h) Figure6.1:IL4concentrationsinbloodserumtakenfromOGG1transgenic mice MiceweretreatedwithLPS(2mg/kg i.p. ),sacrificedattheappropriatetimeandblood removedbycardiacpunctureforanalysisbyELISA(mean±SEM;n=6).PanelsAandB showserumIL4levelsat0,1,6and24hinmaleandfemalerespectively.(*p≤0.05; ** p≤0.01).Asignificantdifferencewasobservedbetween WT and KO ♂ mice at 1 (p=0.04)and6h( p=0.05).TherewasnosignificantdifferenceinIL4levelsbetween ♀ WTandKOmice( p>0.55). There were significant differences betweenconcentrations of IL6 in the serumoffemaleWTandKOmiceat1h(WT414.3±46.5pg/ml vs. KO 311.2±23.1pg/ml; p<0.01)atwhichpointtheIL6levelsinWTserum washigherthanthatoftheKOmice.After24h(WT2.6±2.5pg/ml vs. KO23.8±1.2pg/ml; p<0.01;Figure6.2B).

155 Ph.D.Thesis2012AlanCarter

(A)MaleIL6Levels

9000 WT KO 7500

6000

4500

IL-6 (pg/ml) IL-6 3000

1500 ** 0 0 1 6 24 Time (h) (B)FemaleIL6Levels

9000 WT KO 7500

6000 ** 4500

IL-6 (pg/ml) IL-6 3000

1500 ** 0 0 1 6 24 Time (h) Figure6.2:IL6concentrationsinbloodserumtakenfromOGG1transgenic mice MiceweretreatedwithLPS(2mg/kg i.p. ),sacrificedattheappropriatetimeandblood removedbycardiacpunctureforanalysisbyELISA(mean±SEM;n=6).PanelsAandB show serum IL6 levels at 0, 1, 6 and 24 h im maleand female mice respectivly. (* p≤0.05;**p≤0.01).asignificantdifferencewasobservedbetweenWTandKO ♂mice at0h( p<0.01).TherewasaasosignificantdifferenceinIL6levelsbetween ♀WTand KOmiceat1( p<0.01)and24h( p<0.01). ThereweresignificantdifferencesbetweenconcentrationsofIL10inthe serumofWTandKOmalemiceat6h(WT2356.6±414.7pg/ml vs. KO 3730.1±381.9pg/ml; p=0.02)and24h(WT–60.2±52.7pg/ml vs. KO 1498.2±228.9pg/ml; p<0.01).InbothofthesecasesIL10levelswere greater in KO serum than WT serum (Figure 6.3A). Similarly there were significant differences between concentrations of IL10 in the serum of femaleWTandKOmiceat6h(WT5447.7±103.8pg/ml vs. KO4323.5

156 Ph.D.Thesis2012AlanCarter

±321.1pg/ml; p<0.01)and24h(WT63.1±1.8pg/ml vs. KO45.7± 1.9 pg/ml; p<0.01). However, in these cases the levels of IL10 in KO micewerelowerthanthoseoftheWTmice(Figure6.3B). (A)MaleIL10Levels

20000 WT 18000 KO 16000 14000 12000 10000 8000

IL-10 (pg/ml) IL-10 6000 * 4000 ** 2000 0 0 1 6 24 Time (h) (B)FemaleIL10Levels

20000 18000 WT 16000 KO 14000 12000 10000 8000 **

IL-10 (pg/ml) IL-10 6000 4000 2000 ** 0 0 1 6 24 Time (h) Figure6.3:IL10concentrationsinbloodserumtakenfromOGG1transgenic mice MiceweretreatedwithLPS(2mg/kg i.p. ),sacrificedattheappropriatetimeandblood removedbycardiacpunctureforanalysisbyELISA(mean±SEM;n=6).PanelsAandB showserumIL10levelsat0,1,6and24hinmaleandfemalemicerespectvely.(* p≤0.05;**p≤0.01).AsignificantdifferencewasobservedbetweenWTandKO ♂mice at 6 ( p=0.02) and 24 h ( p<0.01). There was a significant difference in IL10 levels between ♀WTandKOmiceat6and24h( p<0.01). WhilsttherewasnosignificantdifferencesinserumIL12concentrations betweenOGG1 +/+ andOGG1 /miceineithermaleorfemalemice,there wasevidenceofasignificantdifferencebetweenOGG1 +/+ andOGG1 /in

157 Ph.D.Thesis2012AlanCarter

IL12levelsat1hinfemalemice(WT77.4±68.2pg/ml vs. KO50.7±

24.9pg/ml;Figure6.4B; p=0.06). (A)MaleIL12Levels

500 WT 450 KO 400 350 300 250 200 150 IL-12 (pg/ml) IL-12 100 50 0 0 1 6 24 Time (h) (B)FemaleIL12levels

500 WT 450 KO 400 350 300 250 200

IL-12 (pg/ml) IL-12 150 100 50 0 0 1 6 24 Time (h) Figure6.4:IL12concentrationsinbloodserumtakenfromOGG1transgenic mice MiceweretreatedwithLPS(2mg/kg i.p. ),sacrificedattheappropriatetimeandblood removedbycardiacpunctureforanalysisbyELISA(mean±SEM;n=6).PanelsAandB showserumIL12levelsat0,1,6and24hinmaleandfemalemicerespectively.(* p≤0.05; ** p≤0.01). No significant difference was observed between WT and KO ♂ miceatanytimepoint( p>0.42).TherewasevidenceofasignificantdifferenceinIL12 levelsbetween ♀WTandKOmiceat1h( p=0.06).

158 Ph.D.Thesis2012AlanCarter

6.2.2. MyeloperoxidaseActivityinLPSChallengedOGG1 /Mice MPOactivityinvarioustissuesofmaleandfemaleOGG1 +/+ andOGG1 / mice following treatment with a vehicle or LPS are shown in Table 6.2. Figures 6.5 – 6.9 present MPO activity levels in the heart, lung, liver, kidneyandileumrespectively.PanelAofthesefigures shows the main effectsoftreatment (vehicle vs. LPS),genotype(WT vs. OGG1KO)and sex(male vs. female).PanelsBDshowtheinteractionsof(B)treatment andgenotype,(C)treatmentandsexand(D)genotypeandsex.PanelE showsthethreewayinteractionbetweentreatment,genotypeandsex. Therewasnosignificanttreatmentxgenotypexsex,genotypexsexor treatmentxgenotypeinteractionindeterminingheartMPOactivity(Figure 6.5). There was evidence of a treatment x sex interaction (Figure 6.5C; p=0.08) in that treatment decreased MPO activity in female mice from 28.1(±5.3)mU/mgproteinto15.8(±2.2)mU/mgproteinwhereasthere wasnoeffectoftreatmentonMPOactivityinmalemice( i.e. bothWTand Ogg1 KO mice combined). MPO activity in the heart did not vary with genotype.

159 Ph.D.Thesis2012AlanCarter

Table6.1:MPOactivityintissuesofOGG1transgenicmiceexposedtoLPS

Vehicle Treated Treatment X Tissue Male Female Male Female Genotype X WT KO WT KO WT KO WT KO Sex 18.71 16.54 25.48 30.65 18.02 15.34 17.67 14.57 Heart (±1.06) (±2.32) (±6.78) (±9.22) (±.39) (±2.19) (±4.48) (±2.02) p=0.53 29.75 45.01 33.10 27.50 122.96 195.86 119.52 120.04 Lung (±2.96) (±4.49) (±7.04) (±4.59) (±13.61)* (±29.61)* (±11.54) (±11.47) p=0.16 10.75 13.13 9.66 9.37 46.32 64.41 45.26 35.07 Liver (±1.93) (±1.76) (±2.06) (±1.62) (±5.73) (±10.18) (±4.01) (±2.48) p=0.05 6.69 5.29 9.20 8.64 13.26 20.50 13.44 13.35 Kidney (±1.91) (±1.33) (±1.95) (±0.99) (±2.04) (±5.63) (±1.48) (±1.58) p=0.24 11.05 12.94 28.33 25.62 19.38 16.73 9.07 27.84 Ileum (±1.04) (±2.77) (±8.82) (±5.88) (±4.95) (±5.67) (±3.66) (±5.05) p=0.07 MiceweretreatedwithLPS(20mg/kg i.p.)orvehicle(PBS),sacrificedafter12hoursandtissuesremovedforanalysis.TissueMPOactivity (mU/mgprotein)resultsareshownasmean±SEM(n=6).

160 Ph.D.Thesis2012AlanCarter

50 (A) MainEffects 40 (p=0.40)( p=0.82)( p=0.11) 30 20

protein) 10

Mean MPO activity MPO Mean (mU/mg 0 Treatment Genotype Sex 50 50 Male (B)TreatmentXGenotype WT (C)TreatmentXSex Female (40 p=0.48) KO (40 p=0.08) 30 30 20 20 Protein) Protein) 10 10 0 0 Mean MPO activity (mU/mg Mean MPO activity (mU/mg Vehicle Treated Vehicle Treated Group Group Male WT (D)GenotypeXSex50 (E)TreatmentXGenotype(50 ♂&♀) (p=0.57) Female (p=0.53) KO 40 40 30 30 20

20 Protein) Protein) 10 10 0

0 Mean MPO activity (mU/mg Male Male Female Female

Mean MPO activity (mU/mg WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure6.5:MPOactivityinhearttissuesofOGG1transgenicmiceexposedto LPS MiceweretreatedwithLPS(20mg/kg i.p. )orvehicleonly,sacrificedafter12hoursand tissues removed for analysis (mean ± SEM; n=6). Panel A Main effects of treatment, genotypeandsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatment andsexandgenotypeandsexrespectively.PanelEshows3wayinteractionsbetween treatment,genotypeandsex.Nosignificanteffectwereobserved.

161 Ph.D.Thesis2012AlanCarter

250 (A)MainEffects 200 (p=0.01)( p=0.03)( p=0.01) 150 100

protein) 50

Mean MPO activity (mU/mg 0 Treatment Genotype Sex 250 250 Male (B)TreatmentXGenotype WT (C)TreatmentXSex Female (200 p=0.08) KO (200 p=0.08) 150 150 100 100 Protein) Protein) 50 50 0 0 Mean MPO activity (mU/mg Mean MPO activity (mU/mg Vehicle Treated Vehicle Treated Group Group Male WT (D)GenotypeXSex250 (E)TreatmentXGenotype(250 ♂&♀) Female (p=0.01) (p=0.16) KO 200 200 150 150 100

100 Protein) Protein) 50 50 0

0 Mean MPO activity (mU/mg Male Male Female Female

Mean MPO activity (mU/mg WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure6.6:MPOactivityinlungtissuesofOGG1transgenicmiceexposedto LPS MiceweretreatedwithLPS(20mg/kg i.p. )orvehicleonly,sacrificedafter12hoursand tissues removed for analysis (mean ± SEM; n=6). Panel A Main effects of treatment, genotypeandsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatment andsexandgenotypeandsexrespectively.PanelEshows3wayinteractionsbetween treatment, genotype and sex. A significant genotype X sex interaction was observed. MPOactivitywassignificantlyhigherintreatedWT ♂(vs.vehicletreatedWT ♂; p<0.02). MPOactivitywassignificantlylower( p<0.03)invehicletreatedanimals( vs. treatment), WT(vs.KO)and ♀(vs. ♂).

162 Ph.D.Thesis2012AlanCarter

80 (A)MainEffects 70 (60 p=0.01)(p=0.43)( p=0.01) 50 40

protein) 30 20 10

Mean MPO activity MPO Mean (mU/mg 0 Treatment Genotype Sex 80 80 Male (B)TreatmentXGenotype WT (C)TreatmentXSex 70 70 Female (p=0.64) KO (p=0.05) 60 60 50 50 40 40 30 30 Protein) Protein) 20 20 10 10 0 0 Mean MPO activity (mU/mg Mean MPO activity (mU/mg Vehicle Treated Vehicle Treated Group Group Male WT (D)GenotypeXSex80 (E)TreatmentXGenotype(80 ♂&♀) Female (70 p=0.02) (70 p=0.05) KO 60 60 50 50 40 40 30 30 Protein) Protein) 20 20 10 10 0 0 Mean MPO activity (mU/mg Male Male Female Female Mean MPO activity (mU/mg WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure6.7:MPOactivitylevelsinlivertissuesofOGG1transgenicmice exposedtoLPS MiceweretreatedwithLPS(20mg/kg i.p. )orvehicleonly,sacrificedafter12hoursand tissues removed for analysis (mean ± SEM; n=6). Panel A Main effects of treatment, genotypeandsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatment andsexandgenotypeandsexrespectively.PanelEshows3wayinteractionsbetween treatment,genotypeandsex.SignificantgroupXsex and genotype X sex interactions (p<0.05)wereobserved.MPOactivitywassignificantlylower( p=0.01)invehicletreated mice( vs. treated)and ♀(vs. ♂). Noothersignificantinteractionswereobserved.

163 Ph.D.Thesis2012AlanCarter

30 (A)MainEffects

(25 p=0.01)( p=0.45)( p=0.88) 20

15 protein) 10 5

Mean MPO activity MPO Mean (mU/mg 0 Treatment Genotype Sex 30 30 Male (B)TreatmentXGenotype WT (C)TreatmentXSex 25 Female (25 p=0.19) KO (p=0.07) 20 20 15 15 Protein) Protein) 10 10 5 5 0 0 Mean MPO activity (mU/mg Mean MPO activity (mU/mg Vehicle Treated Vehicle Treated Group Group Male WT (D)GenotypeXSex30 (E)TreatmentXGenotype(30 ♂&♀) Female KO (25 p=0.35) (25 p=0.24) 20 20 15 15

Protein) 10 Protein) 10 5 5 0 0 Mean MPO activity (mU/mg Male Male Female Female Mean MPO activity (mU/mg WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure6.8:MPOactivityinkidneytissuesofOGG1transgenicmiceexposedto LPS MiceweretreatedwithLPS(20mg/kg i.p. )orvehicleonly,sacrificedafter12hoursand tissues removed for analysis (mean ± SEM; n=6). Panel A Main effects of treatment, genotypeandsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatment andsexandgenotypeandsexrespectively.PanelEshows3wayinteractionsbetween treatment, genotype and sex. MPO activity was significantly lower in vehicle treated animals( vs. treatment; p<0.01).Noothersignificanteffectwasobserved.

164 Ph.D.Thesis2012AlanCarter

40 (A)MainEffects 35 (30 p=0.73)( p=0.28)( p=0.03) 25 20

protein) 15 10 5

Mean MPO activity (mU/mgactivity MPO Mean 0 Treatment Genotype Sex 40 40 Male WT (B)TreatmentXGenotype35 (C)TreatmentXSex35 Female KO (30 p=0.23) (30 p=0.04) 25 25 20 20 15

15 Protein) Protein) 10 10 5 5 0 0 Mean MPO activity (mU/mg Mean MPO activity (mU/mg Vehicle Treated Vehicle Treated Group Group Male 40 40 WT (D)GenotypeXSex Female (E)TreatmentXGenotype (35 p=0.24) (35 KO ♂&♀) 30 30 (p=0.07) 25 25 20 20 15 15 Protein) Protein) 10 10 5 5 0

0 MeanMPO activity (mU/mg Male Male Female Female Mean MPO activity (mU/mg WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure6.9:MPOactivityinileumtissuesofOGG1transgenicmiceexposedto LPS MiceweretreatedwithLPS(20mg/kgi.p.)orvehicleonly,sacrificedafter12hoursand tissues removed for analysis (mean ± SEM; n=6). Panel A Main effects of treatment, genotypeandsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatment andsexandgenotypeandsexrespectively.PanelEshows3wayinteractionsbetween treatment,genotypeandsex.AsignificanttreatmentXsexinteractionwasobservedin (p=0.04).MPOactivitywassignificantlyhigherin ♀(vs. ♂; p=0.03).Noothersignificant effectwasobserved.

165 Ph.D.Thesis2012AlanCarter

In the lung there was no significant three way interaction observed in MPO activity, although, there was a significant interaction between genotypeandsex(Figure6.6D; p=0.01).Whilsttherewasanincreasein MPOactivityinmaleanimalsduetotheknockoutoftheOgg1gene(1.6 fold)therewasnosignificantdifferenceinMPOactivityinfemalemouse lung tissue (1.1 fold). The treatment x genotype (Figure 6.6B; p=0.08) andtreatmentxsex(Figure6.6D; p=0.08)interactionsbothapproached significance in that whilst in each case MPO activity increased due to treatment that increase was greater in Ogg1 / (4.7 fold vs. 3.9 fold) animalsandmalemice(4.3fold vs. 4.0fold). In the liver there was a significant three way interaction between treatment, genotype and sex in determining MPO activity (Figure 6.7E; p=0.05). In male and female mice, treatment resulted in a significant increase in MPO activity in both Ogg1 +/+ and Ogg1 / mice. Whereas in bothmaleandfemaleWTmicethisincreasewassimilar(4.3foldinmale and4.7infemale),inmaleOgg1 /micethisincreasewas6.7foldandin femalemiceonly3.7fold. In the kidney there was no significant three way interaction between treatment, genotype and sex (Figure 6.8E). There was an interaction approaching significance between treatment and sex (Figure 6.8C; p=0.07) in that whilst treated animals had greater MPO activity, these levelsrosemoreinmalemice(2.8fold)whencomparedtofemalemice (1.5fold).Interestinglywhilstthefemalemiceinitiallyhadlowerlevelsof MPOactivity,aftertreatmentMPOactivitylevelswerehigherthanthoseof themales(Figure6.8C). Intheileumtherewasnosignificantthreewayinteraction,althoughitdid approachsignificance(Figure6.9E; p=0.07).Thetreatmentxsex interaction was significant (Figure 6.9C; p=0.04), indicating that whilst MPOactivityofLPStreatedmale(18.1±3.5mU/mgprotein)andfemale

166 Ph.D.Thesis2012AlanCarter

(20.3±4.6mU/mgprotein)micewerenot significantlydifferent,vehicle treatedfemalemicehadsignificantlyhigherMPOactivitylevels(27.0±4.8 mU/mgprotein)whencomparedtothatofthemales(12.0±1.4mU/mg protein)leading to a dropinMPO activitylevelswhentreatedwithLPS. Mean MPO activity was significantly higher in female mice (22.0 ±3.3 mU/mg protein) than males (15.0 ±1.9 mU/mg/protein; Figure 6.9A; p=0.03).

6.2.3. MalondialdehydeContentinLPSChallengedOGG1 /Mice TheMDAlevelsinvarioustissuesofmaleandfemaleOGG1 +/+ andOGG1 /followingtreatmentwithavehicleorLPSisshowninTable6.3.Figures 6.10–6.14presentMDAlevelsintheheart,lung,liver,kidneyandileum respectively.PanelAofthesefiguresshowsthemaineffectsoftreatment (vehiclevs.LPS),genotype(WTvs.OGG1KO)andsex(malevs.female). Panels B D show the interactions of (B) treatment and genotype, (C) treatment and sex and (D) genotype and sex. Panel E shows the three wayinteractionbetweentreatmentgroup,genotypeandsex. TherewerenothreewayinteractionsobservedintheresultsoftheMDA assays, neither were there many two way interactions. Within the heart therewerenosignificantdifferencesatall(Figure6.10).Inthelungthere were significant differences in MDA levels observed between vehicle treated animals (5.5 ±0.6 nmol/mg protein) and those treated with LPS (7.4 ±0.8 nmol/mg protein; Figure 6.11A; p=0.05). There was also a significant difference observed between MDA levels in male (5.0 ±0.4 nmol/mg protein) and female mice (7.7 ±0.8 nmol/mg protein; Figure 6.11A; p=0.01).

167 Ph.D.Thesis2012AlanCarter

Table6.2:MDAlevelsintissuesofOGG1transgenicmiceexposedtoLPS

Vehicle Treated Treatment X Tissue Male Female Male Female Genotype X WT KO WT KO WT KO WT KO Sex 0.40 0.94 1.08 0.64 1.07 1.00 0.70 0.79 Heart (±0.11) (±0.37) (±0.21) (±0.10) (±0.19) (±0.30) (±0.10) (±0.10) p=0.06 6.48 6.02 5.16 4.27 6.93 11.39 5.58 5.04 Lung (±1.71) (±1.68) (±0.95) (±0.51) (±1.00) (±1.97) (±0.76) (±0.78) p=0.19 2.11 2.87 1.93 0.76 3.33 4.69 1.08 0.37 Liver (±0.16) (±0.60) (±0.32)* (±0.20)* (±0.41) (±0.56) (±0.13) (±0.07) p=0.90 1.20 1.11 1.10 1.68 1.57 2.12 2.12 2.91 Kidney (±0.14) (±0.18) (±0.14) (±0.19) (±0.19) (±0.24) (±0.40) (±0.97) p=0.69 3.21 6.25 5.54 4.77 6.29 6.36 7.37 8.85 Ileum (±0.75) (±2.12) (±0.48) (±0.45) (±0.97) (±1.68) (±0.82) (±1.22) p=0.11 MiceweretreatedwithLPS(20mg/kg i.p.)oravehicle(PBS),sacrificedafter12hoursandtissuesremovedforanalysis.TissueMPOactivity(mU/mg protein)resultsareshownasmean±SEM(n=6).

168 Ph.D.Thesis2012AlanCarter

1.4 (A)MainEffects

1.2(p=0.38)( p=0.81)( p=0.72) 1 0.8 0.6 0.4 0.2 0 Mean MDA (nmol/mg MDA Mean protein) Treatment Genotype Sex 1.4 1.4 (B)TreatmentXGenotype WT (C)TreatmentXSex 1.2 1.2 (p=0.91) KO (p=0.10) 1 1 0.8 0.8 0.6 0.6 Protein) Protein) 0.4 0.4 Male 0.2 0.2 Female Mean MDA (nmol/mg Mean MDA (nmol/mg 0 0 Vehicle Treated Vehicle Treated Group Group WT (D)GenotypeXSex1.4 (E)TreatmentXGenotype(1.4 ♂&♀) (1.2 p=0.16) (1.2 p=0.06)KO 1 1 0.8 0.8 0.6 0.6 Protein)

Protein) 0.4 0.4 Male 0.2 0.2 Female Mean MDA (nmol/mg 0 Mean MDA (nmol/mg 0 Male Male Female Female WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure6.10:MDAlevelsinhearttissuesofOGG1transgenicmiceexposedto LPS MiceweretreatedwithLPS(20mg/kg i.p. )orvehicleonly,sacrificedafter12hoursand tissues removed for analysis (mean ± SEM; n=6). Panel A Main effects of treatment, genotypeandsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatment andsexandgenotypeandsexrespectively.PanelEshows3wayinteractionsbetween treatment,genotypeandsex.Nosignificanteffectswereobserved.

169 Ph.D.Thesis2012AlanCarter

16 (A)MainEffects 14 12 (p=0.05)( p=0.46)( p=0.01) 10 8 6 4 2 0 MeanMDA (nmol/mg protein) Treatment Genotype Sex 16 16 Male (B)TreatmentXGenotype WT (C)TreatmentXSex 14 14 Female (p=0.14) KO (p=0.19) 12 12 10 10 8 8 6 6 Protein) Protein) 4 4 2 2 Mean MDA (nmol/mg Mean MDA (nmol/mg 0 0 Vehicle Treated Vehicle Treated Group Group Male WT (D)GenotypeXSex16 (E)TreatmentXGenotype(16 ♂&♀) Female (14 p=0.12) (14 p=0.19) KO 12 12 10 10 8 8 6 6 Protein) Protein) 4 4 2

2 Mean MDA (nmol/mg 0

Mean MDA (nmol/mg 0 Male Male Female Female WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure6.11:MDAlevelsinlungtissuesofOGG1transgenicmiceexposedto LPS MiceweretreatedwithLPS(20mg/kg i.p. )orvehicleonly,sacrificedafter12hoursand tissues removed for analysis (mean ± SEM; n=6). Panel A Main effects of treatment, genotypeandsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatment andsexandgenotypeandsexrespectively.PanelEshows3wayinteractionsbetween treatment,genotypeandsex.MDAlevelsweresignificantly higher ( p<0.01) in treated animals( vs. vehicletreated),and ♀(vs. ♂).Noothersignificanteffectswereobserved.

170 Ph.D.Thesis2012AlanCarter

6 (A)MainEffects

5 (p=0.07)( p=0.80)( p=0.01) 4 3 2 1 0 Mean MDA (nmol/mg MDA Mean protein) Treatment Genotype Sex 6 6 Male (B)TreatmentXGenotype WT (C)TreatmentXSex 5 Female (5 p=0.28) KO (p=0.01) 4 4

3 3 Protein) Protein) 2 2 1 1 Mean MDA (nmol/mg Mean MDA (nmol/mg 0 0 Vehicle Treated Vehicle Treated Group Group Male WT (D)GenotypeXSex6 (E)TreatmentXGenotype(6 ♂&♀) Female KO (5 p=0.01) (5 p=0.90) 4 4 3 3

Protein) 2

Protein) 2 1 1 Mean MDA (nmol/mg MDA Mean 0 Mean MDA (nmol/mg MDA Mean 0 Male Male Female Female WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure6.12:MDAlevelsinlivertissuesofOGG1transgenicmiceexposedto LPS MiceweretreatedwithLPS(20mg/kg i.p. )orvehicleonly,sacrificedafter12hoursand tissues removed for analysis (mean ± SEM; n=6). Panel A Main effects of treatment, genotypeandsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatment andsexandgenotypeandsexrespectively.PanelEshows3wayinteractionsbetween treatment, genotype and sex. A significant treatment x sex and genotype X sex interactionswereobserved( p<0.01).SignificantlylowerlevelsofMDAweredetectedin vehicletreatedWT ♀’s( vs .treatedWT ♀’s; p<0.01).MDAlevelsweresignificantlylower in ♀(vs. ♂; p<0.01 ).

171 Ph.D.Thesis2012AlanCarter

5 (A)MainEffects

4 (p=0.01)( p=0.10)(p=0.10) 3 2 1 0 Mean MDA (nmol/mgMean MDA protein) Treatment Genotype Sex 5 5 Male (B)TreatmentXGenotype WT (C)TreatmentXSex Female (4 p=0.43) KO (4 p=0.42) 3 3 2 2 Protein) Protein) 1 1 Mean MDA (nmol/mg Mean MDA (nmol/mg 0 0 Vehicle Treated Vehicle Treated Group Group Male WT (D)GenotypeXSex5 (E)TreatmentXGenotype(5 ♂&♀) (p=0.40) Female (p=0.69) KO 4 4 3 3 2

2 Protein) Protein) 1 1

Mean MDA (nmol/mg 0

Mean MDA (nmol/mg 0 Male Male Female Female WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure6.13:MDAlevelsinkidneytissuesofOGG1miceexposedtoLPS MiceweretreatedwithLPS(20mg/kg i.p. )orvehicleonly,sacrificedafter12hoursand tissues removed for analysis (mean ± SEM; n=6). Panel A Main effects of treatment, genotypeandsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatment andsexandgenotypeandsexrespectively.PanelEshows3wayinteractionsbetween treatment, genotype and sex. MDA levels were significantly higher in vehicle treated animals( vs. treatment; p<0.01).Noothersignificanteffectswereobserved.

172 Ph.D.Thesis2012AlanCarter

12 (A)MainEffects

10 (p=0.01)( p=0.24)( p=0.18) 8 6 4 2 0 MeanMDA (nmol/mg protein) Treatment Genotype Sex 12 12 Male (B)TreatmentXGenotype WT (C)TreatmentXSex 10 Female (10 p=0.83) KO (p=0.40) 8 8 6 6 Protein)

Protein) 4 4 2 2 Mean MDA (nmol/mg Mean MDA (nmol/mg 0 0 Vehicle Treated Vehicle Treated Group Group Male WT (D)GenotypeXSex12 (E)TreatmentXGenotype(12 ♂&♀) Female KO (10 p=0.46) (10 p=0.11) 8 8 6 6

Protein) 4 Protein) 4 2 2

Mean MDA (nmol/mg 0 Mean MDA (nmol/mg 0 Male Male Female Female WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure6.14:MDAlevelsinileumtissuesofOGG1transgenicmiceexposedto LPS MiceweretreatedwithLPS(20mg/kg i.p. )orvehicleonly,sacrificedafter12hoursand tissues removed for analysis (mean ± SEM; n=6). Panel A Main effects of treatment, genotypeandsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatment andsexandgenotypeandsexrespectively.PanelEshows3wayinteractionsbetween treatment,genotypeandsex.MDAlevelsweresignificantlyhigherintreatedanimals( vs. vehicletreated; p<0.01).Noothersignificanteffectswereobserved.

173 Ph.D.Thesis2012AlanCarter

In liver tissues significant treatment x sex (Figure 6.12C; p=0.01) and genotype x sex (Figure 6.12D; p=0.01) interactions were observed. The treatment x sex interaction reflects that whilst the male animals respondedtotheLPStreatmentwithanincreaseinMDA(1.6fold),there wasadecreaseobservedinthefemaleanimals(0.5fold).Similarlywhilst therewasanincreaseinMDAlevels(1.4fold)inlivertissuesfrommale miceduetotheknockoutoftheOGG1gene,thefemaleanimalsseemed tohaveadecreaseinMDAlevels(0.4fold)intheliver. In the kidney, there was only one significant difference and that was between the two treatment groups (Figure 6.13A), the vehicle treated animalshadsignificantlylowerlevelsofMDA(1.3±0.1nmol/mgprotein) than those of the animals treated with LPS (2.2 ±0.3 nmol/mg protein; p=0.01). Similarly this was the only difference in the ileum tissues showingagainthatvehicletreatedanimalshadlowerlevelsofMDA(4.9 ±1.0 nmol/mg protein) than those treated with LPS (7.2 ±0.6 nmol/mg protein; Figure 6.14A; p=0.01). There were no other significant differencesatanylevelinbothorgans.

6.2.1. GlutathioneActivityinLPSChallengedOGG1 /Mice TheGSHlevelsinvarioustissuesofmaleandfemaleOGG1 +/+ andOGG1 /micefollowingtreatmentwithavehicleorLPSis shown in Table 6.4. Figures6.15–6.19presentGSHactivitylevelsin the heart, lung, liver, kidneyandileumrespectively.PanelAofthesefigures shows the main effectsoftreatment (vehicle vs .LPS),genotype(WT vs. OGG1KO)and sex(male vs .female).PanelsBDshowtheinteractionsof(B)treatment andgenotype,(C)treatmentandsexand(D)genotypeandsex.PanelE shows the three way interaction between treatment, genotype and sex.

174 Ph.D.Thesis2012AlanCarter

Table6.3:GSHlevelsintissuesofOGG1transgenicmiceexposedtoLPS

Vehicle Treated Treatment X Tissue Male Female Male Female Genotype X WT KO WT KO WT KO WT KO Sex 0.49 0.29 0.44 0.48 1.10 0.50 0.45 0.14 Heart (±0.04) (±0.04) (±0.05) (±0.01) (±0.77) (±0.36) (±0.01)* (±0.01)* p=0.96 4.90 6.74 5.11 4.27 2.44 4.00 2.55 2.69 Lung (±0.98) (±1.13) (±0.38) (±0.40) (±1.18) (±0.48) (±0.29) (±0.39) p=0.53 4.01 4.72 4.55 3.32 2.44 2.55 4.18 1.97 Liver (±1.56) (±0.57) (±0.32) (±0.44) (±0.62) (±0.53) (±0.40) (±0.81) p=0.85 0.47 0.59 1.14 1.11 0.47 0.86 1.00 0.98 Kidney (±0.10) (±0.11) (±0.06) (±0.05) (±0.05) (±0.17) (±0.07) (±0.20) p=0.40 1.35 2.21 1.19 1.70 1.29 0.97 0.86 0.85 Ileum (±0.07) (±0.32) (±0.37) (±0.65) (±0.08) (±0.09) (±0.49) (±0.17) p=0.44 MiceweretreatedwithLPS(20mg/kg i.p.)orvehicle(PBS),sacrificedafter12hoursandtissuesremovedforanalysis.TissueMPOactivity (mU/mgprotein)resultsareshownasmean±SEM(n=6).

175 Ph.D.Thesis2012AlanCarter

There were no three way interactions detected when comparing GSH levels in the mice. Indeed, in the heart there were no significant differencesidentifiedatanylevel(Figure6.15).Inthelungtreatmentx genotype and treatment x sex were not significant (Figures 6.16B & C). There was, however, a significant genotype x sex interaction, as whilst GSHlevelsinfemalemiceremainedsimilarinWTandOgg /lungtissues (0.9 fold), it increased significantly in male tissues (1.5 fold; Figure 6.16D). There was also a difference observed between the treatment groups as vehicle treated mice (5.3 ±0.4 nmol/mg protein) had higher GSH levels than those of LPS treated mice (3.0 ±0.4 nmol/mg protein; Figure6.16A; p=0.01). Therewasaninteractionbetweengenotypexsex,aswhilstGSHlevelsin female mice were reduced when comparing WT and Ogg / lung tissues (0.6 fold) it remained similar when comparing male tissues (1.1 fold; Figure6.17D).Withinthelivertreatmentxgenotypeandtreatmentxsex interactions were not significant. There was a difference between the treatmentgroupsasvehicletreatedmice(4.2±0.4nmol/mgprotein)had higherGSHlevelsintheirlivertissuesthanthoseofLPStreatedmice(2.7 ±0.3nmol/mgprotein;Figure6.17A; p=0.01). Inthekidney,therewasonlyonesignificantdifferencefound,malemice hadlowerGSHlevelswithintheirkidney(0.6±0.1nmol/mgprotein)than the female mice (1.1 ±0.1 nmol/mg protein; Figure 6.18A; p=0.01). In theileumtissuesassayedtherewasatreatmentxgenotype interaction whichapproachedsignificance(Figure6.15B; p=0.06).Thereductionin GSHlevelsduetotreatmentwasgreaterinOgg /animals(0.7fold)than thoseoftheirWTcounterparts(0.9fold).Therewerenoothersignificant differencesobserved.

176 Ph.D.Thesis2012AlanCarter

2.5 (A)MainEffects

2 (p=0.55)( p=0.20)( p=0.30) 1.5 1 0.5 0 Mean GSHMean (nmol/mgprotein) Treatment Genotype Sex 2.5 2.5 Male (B)TreatmentXGenotype WT (C)TreatmentXSex Female (2 p=0.38) KO (2 p=0.17) 1.5 1.5 1 1 Protein) Protein) 0.5 0.5 Mean GSH (nmol/mg Mean GSH (nmol/mg 0 0 Vehicle Treated Vehicle Treated Group Group WT (D)GenotypeXSex2.5 Male (E)TreatmentXGenotype(2.5 ♂&♀) (p=0.52) Female (p=0.96) KO 2 2 1.5 1.5 1

1 Protein) Protein) 0.5 0.5

Mean GSH (nmol/mg 0 Mean GSH (nmol/mg 0 Male Male Female Female WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure6.15:GSHlevelsinhearttissuesofOGG1transgenicmiceexposedto LPS Mice were treated with LPS (20 mg/kg i.p. ), sacrificed after 12 hours and tissues removedforanalysis(mean±SEM;n=6).PanelAMaineffectsoftreatment,genotype andsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatmentandsex andgenotypeandsexrespectively.PanelEshows3wayinteractionsbetweentreatment, genotype and sex. GSH levels were significantly higher in vehicle treated WT ♂ (vs. treatedKO ♀; p<0.01 ).Noothersignificanteffectswereobserved.

177 Ph.D.Thesis2012AlanCarter

10 (A)MainEffects

8(p=0.01)( p=0.19)( p=0.09)

6 4 2 0 Mean GSHMean (nmol/mg protein) Treatment Genotype Sex 10 10 Male (B)TreatmentXGenotype WT (C)TreatmentXSex Female (8 p=0.73) KO (8 p=0.60) 6 6 4 4 Protein) Protein) 2 2 Mean GSH (nmol/mg Mean GSH (nmol/mg 0 0 Vehicle Treated Vehicle Treated Group Group Male WT (D)GenotypeXSex10 (E)TreatmentXGenotype(10 ♂&♀) Female (p=0.05) (p=0.53) KO 8 8 6 6 4

4 Protein) Protein) 2 2

Mean GSH (nmol/mg 0 Mean GSH (nmol/mg 0 Male Male Female Female WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure6.16:GSHlevelsinlungtissuesofOGG1transgenicmiceexposedto LPS Mice were treated with LPS (20 mg/kg i.p. ), sacrificed after 12 hours and tissues removedforanalysis(mean±SEM;n=6).PanelAMaineffectsoftreatment,genotype andsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatmentandsex andgenotypeandsexrespectively.PanelEshows3wayinteractionsbetweentreatment, genotypeandsex.AgenotypeXsexinteractionwasobservedin( p=0.05).GSHlevels were significantly higher in vehicle treated animals ( vs . treatment; p<0.01). No other significanteffectswereobserved.

178 Ph.D.Thesis2012AlanCarter

6 (A)MainEffects

5 (p=0.01)( p=0.21)( p=0.88) 4 3 2 1 0 Mean GSHMean (nmol/mgprotein) Treatment Genotype Sex 6 6 Male (B)TreatmentXGenotype WT (C)TreatmentXSex 5 Female (5 p=0.44) KO (p=0.34) 4 4 3 3 Protein) Protein) 2 2 1 1 Mean GSH (nmol/mg Mean GSH (nmol/mg 0 0 Vehicle Treated Vehicle Treated Group Group Male WT (D)GenotypeXSex6 (E)TreatmentXGenotype(6 ♂&♀) Female KO (5 p=0.04) (5 p=0.85) 4 4 3 3

Protein) 2

Protein) 2 1 1 GSH (nmol/mgMean 0 Mean GSH (nmol/mg GSH Mean 0 Male Male Female Female WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure6.17:GSHlevelsinlivertissuesofOGG1transgenicmiceexposedto LPS Mice were treated with LPS (20 mg/kg i.p. ), sacrificed after 12 hours and tissues removedforanalysis(mean±SEM;n=6).PanelAMaineffectsoftreatment,genotype andsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatmentandsex andgenotypeandsexrespectively.PanelEshows3wayinteractionsbetweentreatment, genotypeandsex.AgenotypeXsexinteractionwasobserved(p<0.01).GSHlevelswere significantly higher in vehicle treated animals ( vs. treatment; p<0.01). No other significanteffectswereobserved.

179 Ph.D.Thesis2012AlanCarter

1.6 (A)MainEffects 1.4 1.2(p=0.95)( p=0.15)( p=0.01) 1 0.8 0.6 0.4 0.2 0

Mean GSHMean (nmol/mg protein) Treatment Genotype Sex 1.6 1.6 Male (B)TreatmentXGenotype WT (C)TreatmentXSex 1.4 1.4 Female (p=0.38) KO (p=0.85) 1.2 1.2 1 1 0.8 0.8 0.6 0.6 Protein) Protein) 0.4 0.4 0.2

0.2 Mean GSH (nmol/mg Mean GSH (nmol/mg 0 0 Vehicle Treated Vehicle Treated Group Group Male WT (D)GenotypeXSex1.6 (E)TreatmentXGenotype(1.6 ♂&♀) Female (1.4 p=0.85) (1.4 p=0.40) KO 1.2 1.2 1 1 0.8 0.8 0.6 0.6 Protein) Protein) 0.4 0.4 0.2

0.2 Mean GSH (nmol/mg 0 Mean GSH (nmol/mg 0 Male Male Female Female WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure6.18:GSHlevelsinkidneytissuesofOGG1transgenicmiceexposedto LPS Mice were treated with LPS (20 mg/kg i.p. ), sacrificed after 12 hours and tissues removedforanalysis(mean±SEM;n=6).PanelAMaineffectsoftreatment,genotype andsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatmentandsex andgenotypeandsexrespectively.PanelEshows3wayinteractionsbetweentreatment, genotypeandsex.AgenotypeXsexinteractionwasobserved( p<0.01).GSHlevelswere significantly higher in ♀ animals ( vs. ♂; p<0.01). No other significant effects were observed.

180 Ph.D.Thesis2012AlanCarter

3 (A)MainEffects

2.5 (p=0.01)( p=0.25)( p=0.17) 2 1.5 1 0.5 0 Mean GSHMean (nmol/mgprotein) Treatment Genotype Sex 3 3 Male (B)TreatmentXGenotype WT (C)TreatmentXSex 2.5 Female (2.5 p=0.06) KO (p=0.89) 2 2 1.5 1.5 Protein)

Protein) 1 1 0.5 0.5 Mean GSH (nmol/mg Mean GSH (nmol/mg 0 0 Vehicle Treated Vehicle Treated Group Group Male WT (D)GenotypeXSex3 (E)TreatmentXGenotype(3 ♂&♀) Female KO (2.5 p=0.97) (2.5 p=0.44) 2 2 1.5 1.5

Protein) 1 Protein) 1 0.5 0.5 Mean GSH (nmol/mg 0 Mean GSH (nmol/mg 0 Male Male Female Female WT KO Vehicle Treated Vehicle Treated Genotype Treatment Group Figure6.19:GSHlevelsinileumtissuesofOGG1miceexposedtoLPS Mice were treated with LPS (20 mg/kg i.p. ), sacrificed after 12 hours and tissues removedforanalysis(mean±SEM;n=6).PanelAMaineffectsoftreatment,genotype andsex,panelsB–DInteractionsbetweentreatmentandgenotype,treatmentandsex andgenotypeandsexrespectively.PanelEshows3wayinteractionsbetweentreatment, genotype and sex. GSH levels were significantly higher in vehicle treated animals ( vs. treated; p<0.01).

181 Ph.D.Thesis2012AlanCarter

6.3. Discussion

PreviousworkhasindicatedthatthedisruptionoftheOGG1geneinmice had a protective effect against high dose LPS induced inflammation (Mabley etal., 2005a).HereweshowthatatlowerlevelsofLPStoxicity, OGG1disruptioncanvarylevelsofcytokineproductionandothermarkers ofendotoxininducedinflammationinlungandlivertissues,butwhetherit isaprotectionfromthedamagingeffectsofinflammationvariesaccording totheendpointmeasured.Furthermore,thereisastronggenotypexsex interaction indicating that whilst many endpoints in male mice indicate increasedoxidativedamageduetoinflammation,femaleanimalsshowed littleornochange(Figure6.20).AstheOGG1 /micethatwerepreviously reportedtohavebeenprotectedfrominflammationhavebeenmalethis contradictsthepreviouslypublisheddata(Mabley etal., 2005a;Touati et al., 2006).TheseresultssuggestthatOGG1mayplayaroleincytokine transcriptionorproduction,butthatthiseffectmaybetemperedbyasex linkedeffect. Table6.4SummaryofOGG1 transgenicmousebloodserumcytokineresults Time(h) 0 1 6 24 Cytokine Male Female Male Female Male Female Male Female IL4 *↓ *↓ IL 6 ** ↓ *↓ ** ↓ IL 10 *↑ **↓ ** ↑ ** ↓ IL12 **=p≤0.01,*=0.05≥p>0.01,=p≥0.10, ↓/↑ = comparison to WT . Whilsttheseresultsarebeingcomparedtopreviousmousestudiesusing LPStoinduceinflammationitisimportanttonotethedoseofLPSgivento the mice in previous studies. Previous work on OGG1/ animals report administering LPS at 80 mg/kg and incubating for 12 h as a model of septic shock (Mabley et al., 2005a). When trying to duplicate these conditionsalargeproportionofthemicedosedwiththeselevelsofLPS

182 Ph.D.Thesis2012AlanCarter

Table6.5:SummaryofOGG1organdamageresults Tertiary Primaryinteractions SecondaryInteractions Interaction Treatment Treatment Genotype Treatmentx Treatment Genotype Sex x (LPSTreated xSex xSex Genotypex (KO vs.WT) (♀ vs.♂) Genotype vs.Vehicle) (Increasein ♀ (Increasein ♀ (IncreaseinKO vs. ♂) vs. ♂) Sex vs.WT) Heart ~↓ Lung ** ↑ *↑ ** ↓ ~↑ ~↓ ** ↓ MPO Liver ** ↑ ** ↓ *↓ *↓ * Kidney ** ↑ ~↓ Ileum *↑ *↓ ~ Heart ~ Lung *↑ ** ↓ MDA Liver ~↑ ** ↓ ** ↓ ** ↓ Kidney ** ↑ Ileum ** ↑ Heart Lung ** ↓ ~↓ *↓ GSH Liver ** ↓ *↓ Kidney ** ↑ Ileum ** ↓ ~↓ **=p≤0.01,*=0.05≥p>0.01,~=0.10>p>0.05,=p≥0.10, ↓/↑ = comparison .

183 Ph.D.Thesis2012AlanCarter died before the treatment period was complete, and the remaining animalsexhibitedsignsofseverehypothermia.Furthermore,ithasbeen reported elsewhere that this dose of LPS was fatal in 90% of C57BLK/6 mice,althoughinthisstudynomicediedbefore12h(Yamashita etal., 2000). To ensure that mortality did not confound the results of the experiment a lower dose of LPS was used. In order to identify levels of LPS toxicity that altered levels of cytokine production, it was found that muchlower(~1mg/kg)levelselicitedaresponseincytokineproduction (Hasko etal., 1996;Izeboud etal., 1999).

Figure6.20Pathwaysinvolvedinthegenerationanddegradationofoxidants andtheeffectsofOGG1knockoutatkeyendpoints Innormalmiceariseinmyeloperoxidaseindicatesincreasedphagocyteactivationwhich releaseROSintotheaffectedarea.ThisriseinROSleadstoadropinGSHasthecell attempts to lessen the oxidative load. Increased ROS leads to the formation of more oxidisedlipidsinthecellmembrane.Keyresultsfromlungandlivertissuestakenfrom newOGG1 /micecolouredblue.Herethismodelisnotfollowedbyeitherthemaleor female mice. Phagocyte enzymes coloured red. GSH, Glutathione; GSSG, Glutathione Disulphide;GPX,Glutathioneperoxidase.Adaptedfrom(Jaber etal., 2005) InordertoidentifychangesinMPO,MDAandGSHdoseof20mg/kgLPS wasconsideredanappropriateamountasithadbeenusedpreviouslyto obtain a significant differencein MPO and MDA levels, between treated anduntreatedanimals(Koizumi etal., 2003;Li etal., 2005).Thisuseofa

184 Ph.D.Thesis2012AlanCarter lowerdoseofLPSmayhavecontributedtothelackofatreatmenteffect intheheart,kidneyandileumthathadbeennotedinapreviousstudyof OGG1 /mice(Mabley etal., 2005a),andmayexplainwhylesssignificant differenceswereobservedoverall. InOGG1 /malemicetheobservedsignificantdecreaseinIL6levelsat1 and6hindicateanincreaseTh1response,whilstincreasedlevelsofthe antiinflammatorycytokinebetween6and24hwouldsuggestareduced inflammatory response, the reduction in IL4 would suggest a lessened antiinflammatory response. The increase in MPO activity and MDA also suggests that a larger number of neutrophils were attracted to the lung and liver. These endpoints together indicate that whilst there was an overallreductioninmeasuredproinflammatorysignals,largeramountsof neutrophils were being attracted to the area. Furthermore, greater amountsofGSHwerepresentwheresuggestingthateither(i)lessROS were being neutralised by (GPX) or SOD (ii) more GSH was being producedwithinthetissues.Asinalltissuesexcepttheheart,basallevels of GSH were higher in OGG1 / male mice than OGG1 +/+ male mice (Figures6.16E–6.19E;nonsignificant)hypothesis(ii)seemsplausible.

Alternativelyinfemalemouseserumsamples,thelowbasallevelsofIL6 andaslowerinitialbuildupofthiscytokineleadstoreducedlevelsofboth IL4 and 10, signifying that the initiation of the inflammatory response wouldbedepressedbutthedecreaseintheregulatoryantiinflammatory cytokines IL4 and IL10 wouldsuggest that overall innate inflammatory response may be unchanged. The lack of significant change in MPO activitydoesindeedindicatethis(Figure6.6D&6.7D).AdecreaseinGSH howeverdoessuggestthateither(i)moreROSarebeingneutralisedby glutathione peroxidise (GPX) or that (ii) less glutathione is being produced within the tissues. Basal levels of GSH are lower in all tissues from female mice except the heart (Figures 6.16E – 6.19E; non significant), leading to a hypothesis that the differing male and female

185 Ph.D.Thesis2012AlanCarter

GSHlevelsareanadaptationtothescaleoftheimmuneresponsewithin theanimals.IndeedoxidativestresshasbeenshowntoupregulateGPX mRNAtranscriptionandactivity(Esposito etal., 1999).TheloweredMDA levels in the lung and liver tissues from female mice would then be another indication of an increase in ROS neutralisation through the GSH/GSSGpathway. Oestrogencanactasanantioxidantandthishasbeenshown exvivo and invivo (Leal etal., 1998;Prokai etal., 2003;Sugioka etal., 1987;Zhang etal., 2007).Duringpregnancy,whereoestrogenproductionisincreased IL10 and IL4 (Th2) activity is observed (Ito et al., 2001). After intratracheal LPS administration hypothermia and airway hyper responsiveness are greater in male mice than female mice (Card et al., 2006). The response markers to LPS induced inflammation (TNF α and MIP1 α)infemalemicearereducedwhencomparedtothoseinmalemice (Mabley etal., 2005b).Additionallyithasbeenshownthattheremovalof the ovaries in WT mice nullifies this protection with cytokine activity becoming comparable to that of their male counterparts (Speyer et al., 2005).InourstudyweseethattheknockoutoftheOGG1geneseemsto be causing increased oxidative damage in males, but this is reduced in femalesduetotheprotectiveeffectsdetailed. Inordertoidentifymechanismsthatmaybecausingthisdifferingeffect of the OGG1 knockout it is important to note that during a state of inflammation the activity of OGG1 is subject to NO mediated inhibition, whilstthereisasimultaneousincreaseincellular8OxoG(Jaiswal etal., 2001).ThisisduetotheredoxmediateddownregulationofOGG1,andit may be that under the duress of inflammation the cell prioritises the accumulationof8OxoGtoOGG1activity(Jaiswal etal., 2000;Jaiswal et al., 2001).OnereasonproposedforthisbyRadekandBodogh(2010)is that in the process of DNA repair OGG1 removes a base causing the creation of single stranded gaps and nicks in the DNA backbone. These

186 Ph.D.Thesis2012AlanCarter gaps and nicks may then be recognised by DNAdamagedependent kinases, which can trigger an inflammatory response. Thus in OGG1 / mice there are fewer gaps created and inflammation may be curtailed. Indeed in the pancreatic islet cells of patients with the inflammatory disease, type II diabetes, there is reduced OGG1 activity in the nucleus whilstmitochondrialDNArepaircontinuesasnormal(RadakandBoldogh 2010;Tyrberg etal., 2002). Ithasbeenarguedthattheincreaseof8oxodGwithinthecellcanreduce inflammation by inhibiting Rac1/2, subsequently regulating the redox sensitiveNFκβpathwaybytheactivationoftheNADPHoxidasecomplex (Ock etal., 2011b).AdditionallyitwasshownthattheinhibitionofRac1 canaffecttheSTAT3signallingpathwaywhichisassociatedwithchronic inflammatorydiseases(Kim etal., 2006;Ock etal., 2011a). It has already been shown that female mice are more resistant to oxidativestressthanthoseofmales(Du etal., 2004).Herewereportthat femaleOGG1 /micearemoreresistanttoLPSinducedinflammationthan male OGG1 / mice. Could the reduced inflammatory response that is reported in other female mice be reducing the oxidative damage to the cellfurthersothattherearefewerstrandbreaks,reducingthefeedback from gap dependant kinases and thus reducing inflammation more? In order to identify if inflammation increased in the presence of increased single strand breaks, SSB’s could be induced in vivo utilising increased concentrationsofLPSorwithcells invitro usingH 2O2orUVradiationto inducethebreaks(FrankenbergSchwager etal., 2008). Additionally this observed effect could be the result of OGG1 interacting withotherproteinsasgenderdifferenceshavealsobeenobservedinthe protectiveeffectofthePARP1inhibitemice.WhilstPARP1inhibitedmale mice showed a marked decrease in TNF α output (~50%) after LPS challenge (1 mg/kg i.p. ) compared to non-inhibited animals (~1025 vs.

187 Ph.D.Thesis2012AlanCarter

~450 pg/ml). The TNF α output of female mice that were not PARP-1 inhibited began at a lower level and the inhibition of PARP-1 did not change this level (both ~4000 pg/ml). In order to identify if this was a due to the low uninhibited amount of TNF α a further set of female mice were treated with a more robust amount of LPS (30 mg/kg i.p. ). Again no significant difference was observed between normal and PARP-1 inhibited serum TNF α concentrations (Mabley et al., 2005b).

In gel shift assays it was further shown that PARP1cooperativelyinteracts withoestrogenreceptorα(ERα), thiscooperationisfurtherenhancedin thepresenceofoestrogen.AmodelwasproposedinwhichthePARP1– Erα – oestrogen complex inhibits the activity of PARP1 (Figure 6.21; (Mabley etal., 2005b).

Figure6.21ProposedmodelofPARP1inhibitionbyoestrogen WhilstthePARP1andERαproteinsinteractstablyonsinglestrandedDNAbreaks(top), the addition of oestrogen causes a conformational change in ERα which binds PARP1 moretightlycausingthezincfingerlocatingportionoftheproteintobecomelessableto locateontheDNAstrandreducingtheefficiencyofDNArepair.Adaptedfrom(Mabley et al., 2005b). To date no physical interaction between OGG1 and PARP1 has been identified, but OGG1 acts in the base excision repair pathway ahead of

188 Ph.D.Thesis2012AlanCarter

PARP1.IftheinflammatoryeffectofPARP1istriggeredbyitsdetection ofDNAbreaksthentheremovaloftheOGG1proteinandthesubsequent reductioninthesebreakswouldreduceitsinflammatoryeffect.Inorderto identify if this were the case PARP1 activity could be assessed by the quantityofpoly(ADPribose)(PAR)polymersproducedinOGG1 /extracts orinperipheralbloodmononuclearcellsfromOGG1 /mice(Tentori etal., 2003). If no link were found between OGG1 and PARP1 it may be interesting to determine if transcription factor activation, such as NFκβ, wasalteredinOGG1 /mice,andproceedtoidentifytheprocessbywhich inflammationismediatedbyOGG1. IfprovedtobeamodifyingfactorininflammationtheOGG1proteincould conceivably be targeted as a therapy for combating inflammation based disease. It has the advantage that (in mice) OGG1s disruption has few short term side effects (Klungland et al., 1999). Care would have to be takenhoweverinlongtermuseasoldermiceexperiencedhigherratesof cancer (Sakumi et al., 2003) and polymorphisms of the gene in human populationshaveshownvariablelinkswithvariouscancersincludinglung (Kohno etal., 2006),gastric(Farinati etal., 2008)andprostatecancers (Chen etal., 2003).

189 Ph.D.Thesis2012AlanCarter

7. OverallDiscussion Previouslydocumentedliteraturehasdemonstratedthatthedisruptionof certaingenesconnectedwiththebaseexcisionrepairpathwayreducethe inflammatoryresponsetoendotoxininducedinflammation(Mabley etal., 2005a;ViragandSzabo2002).Herewehaveinvestigatedthehypothesis thatifDNAglycosylases,specificallyNEIL1,NEIL2,OGG1andNTH1,are involved in the regulation of endotoxin induced inflammation, then the knockoutofthesegenes,inmurinemodels,willresultinareductioninthe inflammatoryresponsetoendotoxinmeasuredbycytokineresponseand certainoxidativestressmarkers.Inordertoinvestigatethishypothesisa newstrainofNEIL1 /mousewascreated.UsingMEFsderivedfromthese NEIL1 / mice, and other DNA glycosylase deficient mice, a reduction in MIP1α production was observed in both untreated and LPS treated NEIL1 /,OGG1 /,NTH1 /and[OGG1/NTH1] /cells.Additionally,OGG1 / cellshadhigherbasalIL10levels,andNEIL1 /cellshadlowerbasalIL6 output. Invivo atlowerlevelsofLPStoxicity(20mg/kg),OGG1disruptionvaried cytokine production (as measured in blood serum), but this difference differedaccordingtosex:basalIL6levelsandLPSinducedIL10levels were higher but LPSinduced IL4 levels lower in male OGG1 / mice. In femaleOGG1 /micetherewasadecreaseinLPStreatedlevelsofIL10, and in the rate of IL6 release. There was no significant genotype x treatment interaction in MPO, MDA and GSH results for OGG1 / mice (Table 7.2). However there was a strong genotype x sex interaction in lungandliverindicatingthatwhilstmanyendpointsonmaleOGG1 /mice indicateincreasedoxidativedamageduetoinflammation,femaleOGG1 / animalsshowedlittleornochange.MaleNEIL1 /micehadhigherbasal levels of IL6, and although IL6 production was slowed, its maximum levelwassimilartothatofWTanimals,additionally,afterLPStreatment serumIL12levelswereincreased.Therewerenosignificantdifferences

190 Ph.D.Thesis2012AlanCarter

Table7.1:SummaryandcomparisonofNEIL1andOGG1cytokineoutputresultswhencomparedwiththoseofWTanimals Time(h) 0 1 6 24 Male Female Male Female Male Female Male Female Cyto NEIL1 / OGG1 / NEIL1 / OGG1 / NEIL1 / OGG1 / NEIL1 / OGG1 / NEIL1 / OGG1 / NEIL1 / OGG1 / NEIL1 / OGG1 / NEIL1 / OGG1 / kine IL4 *↓ *↓ ** ↓ IL6 ** ↑ ** ↓ *↓ *↓ *↑ ** ↓ ** ↓ ** ↓ IL10 *↑ ** ↓ ** ↓ ** ↑ *↓ ** ↓ IL12 ** ↑ **=p≤0.01,*=0.05≥p>0.01,~=0.10>p>0.05,=p≥0.10, ↓/↑ = comparison .

191 Ph.D.Thesis2012AlanCarter

Table7.2:SummaryandcomparisonofNEIL1andOGG1organdamageresults Tertiary Primaryinteractions SecondaryInteractions Interaction Treatmentx Treatmentx Treatmentx Genotypex Treatment Genotype Sex Genotypex Genotype Sex Sex Sex (LPSTreated vs. (IncreaseinKOvs. (Increasein ♀vs. (Increasein ♀vs. (KO vs.WT) (♀ vs.♂) Vehicle) WT) ♂) ♂) / / / / / / / / / / / / / / NEIL1 OGG1 NEIL1 OGG1 NEIL1 OGG1 NEIL1 OGG1 NEIL1 OGG1 NEIL1 OGG1 NEIL1 OGG1 Heart ** ↓ ~↓ Lung *↑ ** ↑ *↑ ** ↓ ~↑ ~↓ ** ↓ MPO Liver ** ↑ *↓ ** ↓ ~↓ *↑ *↓ *↓ * Kidney ** ↑ ~↓ Ileum *↑ *↑ *↓ *↓ * ~ Heart ** ↑ ~ Lung *↑ ** ↓ MDA Liver ** ↑ ~↑ *↑ ** ↓ ** ↑ ** ↓ ** ↓ Kidney *↑ ** ↑ Ileum ** ↑ ~↑ ~↓ ~↓ Heart ** ↓ ** ↓ ** ↑ ** ↓ Lung ** ↓ ** ↓ *↓ ~↓ *↓ GSH Liver ** ↓ ** ↓ *↓ ** ↑ *↓ Kidney ~↑ ~↑ ** ↓ ** ↑ *↓ ~↓ Ileum ** ↓ *↑ ** ↓ ~↓ **=p≤0.01,*=0.05≥p>0.01,~=0.10>p>0.05,=p≥0.10, ↓/↑ = comparison .

192 Ph.D.Thesis2012AlanCarter withgenotypeintheMPOandMDAlevelsofNEIL1 /micealthoughthere wasanindicationthatGSHlevelswereraisedintheheart,lungandliver tissuesanddecreasedintheileum.These invivo resultsindicatethatat thislevelofLPStherewasavariablechangeincytokineproduction,but that this change is not great enough to change neutrophil recruitment enoughtoreduceoxidativedamagemarkers. WhencytokinereleasebetweenOGG1 /andNEIL1 /micewascompared (Table7.1)itcanbeseenthatthedeletionofDNAglycosylasesNEIL1and OGG1hassimilareffectsreducingtheconcentrationofthecytokinesinIL 6(male1handfemale24h)andIL10(female6and24h)inserum samples.ThisindicatesthatbothT h1 andT h2 responseswereaffectedby the knockout of these DNA glycosylases. The differences in male and femaleresponsesshownareprobablyduetothedifferencesinoestrogen levels, as higher physiological levels of oestrogen modulate the immune fromaT h1mediatedresponsetothatofT h2mediatedresponse(Gilmore et al., 1997;Salem,2004;Whitacre,2001). Additionally the interaction between genotype x sex was only observed strongly in the OGG1 / mice. There was however, no genotype x treatment interaction observed in the case of either NEIL1 / or OGG1 / mice, indicating that whilst there was a general change in cytokine activity, neutrophil aggregation and ROS production were not affected significantly.Perhapsthiscanbeexplainedsomewhatbythereductionin MIP1αproductionnotedinallknockoutMEFcelltypes,asareductionin the production of this chemokine would reduce the accumulation of leukocytes. The pathway by which the NEIL1 and OGG1 proteins modulate the immunesystemcanbesurmisedtobeadifferentfromthatofPARP1as while PARP1 knockout resulted in a reduced output of all measured cytokines,thiswasnotapparentinOGG1 /andNEIL1 /miceascytokine

193 Ph.D.Thesis2012AlanCarter outputalsoincreased.TheeffectofPARP1maybeduetoit’sinteraction withNFκβ(ViragandSzabo2002).SimilarlyAPE1canalsobediscounted as it activates NFκβ via redox reactions meaning a lack of this enzyme wouldresultinacompletereductioninallcytokines(Ando etal., 2008). It would be interesting to study if the NEIL1 protein is inhibited during inflammatoryprocessesasisOGG1byNO(Jaiswal etal., 2000;Jaiswal et al., 2001), but currently there is no literature on the subject. If it were foundtobesoitwouldaddweighttothetheorythatdamagedependant kinases are responsible for the increase in inflammation (Hofseth et al., 2003).ThedisruptionoftheOGG1genehaspreviouslybeenreportedto reduce the inflammatory response (Mabley et al., 2005a; Touati et al., 2006).OGG1isinhibitedintheinflammatoryreactionbyNO,itisthought thatthisinhibitionispreferabletothecreationofgapsintheDNAstrand due to the removal of oxidised bases (Jaiswal et al., 2001). These gaps have been implicated in the inflammatory response as their presence actives DNA damage dependent kinases which can trigger inflammation throughtheactivationofp53(Gudkov etal., 2011).AsNEIL1hasbeen showntointeractwithOGG1,indeeditissuggestedthatOGG1activityis stimulated in the presence of NEIL1 (Mokkapati et al., 2004a), then the disruptionoftheNEIL1genemayreduceinflammatoryactivityinasimilar manner to NO, but on a permanent basis. This may come someway to explainingthechangeinIL6basaland1hlevelsduetoreducedinitial immune signalling. It may also explain the reduction in MPO activity as therewouldbelessMIP1αproducedduringtheimmuneresponse. DisruptionofbifunctionalDNAglycosylaseswasalsofoundtoreducethe basal and LPS induced output of MIP1α from all BER KO MEFs when compared to WT cells. As MIP1α is a potent chemokine that attracts neutrophils to the area of infection, this would suggest a decrease in neutrophil activity in vivo. It is interesting to note that basal and LPS stimulated MPO activity was not affected by genotype in either the

194 Ph.D.Thesis2012AlanCarter

NEIL1 /orOGG1 /mousemodels.Itcouldbethecasethatinthe invivo model there are other regulatory systems available to overcome the effectsapotentiallossinMIP1αoutput.Additionally,OGG1 /cellshad higherbasalIL10levels,whilstinthewholeanimalmodelthiswasalso notobserved.IndeedNEIL1 /cellshadlowerbasalIL6output,whilstthe maleanimalsshowedamarkedincreaseinbasalratesofIL6.Inlinewith previouslypublishedmaterialdetailingtheuseofMEF’s,thecellswerenot used after passage 10 so as to reduce the risk of possible mycoplasma infectionsandmutationsbeingthecauseofanyreportedeffects(Khobta etal., 2009). During the course of this study two new strains of mice were created, namelyaNEIL1 /mouseandaputativeNEIL2 /mouse.Assaysexamining the NEIL1 / genomic DNA (PCR), mRNA (RTPCR) and protein (western blot) have confirmed the success of this model. As a previous colony of NEIL1 / mice had displayed a sporadic phenotype that shared similar symptomswiththehumanmetabolicsyndrome,acolonyoftheseanimals was kept for an extended period of time in order to discern if a similar phenotypewouldbeobserved(Vartanian etal., 2006).Whilsttherewas no significant difference in overall weight between the NEIL1 +/+ and NEIL1 / mice, a significant difference was observed in the weight of ommentumfatsurroundingtheintestinaltractoftheNEIL1 /malemice. This indicates less overall fat in these animals, showing that the obese phenotypedidnotappearintheseNEIL1 /mice.Thereishoweverdata indicating that the size of the adrenal glands was increased in NEIL1 / mice and that the reproductive organs of the NEIL1 / female mice was increasedwhilstthetestessizeofmaleNEIL1 /micewasdecreased.This suggests that there may be hormonal differences in the mice including raised oestrogen levels in the NEIL1 / female knockout animals and lowered testosterone levels in the NEIL1 /malemiceaschangesinthe production of the appropriate hormone effects the size of these organs (Kenagy and Trombulak 1986; Wood, 2000). Interestingly it has been

195 Ph.D.Thesis2012AlanCarter observed that in cases of obesity in humans the concentration of blood borntestosteronedecreasesandoestrogenincreases(Kley etal., 1979). Itwasnotdiscernedinthisstudywhethertheincreaseinadrenalgland size raised adrenaline output, as some diseases such as Phenochromocytoma do increase adrenal size and output (Strong et al., 2008), whereas Addison’s disease does not but it increases the cortex layer around the gland reducing the size of the adrenaline producing medulla(Zelissen etal., 1995). There were overall differences in the tissue GSH content in that levels werelowerintheheart,lung andliverofNEIL1 /mice,butelevatedin theileum.InordertoinvestigatewhytherecouldbechangesintheGSH levels but not in MPO or MDA levels, other known differences in the NEIL1 /micewereexamined.Asbothmaleandfemaleanimalsproduce bothtestosteroneandoestrogen,thereductioninmaletestesweightand increase in female sex organ weight suggest a shift in the ratio of testosterone:oestrogen toward a larger proportion of oestrogen in both maleandfemaleNEIL1mice.Howeverasoestrogenhasbeenshownto beanantioxidantthiswouldnotaccountforloweredlevelsofGSH(Leal etal., 1998;Prokai etal., 2003;Sugioka etal., 1987;Zhang etal., 2007). It is also possible that a change in the levels of serum adrenaline, suggested by the increased adrenal gland size, could alter the levels of ROS and therefore GSH within the tissues mentioned. As adrenaline affects the fight or flight response an increase in its output affects different organs and systems in different ways. Heart rate and lung respirationincrease,causingaraisedgenerationofROSinthoseorgans (Sarker et al., 2009). In the liver an increase in adrenaline stimulates glycogenolysis, and increases mitochondrial ROS creation via. NADPH oxidase (DiazCruz et al., 2007) The presence of adrenaline additionally reducesthemetabolicactivityinileumtissuesbyrestrictingbloodflowto the area potentially reducing the creation of ROS (Konstantinidis et al.,

196 Ph.D.Thesis2012AlanCarter

2011).ThissuggestsGSHlevelsmaybealteredbychangesinmetabolism due to an increased production of adrenaline (Figure 7.1). If an overproductionofadrenalineisthereasonforthechangesinGSHlevels, itdoesnotexplainalackinanincreaseinMDA.Perhapstheincreaseof adrenalineisgreatenoughtoelicitachangeinGSHlevels,butthatthis levelofoxidationisneutralisedbycellularantioxidantsbeforesignificant lipidoxidationcanoccur.

Figure7.1:Alterationsinorganactivityduetoadrenalineandobservedlevels ofGSHinNEIL1 /mice Anincreaseinadrenalinactivatesthefightorflight responses in mammalian systems, triggering increased activity in organs such as the heart, lung and liver and reducing activity in areas that are not required for immediate gain such as the gut. In organs where activity is increased one would expect an increase in ROS production as a by product of metabolism, resulting in a reduction in cellular GSH. Conversely in the gut where activity is decreased one may expect oxidative stress to be reduced due to a reductioninmetabolism. Classically, raised adrenalin levels lead to hypertension and eventually kidneyfailure(FrancoMorselli etal., 1977),Phenochromocytoma,arare cancer of the adrenal gland, which also causes raised adrenaline levels resultsinanincreasedheartrate,increasedbloodglucoseandweightloss (Strong et al., 2008). In order to identify if there are raised adrenalin

197 Ph.D.Thesis2012AlanCarter levelsintheNEIL1 /miceserumlevelsofadrenalineshouldbemeasured. Alternativelystudiescouldbeperformedaroundthepreviouslymentioned symptoms,namelythemeasurementofthemouse’sbloodpressure,blood glucoseandserumcreatine(tomeasurekidneyfunction)whichwouldall be good measures of systemic damage due to over production of adrenaline (Dunn et al., 2004). Our NEIL1 / mice have shown no overt changeinweight,thoughpreviouslydescribedNEIL1/micehaveshown increasesinweightandadditionallythepreviousmicewerenotedtobe lessactive,spendingfewerhourseachdayinvoluntaryexercise(Sampath etal., 2011;Vartanian etal., 2006). If the absence of the NEIL1 protein does indeed cause an increase in adrenal output it could suggest links with the activation of adrenocorticotropic hormone (ACTH), implicating a connection with the central nervous system (Wilson III and McNeill 2007). NEIL1 mRNA is transcribedinbraintissueinamoderateamountwhencomparedtoother tissues (Hazra et al., 2002a). It has been reported that whilst the expressionofotherBERproteins,OGG1andAPE1,declineby4050% inratbrainfromtheembryonic(1daypriortobirth)totheyoungadult stage (3 months), in the same period NEIL1 and NEIL2 expression increased (1.5 and 2.5 fold respectively (Englander and Ma 2006). Additionally in mice, mitochondrial NEIL1 expression in the cortex increased 1.7 fold between adulthood (5 months) and middle age (10 months), whilst there was no increase in its expression in the hippocampus over the same time period, indicating that if there were some link between NEIL1 and brain activity it would most likely be connectedtothecortexregion.ThiswasnotspecifictoNEIL1andinthe same mice similar increases were detected in NEIL2, NTH1, OGG1 and APE1expression.Thesechangesinexpressionhavebeensuggestedas beingaresponsetoabuildupinoxidativedamageasthebrainages,and couldindicatingwhymRNAinstabilityandneurodegenerativediseasesare morecommoninthehippocampus(Gredilla etal., 2010).Whilstthefirst

198 Ph.D.Thesis2012AlanCarter ofthetwostudiesimplicatesthatNEIL1andNEIL2areimportantinthe maturebrain,thesecondstudyindicatesthatthespecificdifferenceisnot inthemitochondriaofeitherthecortexorhippocampus,suggestingthat theabilitytorepairwithinthebubblestructuregenomicDNAisimportant tothematurebrain.Itwouldbeinterestingtoidentifywhichareasofthe brain, rather than just general brain tissue, show marked difference in BER protein expression, and how the disruption of DNA glycosylases affectstheirfunction. WhenattemptingtoconfirmthesuccessoftheNEIL2knockoutonlythe PCR of genomic DNA suggested that NEIL2 / mice had been generated andthattheTk/NeocassettewaspresentinthegenomicDNA,andinthe correctposition.However,RTPCRindicatedthatundisruptedmRNAwas being produced and western blots indicated that a protein of the appropriate size was present that bound to antiNEIL2 IgG. This is a discrepancy that at the moment we are unable to explain with any certainty.FurtherinvestigationintothepositioningoftheTk/Neocassette could be performed using techniques such as fluorescence in situ hybridization,thismaynotresultinthisNEIL2modelbeingvalidatedas thewesternblotandRTPCRconfirmthepresenceofNEIL2protein,butit wouldconfirmthechromosomalpositioningoftheinsertperhapsleading to greater understanding of the reason that the knockout was unsuccessful. FurtherunderstandingoftheroleofDNAglycosylasesintheinflammatory response to endotoxin could be elucidated by the performing of further experiments upon the organs that had already been analysed for MPO, MDA and GSH. Portions of these organs have been fixed in formalin solution which would make it possible for histological analysis of the samples to be performed. This would be useful in identifying and phenotypingtheinfiltratingcellstotheareasofinflammation.

199 Ph.D.Thesis2012AlanCarter

InordertofurtherexamineifaDNAglycosylaseaffectstheinflammation responsetoendotoxinitmaybeusefultoperformsomeadditionalwork ondoubleDNAglycosylaseknockoutmice.Thisisduetotheredundancy builtintothebaseexcisionrepairsystem.Interestingpairingstolookat maywouldbethosewithsimilarsubstratessuchas[OGG1/NEIL1] /and [NEIL1/NTH1] /.A[NEIL1/NTH1] /mousehasalreadybeenproducedand has shown particular susceptibility to pulmonary and hepatic tumours (Chan etal., 2009). AsanewNEIL1 /modelhasbeendescribedthatdoesnotseemtoexhibit thesamephenotypeaspreviouslypresentedmodelsitmaybeinteresting toidentifyiftheDNAdamageresponseiseffectedinasimilarfashion.In

MEFcellstreatedwithDNAdamagingagentssuchasH 2O2thiscouldbe examinedusingcometassays.Tocompare theaccumulationofoxidised bases,suchasFapyA,FapyGand8oxoG,overthecourseofalifetime gaschromatography/massspectrometrycouldbeused. InconclusionwehavefoundthatthedeletionofDNAglycosylaseshasled to reduction in cytokine outputs (IL6 and IL10) when challenged with LPSbutalsohadverylittleeffectonthephysiologicalmarkersMPO,MDA and GSH. This indicates that whilst the disruption of these genes may reduceinflammatorysignallingthisreductionisnotgreatenoughtolessen theoxidativestresscausedduringtheinflammatoryresponse.Thiscould beduetothelevelsofLPSusedtoelicittheresponseinourexperiments. Indeedthesexofthesubjectsseemedtohaveamoreprotectiveeffect oninflammatoryresponse.TheseresultspointtoDNAglycosylasesbeing a poor target for antiinflammatory therapies in all but the severest of cases. Furthermore the previously reported obesity phenotype in the NEIL1 / micewasnotnotedinthisstrainofmice, althoughthereisevidenceof possible hormonal changes, specifically increased oestrogen and

200 Ph.D.Thesis2012AlanCarter adrenaline,intheanimals.TheresultsfortissueGSHinNEIL1 /micewe observedapatternsimilartothatofraisedadrenaloutput.

201 Ph.D.Thesis2012AlanCarter

8.0 References

AbdelLatifMM,O'RiordanJ,WindleHJ,CartonE,RaviN,KelleherDand ReynoldsJV(2004)NFkappaBactivationinesophagealadenocarcinoma: relationshiptoBarrett'smetaplasia,survival,andresponsetoneoadjuvant chemoradiotherapy. Ann.Surg. 239 (4)491500

AbdelRahmanWM,OllikainenM,KariolaR,JarvinenHJ,MecklinJP, NystromLahtiM,KnuutilaSandPeltomakiP(2005)Comprehensive characterizationofHNPCCrelatedcolorectalcancersrevealsstriking molecularfeaturesinfamilieswithnogermlinemismatchrepairgene mutations. Oncogene . 24 (9)15421551

AllerP,RouldMA,HoggM,WallaceSSandDoublieS(2007)Astructural rationaleforstallingofareplicativeDNApolymeraseatthemostcommon oxidativethyminelesion,thymineglycol. Proc.Natl.Acad.Sci.U.S.A . 104 (3)814818

AndoK,HiraoS,KabeY,OguraY,SatoI,YamaguchiY,WadaTand HandaH(2008)AnewAPE1/Ref1dependentpathwayleadingto reductionofNFkappaBandAP1,andactivationoftheirDNAbinding activity. Nucl.Acids.Res. 36 (13)43274336

AraiK,MorishitaK,ShinmuraK,KohnoT,KimSR,NohmiT,TaniwakiM, OhwadaSandYokotaJ(1997)Cloningofahumanhomologoftheyeast OGG1genethatisinvolvedintherepairofoxidativeDNAdamage. Oncogene . 14 (23)28572861

AraiT,KellyVP,MinowaO,NodaTandNishimuraS(2006)Thestudy usingwildtypeandOgg1knockoutmiceexposedtopotassiumbromate showsnotumorinductiondespiteanextensiveaccumulationof8 hydroxyguanineinkidneyDNA. Toxicology . 221 (23)179186

ArbourNC,LorenzE,SchutteBC,ZabnerJ,KlineJN,JonesM,FreesK, WattJLandSchwartzDA(2000)TLR4mutationsareassociatedwith endotoxinhyporesponsivenessinhumans. Nat.Genet. 25 (2)187191

AspinallGO,MonteiroMA,PangH,WalshEJandMoranAP(1996) LipopolysaccharideoftheHelicobacterpyloritypestrainNCTC11637 (ATCC43504):structureoftheOantigenchainandcoreoligosaccharide regions. Biochemistry . 35 (7)24892497

AudebertM,RadicellaJPandDizdarogluM(2000)Effectofsingle mutationsintheOGG1genefoundinhumantumorsonthesubstrate specificityoftheOgg1protein. NucleicAcidsResearch . 28 (14)2672 2678

202 Ph.D.Thesis2012AlanCarter

BanerjeeAandVerdineGL(2006)Anucleobaselesionremodelsthe interactionofitsnormalneighborinaDNAglycosylasecomplex. Proc. Natl.Acad.Sci.U.S.A . 103 (41)1502015025

BeharkaAA,MeydaniM,WuD,LekaLS,MeydaniAandMeydaniSN (2001)Interleukin6productiondoesnotincreasewithage. J.Gerontol.A Biol.Sci.Med.Sci. 56 (2)B81B88

BercziI,BertokLandBereznaiT(1966)Comparativestudiesonthe toxicityofEscherichiacolilipopolysaccharideendotoxininvariousanimal species. Can.J.Microbiol. 12 (5)10701071

BerlinerJAandWatsonAD(2005)Aroleforoxidizedphospholipidsin atherosclerosis. N.Engl.J.Med. 353(1)911

BeutlerBandRietschelET(2003)Innateimmunesensinganditsroots: thestoryofendotoxin. Nat.Rev.Immunol. 3169176

BeutlerB(2004)Innateimmunity:anoverview. MolecularImmunology . 40 (12)845859

BhakatKK,HazraTKandMitraS(2004)AcetylationofthehumanDNA glycosylaseNEIL2andinhibitionofitsactivity. NucleicAcidsResearch . 32 (10)30333039

BoehmerED,GoralJ,FaunceDEandKovacsEJ(2004)Agedependent decreaseinTolllikereceptor4mediatedproinflammatorycytokine productionandmitogenactivatedproteinkinaseexpression. J.Leukoc. Biol. 75 (2)342349

BohrVA(2002)RepairofoxidativeDNAdamageinnuclearand mitochondrialDNA,andsomechangeswithaginginmammaliancells. FreeRadic.Biol.Med. 32 (9)804812

BolgerMS,RossDS,JiangH,FrankMM,GhioAJ,SchwartzDAandWright JR(2007)ComplementlevelsandactivityinthenormalandLPSinjured lung. Am.J.PhysiolLungCellMol.Physiol . 292 (3)L748L759

BouchardVJ,RouleauMandPoirierGG(2003)PARP1,adeterminantof cellsurvivalinresponsetoDNAdamage. Exp.Hemat. 31 (6)446454

BraunFahrlanderC,RiedlerJ,HerzU,EderW,WaserM,GrizeL,Maisch S,CarrD,GerlachF,BufeA,LauenerRP,SchierlR,RenzH,NowakDand vonME(2002)Environmentalexposuretoendotoxinanditsrelationto asthmainschoolagechildren. N.Engl.JMed. 347 (12)869877

BravardA,VacherM,MoritzE,VaslinL,HallJ,EpeBandRadicellaJP (2009)OxidationstatusofhumanOGG1S326Cpolymorphicvariant determinescellularDNArepaircapacity. CancerRes. 69 (8)36423649

203 Ph.D.Thesis2012AlanCarter

BrownKL,AdamsT,JastiVP,BasuAKandStoneMP(2008) Interconversionofthecis5R,6Sandtrans5R,6Rthymineglycollesions induplexDNA. J.Am.Chem.Soc. 130 (35)1170111710

BruskovVI,MalakhovaLV,MasalimovZKandChernikovAV(2002)Heat inducedformationofreactiveoxygenspeciesand8oxoguanine,a biomarkerofdamagetoDNA. NucleicAcidsResearch . 30 (6)13541363

BuerJandBallingR(2003)Mice,microbesandmodelsofinfection. Nat. Rev.Genet. 4(3)195205

ButterfieldTA,BestTMandMerrickMA(2006)Thedualrolesof neutrophilsandmacrophagesininflammation:acriticalbalancebetween tissuedamageandrepair. J.Athl.Train. 41 (4)457465

CaldecottKW(2003)DNASingleStrandBreakRepairandSpinocerebellar Ataxia. Cell . 112 (1)710

CampalansA,AmourouxR,BravardA,EpeBandRadicellaJP(2007)UVA irradiationinducesrelocalisationoftheDNArepairproteinhOGG1to nuclearspeckles. J.CellSci. 120 (Pt1)2332

CardJW,CareyMA,BradburyJA,DeGraffLM,MorganDL,MoormanMP, FlakeGPandZeldinDC(2006)Genderdifferencesinmurineairway responsivenessandlipopolysaccharideinducedinflammation. J.Immunol. 177 (1)621630

CasorelliI,PannelliniT,deLucaG,DeganP,ChieraF,IavaroneI,Giuliani A,ButeraA,BoirivantM,MusianiPandBignamiM(2010) The Mutyh Gene Influences the Inflammatory Response in a Mouse Model of Ulcerative Colitis . PLoS.One. 5(8)

CavagnaG,FoaVandViglianiEC(1969)Effectsinmanandrabbitsof inhalationofcottondustorextractsandpurifiedendotoxins. Br.J.Ind. Med. 26 (4)314321

ChabyR(1999)StrategiesforthecontrolofLPSmediated pathophysiologicaldisorders. DrugDiscov.Today . 4(5)209221

ChanMK,OcampoHafallaMT,VartanianV,JarugaP,KirkaliG,KoenigKL, BrownS,LloydRS,DizdarogluMandTeeborGW(2009)Targeteddeletion ofthegenesencodingNTH1andNEIL1DNANglycosylasesrevealsthe existenceofnovelcarcinogenicoxidativedamagetoDNA. DNARepair . 8 (7)786794

CheadleJPandSampsonJR(2003)ExposingtheMYtHaboutbase excisionrepairandhumaninheriteddisease. Hum.Mol.Genet. 12 R159 R165

204 Ph.D.Thesis2012AlanCarter

ChenL,ElahiA,PowSangJ,LazarusPandParkJ(2003)Association betweenpolymorphismofhumanoxoguanineglycosylase1andriskof prostatecancer. J.Urol. 170 (6Pt1)24712474

ChristmannM,TomicicMT,RoosWPandKainaB(2003)Mechanismsof humanDNArepair:anupdate. Toxicology . 193 (12)334

ChurchDM,GoodstadtL,HillierLW,ZodyMC,GoldsteinS,SheX,BultCJ, AgarwalaR,CherryJL,DiCuccioM,HlavinaW,KapustinY,MericP, MaglottD,BirtleZ,MarquesAC,GravesT,ZhouS,TeagueB,Potamousis K,ChurasC,PlaceM,HerschlebJ,RunnheimR,ForrestD,mosLandgraf J,SchwartzDC,ChengZ,LindbladTohK,EichlerEEandPontingCP (2009)Lineagespecificbiologyrevealedbyafinishedgenomeassembly ofthemouse. PLoS.Biol. 7(5)e1000112

CirlC,WieserA,YadavM,DuerrS,SchubertS,FischerH,StappertD, WantiaN,RodriguezN,WagnerH,SvanborgCandMiethkeT(2008) SubversionofTolllikereceptorsignalingbyauniquefamilyofbacterial Toll/interleukin1receptordomaincontainingproteins. Nat.Med.14 (4) 399406

CleaverJE(1968)DefectiverepairreplicationofDNAinxeroderma pigmentosum. Nature . 218 (5142)652656

ConlonKA,ZharkovDOandBerriosM(2004)Cellcycleregulationofthe murine8oxoguanineDNAglycosylase(mOGG1):mOGG1associateswith microtubulesduringinterphaseandmitosis. DNARepair(Amst) . 3(12) 16011615

CortazarD,KunzC,SelfridgeJ,LettieriT,SaitoY,MacDougallE,WirzA, SchuermannD,JacobsAL,SiegristF,SteinacherR,JiricnyJ,BirdAand ScharP(2011)EmbryoniclethalphenotyperevealsafunctionofTDGin maintainingepigeneticstability. Nature . 470 (7334)419423

DailyD,VlamisGardikasA,OffenD,MittelmanL,MelamedE,HolmgrenA andBarzilaiA(2001)Glutaredoxinprotectscerebellargranuleneurons fromdopamineinducedapoptosisbyactivatingNFkappaBviaRef1. J. Biol.Chem. 276 (2)13351344

DaltonTP,DieterMZ,YangY,ShertzerHGandNebertDW(2000) Knockoutofthemouseglutamatecysteineligasecatalyticsubunit(Gclc) gene:embryoniclethalwhenhomozygous,andproposedmodelfor moderateglutathionedeficiencywhenheterozygous.Biochem.Biophys. Res.Commun. 279 (2)324329

DasA,BoldoghI,LeeJW,HarriganJA,HegdeML,PiotrowskiJ,deSouza PN,RamosW,GreenbergMM,HazraTK,MitraSandBohrVA(2007a)The humanWernersyndromeproteinstimulatesrepairofoxidativeDNAbase

205 Ph.D.Thesis2012AlanCarter damagebytheDNAglycosylaseNEIL1. J.Biol.Chem. 282 (36)26591 26602

DasS,ChattopadhyayR,BhakatKK,BoldoghI,KohnoK,PrasadR,Wilson SHandHazraTK(2007b)StimulationofNEIL2mediatedoxidizedbase excisionrepairviaYB1interactionduringoxidativestress. J.Biol.Chem. 282 (39)2847428484

DaynesRA,AraneoBA,ErshlerWB,MaloneyC,LiGZandRyuSY(1993) AlteredregulationofIL6productionwithnormalaging.Possiblelinkage totheageassociateddeclineindehydroepiandrosteroneanditssulfated derivative. J.Immunol. 150 (12)52195230

DeBontRandvanLarebekeN(2004)EndogenousDNAdamagein humans:areviewofquantitativedata. Mutagenesis . 19 (3)169185

DherinC,RadicellaJP,DizdarogluMandBoiteuxS(1999)Excisionof oxidativelydamagedDNAbasesbythehumanalphahOgg1proteinand thepolymorphicalphahOgg1(Ser326Cys)proteinwhichisfrequently foundinhumanpopulations. NucleicAcidsResearch . 27 (20)40014007

DianovGL,SleethKM,DianovaIIandAllinsonSL(2003)Repairofabasic sitesinDNA. Mutat.Res. 531 (12)157163

DiazCruzA,GuinzbergR,GuerraR,VilchisM,CarrascoD,GarciaVazquez FJandPinaE(2007)AdrenalinestimulatesH2O2generationinlivervia NADPHoxidase. FreeRadic.Res. 41 (6)663672

DingX,HirakuY,MaN,KatoT,SaitoK,NagahamaM,SembaR, KuribayashiKandKawanishiS(2005)Induciblenitricoxidesynthase dependentDNAdamageinmousemodelofinflammatoryboweldisease. CancerSci. 96 (3)157163

DiStasiMRandLeyK(2009)Openingthefloodgates:howneutrophil endothelialinteractionsregulatepermeability. TrendsImmunol. 30 (11) 547556

DizdarogluM,KarahalilB,SenturkerS,BuckleyTJandRoldanArjonaT (1999)ExcisionofproductsofoxidativeDNAbasedamagebyhuman NTH1protein. Biochemistry . 38 (1)243246

DobsonAW,GrishkoV,LeDouxSP,KelleyMR,WilsonGLandGillespieMN (2002)EnhancedmtDNArepaircapacityprotectspulmonaryartery endothelialcellsfromoxidantmediateddeath. Am.J.PhysiolLungCell Mol.Physiol . 283 (1)L205L210

DonadelliR,AbbateM,ZanchiC,CornaD,TomasoniS,BenigniA, RemuzziGandZojaC(2000)ProteintrafficactivatesNFkBgenesignaling andpromotesMCP1dependentinterstitialinflammation. Am.J.Kidney Dis. 36 (6)12261241

206 Ph.D.Thesis2012AlanCarter

DouH,MitraSandHazraTK(2003)RepairofoxidizedbasesinDNA bubblestructuresbyhumanDNAglycosylasesNEIL1andNEIL2. J.Biol. Chem. 278 (50)4967949684

DouH,TheriotCA,DasA,HegdeML,MatsumotoY,BoldoghI,HazraTK, BhakatKKandMitraS(2008)InteractionofthehumanDNAglycosylase NEIL1withproliferatingcellnuclearantigen.Thepotentialforreplication associatedrepairofoxidizedbasesinmammaliangenomes. J.Biol.Chem. 283 (6)31303140

DoublieS,BandaruV,BondJPandWallaceSS(2004)Thecrystal structureofhumanendonucleaseVIIIlike1(NEIL1)revealsazincless fingermotifrequiredforglycosylaseactivity. Proc.Natl.Acad.Sci.U.S.A. 101 (28)1028410289

DouwesJ,ZuidhofA,DoekesG,vanderZeeSC,WoutersI,BoezenMH andBrunekreefB(2000)(1>3)betaDglucanandendotoxininhouse dustandpeakflowvariabilityinchildren. Am.J.Respir.Crit.CareMed. 162 (4Pt1)13481354

DrogeW(2002)Freeradicalsinthephysiologicalcontrolofcellfunction. PhysiolRev. 82 (1)4795

DuL,BayirH,LaiY,ZhangX,KochanekPM,WatkinsSC,GrahamSHand ClarkRS(2004)Innategenderbasedproclivityinresponsetocytotoxicity andprogrammedcelldeathpathway. J.Biol.Chem. 279 (37)38563 38570

DuellEJ,MillikanRC,PittmanGS,WinkelS,LunnRM,TseCK,EatonA, MohrenweiserHW,NewmanBandBellDA(2001)Polymorphismsinthe DNArepairgeneXRCC1andbreastcancer. CancerEpidemiol.Biomarkers Prev. 10 (3)217222

DunnSR,QiZ,BottingerEP,BreyerMDandSharmaK(2004)Utilityof endogenouscreatinineclearanceasameasureofrenalfunctioninmice. KidneyInt. 65(5)19591967

EderW,KlimeckiW,YuL,vonMutiusE,RiedlerJ,BraunFahrlanderC, NowakDandMartinezFD(2004)Tolllikereceptor2asamajorgenefor asthmainchildrenofEuropeanfarmers. J.AllergyClin.Immunol. 113 (3) 482488

ElahiA,ZhengZ,ParkJ,EyringK,McCaffreyTandLazarusP(2002)The humanOGG1DNArepairenzymeanditsassociationwithorolaryngeal cancerrisk. Carcinogenesis . 23 (7)12291234

ElderRHandDianovGL(2002)Repairofdihydrouracilsupportedbybase excisionrepairinmNTH1knockoutcellextracts. J.Biol.Chem. 277 (52) 5048750490

207 Ph.D.Thesis2012AlanCarter

ElderRH,JansenJG,WeeksRJ,WillingtonMA,DeansB,WatsonAJ, MynettKJ,BaileyJA,CooperDP,RaffertyJA,HeeranMC,WijnhovenSW, vanZeelandAAandMargisonGP(1998)AlkylpurineDNANglycosylase knockoutmiceshowincreasedsusceptibilitytoinductionofmutationsby methylmethanesulfonate. Mol.CellBiol. 18 (10)58285837

ElderRH,RosenquistTAandParsonsJL(2004)Characterisationof [NTH1,OGG1]/mice. ProcAmerAssocCancerRes . 45

EngelwardBP,WeedaG,WyattMD,BroekhofJL,deWJ,DonkerI,Allan JM,GoldB,HoeijmakersJHandSamsonLD(1997)Baseexcisionrepair deficientmicelackingtheAagalkyladenineDNAglycosylase. ProcNatl. Acad.Sci.U.S.A .94 (24)1308713092

EnglanderEWandMaH(2006)Differentialmodulationofbaseexcision repairactivitiesduringbrainontogeny:Implicationsforrepairof transcribedDNA. Mech.Age.Dev. 127 (1)6469

EnterlinePE,SykoraJL,KeletiGandLangeJH(1985)Endotoxins,cotton dust,andcancer. Lancet . 2(8461)934935

ErshlerWB,SunWH,BinkleyN,GravensteinS,VolkMJ,KamoskeG, KloppRG,RoeckerEB,DaynesRAandWeindruchR(1993)Interleukin6 andaging:bloodlevelsandmononuclearcellproductionincreasewith advancingageandinvitroproductionismodifiablebydietaryrestriction. LymphokineCytokineRes. 12 (4)225230

EspositoLA,MelovS,PanovA,CottrellBAandWallaceDC(1999) Mitochondrialdiseaseinmouseresultsinincreasedoxidativestress. Proc. Natl.Acad.Sci.U.S.A . 96 (9)48204825

FanHandCookJA(2004)Molecularmechanismsofendotoxintolerance. J.EndotoxinRes. 10 (2)7184

FarinatiF,CardinR,BortolamiM,NittiD,BassoD,deBM,CassaroM, SergioAandRuggeM(2008)OxidativeDNAdamageingastriccancer: CagAstatusandOGG1genepolymorphism. Int.J.Cancer . 123 (1)51 55

FaurschouMandBorregaardN(2003)Neutrophilgranulesandsecretory vesiclesininflammation. MicrobesInfect. 5(14)13171327

FrancoMorselliR,ElghoziJL,JolyE,DiGSandMeyerP(1977)Increased plasmaadrenalineconcentrationsinbenignessentialhypertension. Br. Med.J. 2(6097)12511254

FrankenbergSchwagerM,BeckerM,GargI,PralleE,WolfHand FrankenbergD(2008)TheroleofnonhomologousDNAendjoining, conservativehomologousrecombination,andsinglestrandannealingin

208 Ph.D.Thesis2012AlanCarter thecellcycledependentrepairofDNAdoublestrandbreaksinducedby H2O2inmammaliancells. Radiat.Res. 170 (6)784793

FrommeJC,BanerjeeA,HuangSJandVerdineGL(2004)Structuralbasis forremovalofadeninemispairedwith8oxoguaninebyMutYadenineDNA glycosylase. Nature . 427 (6975)652656

FrommeJCandVerdineGL(2004)Baseexcisionrepair. Adv.Protein Chem. 69 141

FungHandDempleB(2005)AvitalroleforApe1/Ref1proteinin repairingspontaneousDNAdamageinhumancells. Mol.Cell . 17 (3)463 470

GilmoreW,WeinerLPandCorrealeJ(1997)Effectofestradioloncytokine secretionbyproteolipidproteinspecificTcellclonesisolatedfrommultiple sclerosispatientsandnormalcontrolsubjects. J.Immunol. 158 (1)446 451

GirardPM,D'HamC,CadetJandBoiteuxS(1998)Oppositebase dependentexcisionof7,8dihydro8oxoadeninebytheOgg1proteinof Saccharomycescerevisiae. Carcinogenesis . 19 (7)12991305

GloireG,LegrandPoelsSandPietteJ(2006)NF[kappa]Bactivationby reactiveoxygenspecies:Fifteenyearslater. Biochem.Pharmacol. 72 (11) 14931505

GolyasnayaNVandTsvetkovaNA(2006)Mismatchrepair. Mol.Biol. 40 (2)183193

GoodmanLandSteinGH(1994)Basalandinducedamountsof interleukin6mRNAdeclineprogressivelywithageinhumanfibroblasts. J. Biol.Chem. 269 (30)1925019255

GoodrickCL,IngramDK,ReynoldsMA,FreemanJRandCiderN(1990) Effectsofintermittentfeedinguponbodyweightandlifespanininbred mice:interactionofgenotypeandage. Mech.Age.Dev. 55 (1)6987

GraffG,GamacheDA,BradyMT,SpellmanJMandYanniJM(1998) Improvedmyeloperoxidaseassayforquantitationofneutrophilinfluxina ratmodelofendotoxininduceduveitis. J.Pharacol.Toxicol. 39 (3)169 178

GredillaR,GarmC,HolmR,BohrVAandStevnsnerT(2010)Differential agerelatedchangesinmitochondrialDNArepairactivitiesinmousebrain regions. Neurobiol.Aging . 31 (6)9931002

GrinIR,RiegerRAandZharkovDO(2010)InactivationofNEIL2DNA glycosylasebypyridoxalphosphaterevealsaloopimportantforsubstrate binding. Biochem.Biophys.Res.Commun. 394 (1)100105

209 Ph.D.Thesis2012AlanCarter

GrosL,SaparbaevMKandLavalJ(2002)Enzymologyoftherepairoffree radicalsinducedDNAdamage. Oncogene . 21 (58)89058925

GudkovAV,GurovaKVandKomarovaEA(2011)Inflammationandp53:A TaleofTwoStresses. Gene.Canc. 2(4)503516

GuptaSC,KimJH,KannappanR,ReuterS,DoughertyPMandAggarwal BB(2011)RoleofnuclearfactorkappaBmediatedinflammatorypathways incancerrelatedsymptomsandtheirregulationbynutritionalagents. Exp.Biol.Med. 236 (6)658671

HanaokaT,SugimuraH,NaguraK,IharaM,LiXJ,HamadaGS,Nishimoto I,KowalskiLP,YokotaJandTsuganeS(2001)hOGG1exon7 polymorphismandgastriccancerincasecontrolstudiesofJapanese BraziliansandnonJapaneseBrazilians. CancerLett. 170 (1)5361

HansenR,SaeboM,SkjelbredCF,NexoBA,HagenPC,BockG,BowitzL, I,JohnsonE,AaseS,HansteenIL,VogelUandKureEH(2005)GPX Pro198LeuandOGG1Ser326Cyspolymorphismsandriskofdevelopment ofcolorectaladenomasandcolorectalcancer. CancerLett. 229 (1)85 91

HarrisonRF,ReynoldsGMandRowlandsDC(1993)Immunohistochemical evidencefortheexpressionofproliferatingcellnuclearantigen(PCNA)by nonproliferatinghepatocytesadjacenttometastatictumoursandin inflammatoryconditions. J.Pathol. 171 (2)115122

HasdayJD,BascomR,CostaJJ,FitzgeraldTandDubinW(1999)Bacterial endotoxinisanactivecomponentofcigarettesmoke. Chest . 115 (3)829 835

HashiguchiK,StuartJA,deSouzaPintoNCandBohrVA(2004)TheC terminalalphaOhelixofhumanOgg1isessentialfor8oxoguanineDNA glycosylaseactivity:themitochondrialbetaOgg1lacksthisdomainand doesnothaveglycosylaseactivity. NucleicAcidsRes. 32 (18)55965608

HaskoG,SzaboC,NemethZH,KvetanV,PastoresSMandViziES(1996) AdenosinereceptoragonistsdifferentiallyregulateIL10,TNFalpha,and nitricoxideproductioninRAW264.7macrophagesandinendotoxemic mice. J.Immunol. 157 (10)46344640

HayesRCandLeClercJE(1986)Sequencedependenceforbypassof thymineglycolsinDNAbyDNApolymeraseI. NucleicAcidsRes. 14 (2) 10451061

HazraTK,IzumiT,BoldoghI,ImhoffB,KowYW,JarugaP,DizdarogluM andMitraS(2002a)IdentificationandcharacterizationofahumanDNA glycosylaseforrepairofmodifiedbasesinoxidativelydamagedDNA. Proc. Natl.Acad.Sci.U.S.A. 99 (6)35233528

210 Ph.D.Thesis2012AlanCarter

HazraTK,KowYW,HatahetZ,ImhoffB,BoldoghI,MokkapatiSK,MitraS andIzumiT(2002b)Identificationandcharacterizationofanovelhuman DNAglycosylaseforrepairofcytosinederivedlesions. J.Biol.Chem. 277 (34)3041730420

HazraTK,DasA,DasS,ChoudhuryS,KowYWandRoyR(2007) OxidativeDNAdamagerepairinmammaliancells:Anewperspective. DNA Repair . 6(4)470480

HegdeML,TheriotCA,DasA,HegdePM,GuoZ,GaryRK,HazraTK,Shen BandMitraS(2008)Physicalandfunctionalinteractionbetweenhuman oxidizedbasespecificDNAglycosylaseNEIL1andflapendonuclease1. J. Biol.Chem. 283 (40)2702827037

HewittSCandKorachKS(2003)Oestrogenreceptorknockoutmice:roles foroestrogenreceptorsalphaandbetainreproductivetissues. Reproduction. 125 (2)143149

HillJW,HazraTK,IzumiTandMitraS(2001)Stimulationofhuman8 oxoguanineDNAglycosylasebyAPendonuclease:potentialcoordination oftheinitialstepsinbaseexcisionrepair. NucleicAcidsResearch . 29 (2) 430438

HillKA,BuettnerVL,GlickmanBWandSommerSS(1999)Spontaneous mutationsintheBigBlue«transgenicsystemareprimarilymouse derived. Mutat.Res.Rev.Mut.R. 436 (1)1119

HiranoS,TominagaY,IchinoeA,UshijimaY,TsuchimotoD,Honda OhnishiY,OhtsuboT,SakumiKandNakabeppuY(2003)Mutator phenotypeofMUTYHnullmouseembryonicstemcells. J.Biol.Chem. 278 (40)3812138124

HofflerU,HobbieK,WilsonR,BaiR,RahmanA,MalarkeyD,TravlosG andGhanayemBI(2009)Dietinducedobesityisassociatedwith hyperleptinemia,hyperinsulinemia,hepaticsteatosis,andglomerulopathy inC57Bl/6Jmice. Endocrine. 36 (2)311325

HofsethLJ,SaitoS,HussainSP,EspeyMG,MirandaKM,ArakiY,Jhappan C,HigashimotoY,HeP,LinkeSP,QuezadoMM,ZurerI,RotterV,Wink DA,AppellaEandHarrisCC(2003)Nitricoxideinducedcellularstressand p53activationinchronicinflammation. Proc.Natl.Acad.Sci.U.S.A . 100 (1)143148

HungRJ,HallJ,BrennanPandBoffettaP(2005)Geneticpolymorphisms inthebaseexcisionrepairpathwayandcancerrisk:aHuGEreview. Am. J.Epidemiol. 162 (10)925942

211 Ph.D.Thesis2012AlanCarter

IkedaS,KohmotoT,TabataRandSekiY(2002)Differentialintracellular localizationofthehumanandmouseendonucleaseIIIhomologsand analysisofthesortingsignals. DNARepair(Amst) . 1(10)847854

ImlayJA(2003)Pathwaysofoxidativedamage. Annu.Rev.Microbiol. 57 395418

ImlayJA,ChinSMandLinnS(1988)ToxicDNAdamagebyhydrogen peroxidethroughtheFentonreactioninvivoandinvitro. Science . 240 (4852)640642

ItoA,BeboBF,Jr.,MatejukA,ZamoraA,SilvermanM,FyfeJohnsonA andOffnerH(2001)EstrogentreatmentdownregulatesTNFalpha productionandreducestheseverityofexperimentalautoimmune encephalomyelitisincytokineknockoutmice. J.Immunol. 167 (1)542 552

IvorJ(1994)Theinsandoutsoffibroblastgrowthfactors. Cell . 78 (4) 547552

IzeboudCA,MonshouwerM,vanMiertASandWitkampRF(1999)The betaadrenoceptoragonistclenbuterolisapotentinhibitoroftheLPS inducedproductionofTNFalphaandIL6invitroandinvivo. Inflamm. Res. 48 (9)497502

IzumiT,WiederholdLR,RoyG,RoyR,JaiswalA,BhakatKK,MitraSand HazraTK(2003)MammalianDNAbaseexcisionrepairproteins:their interactionsandroleinrepairofoxidativeDNAdamage. Toxicology . 193 (12)4365

JaberBL,PereiraBJ,BonventreJVandBalakrishnanVS(2005) Polymorphismofhostresponsegenes:implicationsinthepathogenesis andtreatmentofacuterenalfailure. KidneyInt. 67 (1)1433

JaiswalM,LaRussoNF,BurgartLJandGoresGJ(2000)Inflammatory cytokinesinduceDNAdamageandinhibitDNArepairin cholangiocarcinomacellsbyanitricoxidedependentmechanism. Cancer Res. 60 (1)184190

JaiswalM,LaRussoNF,NishiokaN,NakabeppuYandGoresGJ(2001) HumanOgg1,aproteininvolvedintherepairof8oxoguanine,isinhibited bynitricoxide. CancerRes. 61 (17)63886393

JinH,JiangB,TangJ,LuW,WangW,ZhouL,ShangW,LiF,MaQ,Yang YandChenM(2008)Serumvisfatinconcentrationsinobeseadolescents anditscorrelationwithageandhighdensitylipoproteincholesterol. DiabetesRes.Clin.Prac. 79 (3)412418

212 Ph.D.Thesis2012AlanCarter

KabirK,GelinasJP,ChenM,ChenD,ZhangD,LuoX,YangJH,CarterD andRabinoviciR(2002)Characterizationofamurinemodelofendotoxin inducedacutelunginjury. Shock . 17 (4)300303

KalamMA,HaraguchiK,ChandaniS,LoechlerEL,MoriyaM,Greenberg MMandBasuAK(2006)GeneticeffectsofoxidativeDNAdamages: comparativemutagenesisoftheimidazoleringopened formamidopyrimidines(Fapylesions)and8oxopurinesinsimiankidney cells. NucleicAcidsRes. 34 (8)23052315

KanoA,WolfgangMJ,GaoQ,JacobyJ,ChaiGX,HansenW,IwamotoY, PoberJS,FlavellRAandFuXY(2003)EndothelialcellsrequireSTAT3for protectionagainstendotoxininducedinflammation.J.Exp.Med. 198 (10) 15171525

KarahalilB,deSouzaPintoNC,ParsonsJL,ElderRHandBohrVA(2003) Compromisedincisionofoxidizedpyrimidinesinlivermitochondriaofmice deficientinNTH1andOGG1glycosylases. J.Biol.Chem. 278 (36)33701 33707

KenagyGJandTrombulakSC(1986)Sizeandfunctionofmammalian testesinrelationtobodysize. J.Mam. 67 (1)122

KhobtaA,KitseraN,SpeckmannBandEpeB(2009)8OxoguanineDNA glycosylase(Ogg1)causesatranscriptionalinactivationofdamagedDNA intheabsenceoffunctionalCockaynesyndromeB(Csb)protein. DNA Repair . 8(3)309317

KiefmannR,HeckelK,DoergerM,SchenkatS,KupattC,StoeckelhuberM, WesierskaGadekJandGoetzAE(2004)RoleofPARPoniNOSpathway duringendotoxininducedacutelunginjury. IntensiveCareMed. 30 (7) 14211431

KimHS,YeSK,ChoIH,JungJE,KimDH,ChoiS,KimYS,ParkCG,Kim TY,LeeJWandChungMH(2006)8hydroxydeoxyguanosinesuppresses NOproductionandCOX2activityviaRac1/STATssignalinginLPSinduced brainmicroglia. FreeRadic.Biol.Med. 41 (9)13921403

KisielewskaJ,LuPandWhitakerM(2005)GFPPCNAasanSphase markerinembryosduringthefirstandsubsequentcellcycles. Biol.Cell . 97 (3)221229

KleyHK,SolbachHG,McKinnanJCandKruskemperHL(1979) Testosteronedecreaseandoestrogenincreaseinmalepatientswith obesity. ActaEndocrinol.(Copenh) . 91 (3)553563

KlunglandA,RosewellI,HollenbachS,LarsenE,DalyG,EpeB,Seeberg E,LindahlTandBarnesDE(1999)AccumulationofpremutagenicDNA

213 Ph.D.Thesis2012AlanCarter lesionsinmicedefectiveinremovalofoxidativebasedamage. Proc.Natl. Acad.Sci.U.S.A . 96 (23)1330013305

KohnoT,KunitohH,ToyamaK,YamamotoS,KuchibaA,SaitoD, YanagitaniN,IshiharaS,SaitoRandYokotaJ(2006)Associationofthe OGG1Ser326Cyspolymorphismwithlungadenocarcinomarisk. Cancer Sci. 97 (8)724728

KoizumiK,PoulakiV,DoehmenS,WelsandtG,RadetzkyS,LappasA, KociokN,KirchhofBandJoussenAM(2003)ContributionofTNFalphato leukocyteadhesion,vascularleakage,andapoptoticcelldeathin endotoxininduceduveitisinvivo. InvestOphthalmol.Vis.Sci. 44 (5)2184 2191

KonstantinidisA,ValatasV,NtelisV,BalatsosV,KaroumpalisI, HatzinikoloaouA,ManolakopoulosS,VafiadisI,ArchimandritisAand SkandalisN(2011)Endoscopictreatmentforhighriskbleedingpeptic ulcers:acomparisonofepinephrinealonewithepinephrineplus ethanolamine. AnnalsofGastro. 24 (2)101107

KooterIM,FrederixK,SpronkHM,BoereAJ,LesemanDL,vanSH,tenCH andCasseeFR(2008)Lunginflammationandthrombogenicresponsesin atimecoursestudyofCsbmiceexposedtoozone. J.Appl.Toxicol. 28 (6) 779787

KrishnamurthyN,HaraguchiK,GreenbergMMandDavidSS(2008) Efficientremovalofformamidopyrimidinesby8oxoguanineglycosylases. Biochemistry . 47 (3)10431050

KrokanHE,NilsenH,SkorpenF,OtterleiMandSlupphaugG(2000)Base excisionrepairofDNAinmammaliancells. FEBSLetters . 476 (12)73 77

KucherlapatiM,YangK,KuraguchiM,ZhaoJ,LiaM,HeyerJ,KaneMF, FanK,RussellR,BrownAM,KneitzB,EdelmannW,KolodnerRD,LipkinM andKucherlapatiR(2002)HaploinsufficiencyofFlapendonuclease(Fen1) leadstorapidtumorprogression. Proc.Natl.Acad.Sci.U.S.A . 99 (15) 99249929

KurtJonesEA,SandorF,OrtizY,BowenGN,CounterSL,WangTCand FinbergRW(2004)UseofmurineembryonicfibroblaststodefineTolllike receptoractivationandspecificity. J.Endotoxin.Res. 10 (6)419424

LamJS,SeligsonDB,YuH,LiA,EevaM,PantuckAJ,ZengG,HorvathS andBelldegrunAS(2006)Flapendonuclease1isoverexpressedin prostatecancerandisassociatedwithahighGleasonscore. BJU.Int. 98 (2)445451

214 Ph.D.Thesis2012AlanCarter

LangeJH,MastrangeloG,FaddaE,PrioloG,MontemurroD,BujaAand GrangeJM(2005)Elevatedlungcancerriskshortlyaftersmoking cessation:Isitduetoareductionofendotoxinexposure? Med. Hypotheses . 65 (3)534541

LangeJH,MastrangeloG,FedeliU,FaddaE,RylanderRandLeeE(2003) Endotoxinexposureandlungcancermortalitybytypeoffarming:isthere ahiddendoseresponserelationship? Ann.Agric.Environ.Med. 10 (2) 229232

LarsenE,MezaTJ,KleppaLandKlunglandA(2007)Organandcell specificityofbaseexcisionrepairmutantsinmice. Mutat.Res.Fund.Mol. M. 614(12)5668

LePageF.,KlunglandA,BarnesDE,SarasinAandBoiteuxS(2000) Transcriptioncoupledrepairof8oxoguanineinmurinecells:theogg1 proteinisrequiredforrepairinnontranscribedsequencesbutnotin transcribedsequences. Proc.Natl.Acad.Sci.U.S.A . 97 (15)83978402

LealAM,RuizLarreaMBa,Mart¦¦ünezRandLacortM(1998) Cytoprotectiveactionsofestrogensagainsttertbutylhydroperoxide inducedtoxicityinhepatocytes. Biochem.Pharmacol. 56 (11)14631469

LeeFD(1992)Theroleofinterleukin6indevelopment. Dev.Biol. 151 (2) 331338

LeeJM,LeeYC,YangSY,YangPW,LuhSP,LeeCJ,ChenCJandWuMT (2001)GeneticpolymorphismsofXRCC1andriskoftheesophageal cancer. Int.J.Cancer . 95 (4)240246

LefévreN,CorazzaF,DuchateauJ,DesirJandCasimirG(2012)Sex DifferencesinInflammatoryCytokinesandCD99ExpressionFollowingIn VitroLPSStimulation. Shock .

LehmannAR(2003)DNArepairdeficientdiseases,xeroderma pigmentosum,Cockaynesyndromeandtrichothiodystrophy. Biochimie . 85 (11)11011111

LiL,BhatiaM,ZhuYZ,ZhuYC,RamnathRD,WangZJ,AnuarFB, WhitemanM,SaltoTellezMandMoorePK(2005)Hydrogensulfideisa novelmediatoroflipopolysaccharideinducedinflammationinthemouse. FASEBJ. 19 (9)11961198

LiuAH(2007)Hygienetheoryandallergyandasthmaprevention. Paediatr.Perinat.Epidemiol. 21Suppl3 27

LloydDRandPhillipsDH(1999)OxidativeDNAdamagemediatedby copper(II),iron(II)andnickel(II)fentonreactions:evidenceforsite specificmechanismsintheformationofdoublestrandbreaks,8

215 Ph.D.Thesis2012AlanCarter hydroxydeoxyguanosineandputativeintrastrandcrosslinks. Mutat.Res. 424 (12)2336

LunaL,BjorasM,HoffE,RognesTandSeebergE(2000)Cellcycle regulation,intracellularsortingandinducedoverexpressionofthehuman NTH1DNAglycosylaseinvolvedinremovalofformamidopyrimidine residuesfromDNA. Mutat.Res. 460 (2)95104

MableyJG,PacherP,DebA,WallaceR,ElderRHandSzaboC(2005a) Potentialrolefor8oxoguanineDNAglycosylaseinregulating inflammation. FASEBJ. 19 (2)290292

MableyJG,HorvathEM,MurthyKGK,ZsengellerZ,VaslinA,BenkoR, KollaiMandSzaboC(2005b)GenderDifferencesintheEndotoxin InducedInflammatoryandVascularResponses:PotentialRoleof Poly(ADPribose)PolymeraseActivation. JournalofPharmacologyAnd ExperimentalTherapeutics . 315 (2)812820

MaloneyG,SchroderMandBowieAG(2005)VacciniavirusproteinA52R activatesp38mitogenactivatedproteinkinaseandpotentiates lipopolysaccharideinducedinterleukin10. J.Biol.Chem. 280 (35)30838 30844

MarensteinDR,ChanMK,AltamiranoA,BasuAK,BoorsteinRJ, CunninghamRPandTeeborGW(2003)Substratespecificityofhuman endonucleaseIII(hNTH1).EffectofhumanAPE1onhNTH1activity. J. Biol.Chem. 278 (11)90059012

MarnettLJ(1999)LipidperoxidationDNAdamagebymalondialdehyde. Mutat.Res. 424 (12)8395

MartinJ,HanC,GordonLA,TerryA,PrabhakarS,SheX,XieG,Hellsten U,ChanYM,AltherrM,CouronneO,AertsA,BajorekE,BlackS,Blumer H,BranscombE,BrownNC,BrunoWJ,BuckinghamJM,CallenDF, CampbellCS,CampbellML,CampbellEW,CaoileC,ChallacombeJF, ChasteenLA,ChertkovO,ChiHC,ChristensenM,ClarkLM,CohnJD, DenysM,DetterJC,DicksonM,mitrijevicBussodM,EscobarJ,Fawcett JJ,FlowersD,FotopulosD,GlavinaT,GomezM,GonzalesE,GoodsteinD, GoodwinLA,GradyDL,GrigorievI,GrozaM,HammonN,HawkinsT, HayduL,HildebrandCE,HuangW,IsraniS,JettJ,JewettPB,KadnerK, KimballH,KobayashiA,KrawczykMC,LeybaT,LongmireJL,LopezF,Lou Y,LowryS,LudemanT,ManoharCF,MarkGA,McMurrayKL,MeinckeLJ, MorganJ,MoyzisRK,MundtMO,MunkAC,NandkeshwarRD,PitluckS, PollardM,PredkiP,ParsonQuintanaB,RamirezL,RashS,RettererJ, RickeDO,RobinsonDL,RodriguezA,SalamovA,SaundersEH,ScottD, ShoughT,StallingsRL,StalveyM,SutherlandRD,TapiaR,TesmerJG, ThayerN,ThompsonLS,TiceH,TorneyDC,TranGyamfiM,TsaiM, UlanovskyLE,UstaszewskaA,VoN,WhitePS,WilliamsAL,WillsPL,Wu JR,WuK,YangJ,DejongP,BruceD,DoggettNA,DeavenL,SchmutzJ,

216 Ph.D.Thesis2012AlanCarter

GrimwoodJ,RichardsonP,RokhsarDS,EichlerEE,GilnaP,LucasSM, MyersRM,RubinEMandPennacchioLA(2004)Thesequenceand analysisofduplicationrichhumanchromosome16. Nature . 432 (7020) 988994

MartinSP,HortelanoS,BoscaLandCasadoM(2006)Cyclooxygenase2: understandingthepathophysiologicalrolethroughgeneticallyaltered mousemodels. FrontBiosci. 11 28762888

MartinTR(2000)RecognitionofBacterialEndotoxinintheLungs. Am.J. Respir.CellMol.Biol. 23 128132

MartinezFO,SironiM,VecchiA,ColottaF,MantovaniAandLocatiM (2004)IL8inducesaspecifictranscriptionalprofileinhumanneutrophils: synergismwithLPSforIL1production. Eur.J.Immunol. 34 (8)2286 2292

MathiakG,KabirK,GrassG,KellerH,SteinringerE,MinorT,RanggerC andNevilleLF(2003)Lipopolysaccharidesfromdifferentbacterialsources elicitdisparatecytokineresponsesinwholebloodassays. Int.J.Mol.Med. 11 (1)4144

MatsukawaA,YoshimuraT,MiyamotoK,OhkawaraSandYoshinagaM (1997)AnalysisoftheinflammatorycytokinenetworkamongTNFalpha, IL1beta,IL1receptorantagonist,andIL8inLPSinducedrabbit arthritis. LabInvest . 76 (5)629638

MaynardS,SchurmanSH,HarboeC,deSouzaPintoNCandBohrVA (2009)BaseexcisionrepairofoxidativeDNAdamageandassociationwith cancerandaging. Carcinogenesis . 30 (1)210

MberikunasheJ,BandaS,ChadambukaA,GombeNT,ShambiraG, TshimangaMandMatchabaHoveR(2010)Prevalenceandriskfactorsfor obstructiverespiratoryconditionsamongtextileindustryworkersin Zimbabwe,2006. PanAfr.Med.J. 6(1)

McElvennyDM,HurleyMA,LentersV,HeederikD,WilkinsonSand CoggonD(2011)LungcancermortalityinacohortofUKcottonworkers: anextendedfollowup. BrJCancer . 105 (7)10541060

McKERROWCB,McDERMOTTM,GILSONJCandSCHILLINGRS(1958) Respiratoryfunctionduringthedayincottonworkers:astudyin byssinosis. Br.J.Ind.Med. 16 7583

MillarCB,GuyJ,SansomOJ,SelfridgeJ,MacDougallE,HendrichB, KeightleyPD,BishopSM,ClarkeARandBirdA(2002)EnhancedCpG mutabilityandtumorigenesisinMBD4deficientmice. Science . 297 (5580) 403405

217 Ph.D.Thesis2012AlanCarter

MillerH,FernandesAS,ZaikaE,McTigueMM,TorresMC,WenteM,Iden CRandGrollmanAP(2004)Stereoselectiveexcisionofthymineglycol fromoxidativelydamagedDNA. NucleicAcidsRes. 32 (1)338345

MitchellJR,HoeijmakersJHandNiedernhoferLJ(2003)Divideand conquer:nucleotideexcisionrepairbattlescancerandageing. Curr.Opin. CellBiol. 15 (2)232240

MokkapatiSK,WiederholdL,HazraTKandMitraS(2004a)Stimulationof DNAglycosylaseactivityofOGG1byNEIL1:functionalcollaboration betweentwohumanDNAglycosylases. Biochemistry . 43 (36)11596 11604

MokkapatiSK,WiederholdL,HazraTKandMitraS(2004b)Stimulationof DNAglycosylaseactivityofOGG1byNEIL1:functionalcollaboration betweentwohumanDNAglycosylases. Biochemistry . 43 (36)11596 11604

MollerBandVilligerPM(2006)InhibitionofIL1,IL6,andTNFalphain immunemediatedinflammatorydiseases. SpringerSemin.Immunopathol. 27 (4)391408

MooreRN,GoodrumKJandBerryLJ(1976)Mediationofanendotoxic effectbymacrophages. JReticuloendothel.Soc. 19 (3)187197

MorlandI,RolsethV,LunaL,RognesT,BjorasMandSeebergE(2002) HumanDNAglycosylasesofthebacterialFpg/MutMsuperfamily:an alternativepathwayfortherepairof8oxoguanineandotheroxidation productsinDNA. NucleicAcidsRes. 30 (22)49264936

MuftuogluM,deSouzaPintoNC,DoganA,AamannM,StevnsnerT, RybanskaI,KirkaliG,DizdarogluMandBohrVA(2009)Cockayne syndromegroupBproteinstimulatesrepairofformamidopyrimidinesby NEIL1DNAglycosylase. J.Biol.Chem. 284 (14)92709279

MutambaJT,SvilarD,PrasongtanakijS,WangXH,LinYC,DedonPC, SobolRWandEngelwardBP(2011)XRCC1andbaseexcisionrepair balanceinresponsetonitricoxide. DNARepair . 10 (12)12821293

NaikEandDixitVM(2011)Mitochondrialreactiveoxygenspeciesdrive proinflammatorycytokineproduction. J.Exp.Med. 208 (3)417420

NeteaMG,vanDeurenM,KullbergBJ,CavaillonJMandVanderMeer JWM(2002)DoestheshapeoflipidAdeterminetheinteractionofLPS withTolllikereceptors? TrendsImmunol. 23 (3)135139

NilsenH,StampG,AndersenS,HrivnakG,KrokanHE,LindahlTand BarnesDE(2003)GenetargetedmicelackingtheUnguracilDNA glycosylasedevelopBcelllymphomas. Oncogene . 22 (35)53815386

218 Ph.D.Thesis2012AlanCarter

NilsenH,RosewellI,RobinsP,SkjelbredCF,AndersenS,SlupphaugG, DalyG,KrokanHE,LindahlTandBarnesDE(2000)UracilDNA Glycosylase(UNG)DeficientMiceRevealaPrimaryRoleoftheEnzyme duringDNAReplication. Mol.Cell . 5(6)10591065

NilssonBO(2007)Modulationoftheinflammatoryresponsebyestrogens withfocusontheendotheliumanditsinteractionswithleukocytes. Inflamm.Res. 56 (7)269273

NusbaumC,MikkelsenTS,ZodyMC,AsakawaS,TaudienS,GarberM, KodiraCD,SchuelerMG,ShimizuA,WhittakerCA,ChangJL,CuomoCA, DewarK,FitzGeraldMG,YangX,AllenNR,AndersonS,AsakawaT, BlechschmidtK,BloomT,BorowskyML,ButlerJ,CookA,CorumB, DeArellanoK,DeCaprioD,DooleyKT,DorrisL,III,EngelsR,GlocknerG, HafezN,HagopianDS,HallJL,IshikawaSK,JaffeDB,KamatA,KudohJ, LehmannR,LokitsangT,MacdonaldP,MajorJE,MatthewsCD,MauceliE, MenzelU,MihalevAH,MinoshimaS,MurayamaY,NaylorJW,NicolR, NguyenC,O'LearySB,O'NeillK,ParkerSC,PolleyA,RaymondCK, ReichwaldK,RodriguezJ,SasakiT,SchilhabelM,SiddiquiR,SmithCL, SneddonTP,TalamasJA,TenzinP,TophamK,VenkataramanV,WenG, YamazakiS,YoungSK,ZengQ,ZimmerAR,RosenthalA,BirrenBW, PlatzerM,ShimizuNandLanderES(2006)DNAsequenceandanalysisof humanchromosome8. Nature . 439 (7074)331335

OakleyAJ(2005)Glutathionetransferases:newfunctions. Curr.Opin. Struc.Biol. 15 (6)716723

OcampoMT,ChaungW,MarensteinDR,ChanMK,AltamiranoA,BasuAK, BoorsteinRJ,CunninghamRPandTeeborGW(2002)Targeteddeletionof mNth1revealsanovelDNArepairenzymeactivity. Mol.CellBiol. 22 (17) 61116121

OckCY,KimEH,HongH,HongKS,HanYM,ChoiKS,HahmKBand ChungMH(2011a)Preventionofcolitisassociatedcolorectalcancerwith 8hydroxydeoxyguanosine. CancerPrev.Res.(Phila) . 4(9)15071521

OckCY,HongKS,ChoiKS,ChungMH,KimYs,KimJHandHahmKB (2011b)Anovelapproachforstressinducedgastritisbasedon paradoxicalantioxidativeandantiinflammatoryactionofexogenous8 hydroxydeoxyguanosine. Biochem.Pharmacol. 81 (1)111122

OrrY,WilsonDP,TaylorJM,BannonPG,GeczyC,DavenportMPand KritharidesL(2007)Akineticmodelofbonemarrowneutrophilproduction thatcharacterizeslatephenotypicmaturation. Am.J.PhysiolRegul. Integr.CompPhysiol . 292 (4)R1707R1716

OrrenDK,PetersenLNandBohrVA(1997)PersistentDNAdamage inhibitsSphaseandG2progression,andresultsinapoptosis. Mol.Biol. Cell . 8(6)11291142

219 Ph.D.Thesis2012AlanCarter

OsterodM,HollenbachS,HengstlerJG,BarnesDE,LindahlTandEpeB (2001)AgerelatedandtissuespecificaccumulationofoxidativeDNAbase damagein7,8dihydro8oxoguanineDNAglycosylase(Ogg1)deficient mice. Carcinogenesis . 22 (9)14591463

OyamaM,WakasugiM,HamaT,HashidumeH,IwakamiY,ImaiR, HoshinoS,MoriokaH,IshigakiY,NikaidoOandMatsunagaT(2004) HumanNTH1physicallyinteractswithp53andproliferatingcellnuclear antigen. Biochem.Biophys.Res.Commun. 321 (1)183191

PanduriV,LiuG,SurapureddiS,KondapalliJ,SoberanesS,deSouza PintoNC,BohrVA,BudingerGRS,SchumackerPT,WeitzmanSAand KampDW(2009)RoleofmitochondrialhOGG1andaconitaseinoxidant inducedlungepithelialcellapoptosis. FreeRadic.Biol.Med. 47 (6)750 759

ParsonsJLandElderRH(2003)DNANglycosylasedeficientmice:atale ofredundancy. Mutat.Res. 531 (12)165175

PaulosCM,KaiserA,WrzesinskiC,HinrichsCS,CassardL,BoniA, MuranskiP,SanchezPerezL,PalmerDC,YuZ,AntonyPA,GattinoniL, RosenbergSAandRestifoNP(2007)Tolllikereceptorsintumor immunotherapy. Clin.CancerRes. 13 (18Pt1)52805289

PerezCampoFM,SpencerHL,ElderRH,SternPLandWardCM(2007) Novelvectorsforhomologousrecombinationstrategiesinmouse embryonicstemcells:AnEScelllineexpressingEGFPundercontrolofthe 5T4promoter. Exp.Cell.Res. 313 (16)36043615

PettusBJ,ChalfantCEandHannunYA(2002)Ceramideinapoptosis:an overviewandcurrentperspectives. BiochimicaetBiophysicaActa(BBA) MolecularandCellBiologyofLipids . 1585 (23)114125

PhengLH,FrancoeurCandDenisM(1995)Theinvolvementofnitric oxideinamousemodelofadultrespiratorydistresssyndrome. Inflammation . 19 (5)599610

PrinsJM(1996)Antibioticinducedreleaseofendotoxinclinicaldataand humanstudies. J.EndotoxinRes. 3(3)269273

ProkaiL,ProkaiTatraiK,PerjesiP,ZharikovaAD,PerezEJ,LiuRand SimpkinsJW(2003)Quinolbasedcyclicantioxidantmechanismin estrogenneuroprotection. Proc.Natl.Acad.Sci.U.S.A . 100 (20)11741 11746

PurmalAA,KowYWandWallaceSS(1994)Majoroxidativeproductsof cytosine,5hydroxycytosineand5hydroxyuracil,exhibitsequence contextdependentmispairinginvitro. NucleicAcidsRes. 22 (1)7278

220 Ph.D.Thesis2012AlanCarter

QureshiST,LariviereL,LevequeG,ClermontS,MooreKJ,GrosPand MaloD(1999)EndotoxintolerantmicehavemutationsinTolllikereceptor 4(Tlr4). J.Exp.Med. 189 (4)615625

RadakZandBoldoghI(2010)8Oxo7,8dihydroguanine:Linkstogene expression,aging,anddefenseagainstoxidativestress. FreeRadic.Biol. Med. 49 (4)587596

RadicellaJP,DherinC,DesmazeC,FoxMSandBoiteuxS(1997)Cloning andcharacterizationofhOGG1,ahumanhomologoftheOGG1geneof Saccharomycescerevisiae. Proc.Natl.Acad.Sci.U.S.A . 94 (15)8010 8015

RadonK(2006)Thetwosidesofthe"endotoxincoin". Occup.Environ. Med. 63 (1)738,10

RaetzCR,GuanZ,IngramBO,SixDA,SongF,WangXandZhaoJ(2009) Discoveryofnewbiosyntheticpathways:thelipidAstory. J.LipidRes. 50 Suppl S103S108

RahmanI,KodeAandBiswasSK(2006)Assayforquantitative determinationofglutathioneandglutathionedisulfidelevelsusing enzymaticrecyclingmethod. Nat.Protoc. 1(6)31593165

RatnasingheD,YaoSX,TangreaJA,QiaoYL,AndersenMR,BarrettMJ, GiffenCA,ErozanY,TockmanMSandTaylorPR(2001)Polymorphismsof theDNArepairgeneXRCC1andlungcancerrisk. CancerEpidemiol. BiomarkersPrev. 10 (2)119123

ReardonJT,BesshoT,KungHC,BoltonPHandSancarA(1997)Invitro repairofoxidativeDNAdamagebyhumannucleotideexcisionrepair system:possibleexplanationforneurodegenerationinxeroderma pigmentosumpatients. Proc.Natl.Acad.Sci.U.S.A . 94 (17)94639468

ReedCEandMiltonDK(2001)Endotoxinstimulatedinnateimmunity:A contributingfactorforasthma. J.AllergyClin.Immunol. 108 (2)157166

RietschelET,KirikaeT,SchadeFU,MamatU,SchmidtG,LoppnowH, UlmerAJ,ZahringerU,SeydelU,DiPFand.(1994)Bacterialendotoxin: molecularrelationshipsofstructuretoactivityandfunction. FASEBJ. 8(2) 217225

RisomL,DybdahlM,MollerP,WallinH,HaugT,VogelU,KlunglandAand LoftS(2007)Repeatedinhalationsofdieselexhaustparticlesand oxidativelydamagedDNAinyoungoxoguanineDNAglycosylase(OGG1) deficientmice. FreeRadic.Res. 41 (2)172181

ROACHSAandSCHILLINGRS(1960)Aclinicalandenvironmentalstudy ofbyssinosisintheLancashirecottonindustry. Br.J.Ind.Med. 17 19

221 Ph.D.Thesis2012AlanCarter

RobertsonAB,KlunglandA,RognesTandLeirosI(2009)DNArepairin mammaliancells:Baseexcisionrepair:thelongandshortofit. CellMol. LifeSci. 66 (6)981993

RosenquistTA,ZaikaE,FernandesAS,ZharkovDO,MillerHandGrollman AP(2003)ThenovelDNAglycosylase,NEIL1,protectsmammaliancells fromradiationmediatedcelldeath. DNARepair(Amst) . 2(5)581591

RosenquistTA,ZharkovDOandGrollmanAP(1997)Cloningand characterizationofamammalian8oxoguanineDNAglycosylase. Proc. Natl.Acad.Sci.U.S.A . 94 (14)74297434

RuchkoM,GorodnyaO,LeDouxSP,AlexeyevMF,AlMehdiABand GillespieMN(2005)MitochondrialDNAdamagetriggersmitochondrial dysfunctionandapoptosisinoxidantchallengedlungendothelialcells. Am.J.PhysiolLungCellMol.Physiol . 288 (3)L530L535

RylanderR(2002)Endotoxinintheenvironmentexposureandeffects. J. EndotoxinRes. 8(4)241252

SakumiK,TominagaY,FuruichiM,XuP,TsuzukiT,SekiguchiMand NakabeppuY(2003)Ogg1knockoutassociatedlungtumorigenesisandits suppressionbyMth1genedisruption. CancerRes. 63 (5)902905

SalemML(2004)Estrogen,adoubleedgedsword:modulationofTH1 andTH2mediatedinflammationsbydifferentialregulationofTH1/TH2 cytokineproduction. Curr.DrugTargets.Inflamm.Allergy . 3(1)97104

SampathH,BatraAK,VartanianV,CarmicalJR,PrusakD,KingIB,Lowell B,EarleyLF,WoodTG,MarksDL,McCulloughAKandStephenR(2011) Variablepenetranceofmetabolicphenotypesanddevelopmentofhighfat dietinducedadiposityinNEIL1deficientmice. Am.J.PhysiolEndocrinol. Metab . 300 (4)E724E734

SarkerAH,IkedaS,NakanoH,TeratoH,IdeH,ImaiK,AkiyamaK, TsutsuiK,BoZ,KuboK,YamamotoK,YasuiA,YoshidaMCandSekiS (1998)Cloningandcharacterizationofamousehomologue(mNthl1)of EscherichiacoliendonucleaseIII. J.Mol.Biol. 282 (4)761774

SarkerK,HashimMA,HossainMAandLuckyNS(2009)Caudalepidural analgesiaincalvesusingdifferentlocalanalgesics. J.BangladeshAgri. Uni. 7(1)5356

SchrommAB,BrandenburgK,LoppnowH,ZahringerU,RietschelET, CarrollSF,KochMH,KusumotoSandSeydelU(1998)Thechargeof endotoxinmoleculesinfluencestheirconformationandIL6inducing capacity. J.Immunol. 161 (10)54645471

222 Ph.D.Thesis2012AlanCarter

SebaiH,SaniM,GhanemBoughanmiN+andAouaniE(2010)Prevention oflipopolysaccharideinducedmouselethalitybyresveratrol. FoodChem. Toxicol. 48 (6)15431549

SharmanK,SharmanE,CampbellAandBondySC(2001)Reducedbasal levelsandenhancedLPSresponseofIL6mRNAinagedmice. J. Gerontol.ABiol.Sci.Med.Sci. 56 (12)B520B523

SheppardTL,OrdoukhanianPandJoyceGF(2000)ADNAenzymewith Nglycosylaseactivity. Proc.Natl.Acad.Sci.U.S.A . 97 (14)78027807

ShinmuraK,TaoH,GotoM,IgarashiH,TaniguchiT,MaekawaM, TakezakiTandSugimuraH(2004)Inactivatingmutationsofthehuman baseexcisionrepairgeneNEIL1ingastriccancer.Carcinogenesis . 25 (12) 23112317

ShirotaH,IshiiKJ,TakakuwaHandKlinmanDM(2006)Contributionof interferonbetatotheimmuneactivationinducedbydoublestranded DNA. Immunology . 118 (3)302310

ShrivastavM,DeHaroLPandNickoloffJA(2008)RegulationofDNA doublestrandbreakrepairpathwaychoice. CellRes. 18 (1)134147

SidorenkoVS,NevinskyGAandZharkovDO(2008)Specificityof stimulationofhuman8oxoguanine ΓÇôDNAglycosylasebyAP endonuclease. Biochem.Bioph.Res.Co. 368 (1)175179

SinghP,YangM,DaiH,YuD,HuangQ,TanW,KernstineKH,LinDand ShenB(2008)Overexpressionandhypomethylationofflapendonuclease 1geneinbreastandothercancers. Mol.CancerRes. 6(11)17101717

SlupphaugG,KavliBandKrokanHE(2003)Theinteractingpathwaysfor preventionandrepairofoxidativeDNAdamage. Mutat.Res. 531 (12) 231251

SmartDJ,ChipmanJKandHodgesNJ(2006)ActivityofOGG1variantsin therepairofprooxidantinduced8oxo2'deoxyguanosine. DNARepair . 5 (11)13371345

SmithJA(1994)Neutrophils,hostdefense,andinflammation:adouble edgedsword. J.Leukoc.Biol. 56 (6)672686

SmithRS,SmithTJ,BliedenTMandPhippsRP(1997)Fibroblastsas sentinelcells.Synthesisofchemokinesandregulationofinflammation. Am.J.Pathol. 151 (2)317322

SorianoFG,LiaudetL,SzaboE,ViragL,MableyJG,PacherPandSzaboC (2002)Resistancetoacutesepticperitonitisinpoly(ADPribose) polymerase1deficientmice. Shock . 17 (4)286292

223 Ph.D.Thesis2012AlanCarter

SpeyerCL,RancilioNJ,McClintockSD,CrawfordJD,GaoH,SarmaJVand WardPA(2005)Regulatoryeffectsofestrogenonacutelung inflammationinmice. Am.J.PhysiolCellPhysiol . 288 (4)C881C890

StarcevicD,DalalSandSweasyJB(2004)IstherealinkbetweenDNA polymerasebetaandcancer? CellCycle . 3(8)9981001

SternMC,UmbachDM,vanGilsCH,LunnRMandTaylorJA(2001)DNA repairgeneXRCC1polymorphisms,smoking,andbladdercancerrisk. CancerEpidemiol.BiomarkersPrev. 10 (2)125131

StiversJTandJiangYL(2003)Amechanisticperspectiveonthechemistry ofDNArepairglycosylases. Chem.Rev. 103 (7)27292759

StrongVE,KennedyT,AlAhmadieH,TangL,ColemanJ,FongY, BrennanMandGhosseinRA(2008)Prognosticindicatorsofmalignancyin adrenalpheochromocytomas:clinical,histopathologic,andcell cycle/apoptosisgeneexpressionanalysis. Surgery . 143 (6)759768

SugiokaK,ShimosegawaYandNakanoM(1987)Estrogensasnatural antioxidantsofmembranephospholipidperoxidation. FEBSLetters . 210 (1)3739

SvilarD,GoellnerEM,AlmeidaKHandSobolRW(2011)Baseexcision repairandlesiondependentsubpathwaysforrepairofoxidativeDNA damage. Antioxid.Redox.Signal. 14 (12)24912507

TakaoM,KannoS,KobayashiK,ZhangQM,YoneiS,vanderHorstGT andYasuiA(2002a)AbackupglycosylaseinNth1knockoutmiceisa functionalNei(endonucleaseVIII)homologue. J.Biol.Chem. 277 (44) 4220542213

TakaoM,KannoS,ShiromotoT,HasegawaR,IdeH,IkedaS,SarkerAH, SekiS,XingJZ,LeXC,WeinfeldM,KobayashiK,MiyazakiJ,MuijtjensM, HoeijmakersJH,vanderHGandYasuiA(2002b)Novelnuclearand mitochondrialglycosylasesrevealedbydisruptionofthemouseNth1gene encodinganendonucleaseIIIhomologforrepairofthymineglycols. EMBOJ. 21 (13)34863493

TakedaK,TanakaT,ShiW,MatsumotoM,MinamiM,KashiwamuraS, NakanishiK,YoshidaN,KishimotoTandAkiraS(1996)Essentialroleof Stat6inIL4signalling. Nature. 380 (6575)627630

TenopoulouM,DouliasPT,BarboutiA,BrunkUandGalarisD(2005)Role ofcompartmentalizedredoxactiveironinhydrogenperoxideinducedDNA damageandapoptosis. Biochem.J. 387 (Pt3)703710

TentoriL,LeonettiC,ScarsellaM,D'AmatiG,VergatiM,PortarenaI,Xu W,KalishV,ZupiG,ZhangJandGrazianiG(2003)Systemic administrationofGPI15427,anovelpoly(ADPribose)polymerase1

224 Ph.D.Thesis2012AlanCarter inhibitor,increasestheantitumoractivityoftemozolomideagainst intracranialmelanoma,glioma,lymphoma. Clin.CancerRes. 9(14)5370 5379

TominagaK,KirikaeTandNakanoM(1997)Lipopolysaccharide(LPS) inducedIL6productionbyembryonicfibroblastsisolatedandclonedfrom LPSresponsiveandLPShyporesponsivemice. Mol.Immunol. 34 (1617) 11471156

TouatiE,MichelV,ThibergeJM,AveP,HuerreM,BourgadeF,Klungland AandLabigneA(2006)DeficiencyinOGG1protectsagainstinflammation andmutageniceffectsassociatedwithH.pyloriinfectioninmouse. Helicobacter. 11 (5)494505

TremblayS,GantchevT,TremblayL,LavigneP,CadetJandWagnerJR (2007)Oxidationof2'deoxycytidinetofourinterconvertingdiastereomers ofN1carbamoyl4,5dihydroxy2oxoimidazolidinenucleosides. J.Org. Chem. 72 (10)36723678

TsuzukiT,EgashiraA,IgarashiH,IwakumaT,NakatsuruY,TominagaY, KawateH,NakaoK,NakamuraK,IdeF,KuraS,NakabeppuY,KatsukiM, IshikawaTandSekiguchiM(2001)Spontaneoustumorigenesisinmice defectiveintheMTH1geneencoding8oxodGTPase.ProcNatl.Acad.Sci. U.S.A . 98 (20)1145611461

TuragaRV,PaquetER,SildM,VignardJ,GarandC,JohnsonFB,Masson JYandLebelM(2009)TheWernersyndromeproteinaffectsthe expressionofgenesinvolvedinadipogenesisandinflammationinaddition tocellcycleandDNAdamageresponses. CellCycle . 8(13)20802092

TurrensJF(2003)Mitochondrialformationofreactiveoxygenspecies. J. Physiol . 552 (Pt2)335344

TyrbergB,AnachkovKA,DibSA,WangRodriguezJ,YoonKHandLevine F(2002)IsletExpressionoftheDNARepairEnzyme8oxoguanosineDNA Glycosylase(OGG1)inHumanType2Diabetes. BMCEndocr.Disord. 22 2

VaaraM(1999)LipopolyscharrideandthePermeabilityoftheBacterial OuterMembrane. 10 (2)3138

VanSJ(1990)Interleukin6:anoverview. Annu.Rev.Immunol. 8253 278

VartanianV,LowellB,MinkoIG,WoodTG,CeciJD,GeorgeS,Ballinger SW,CorlessCL,McCulloughAKandLloydRS(2006)Themetabolic syndromeresultingfromaknockoutoftheNEIL1DNAglycosylase. Proc. Natl.Acad.Sci.U.S.A. 103 (6)18641869

225 Ph.D.Thesis2012AlanCarter

VernooyJHJ,DentenerMA,vanSuylenRJ,BuumanWAandWoutersEFM (2001)Intratrachealinstillationoflipopolysaccharideinmiceinduces apoptosisinbronchialepithelialcells:Norolefortumornecrosisfactora andinfiltratingneutrophils. Am.J.Respir.CellMol.Biol. 24 569576

VilenchikMMandKnudsonAG,Jr.(2000)Inverseradiationdoserate effectsonsomaticandgermlinemutationsandDNAdamagerates. Proc. Natl.Acad.Sci.U.S.A . 97 (10)53815386

ViragLandSzaboC(2002)Thetherapeuticpotentialofpoly(ADPribose) polymeraseinhibitors. Pharmacol.Rev. 54 (3)375429

VogelU,NexoBA,OlsenA,ThomsenB,JacobsenNR,WallinH,OvervadK andTjonnelandA(2003)NoassociationbetweenOGG1Ser326Cys polymorphismandbreastcancerrisk. CancerEpidemiol.BiomarkersPrev. 12 (2)170171

WallaceSS(2002)BiologicalconsequencesoffreeradicaldamagedDNA bases. FreeRadic.Biol.Med. 33 (1)114

WanGH,LiCSandLinRH(2000)Airborneendotoxinexposureandthe developmentofairwayantigenspecificallergicresponses. Clin.Exp. Allergy . 30 (3)426432

WangJP,KurtJonesEA,ShinOS,ManchakMD,LevinMJandFinbergRW (2005)Varicellazostervirusactivatesinflammatorycytokinesinhuman monocytesandmacrophagesviaTolllikereceptor2. J.Virol. 79 (20) 1265812666

WangXandQuinnPJ(2010)Lipopolysaccharide:Biosyntheticpathway andstructuremodification. Prog.Lipid.Res. 49 (2)97107

WatsonJandRibletR(1974)Geneticcontrolofresponsestobacterial lipopolysaccharidesinmice.I.Evidenceforasinglegenethatinfluences mitogenicandimmunogenicresponestolipopolysaccharides. J.Exp.Med. 140 (5)11471161

WatsonJandRibletR(1975)Geneticcontrolofresponsestobacterial lipopolysaccharidesinmice.II.Agenethatinfluencesamembrane componentinvolvedintheactivationofbonemarrowderivedlymphocytes bylipipolysaccharides. J.Immunol. 114 (5)14621468

WhitacreCC(2001)Sexdifferencesinautoimmunedisease. Nat. Immunol. 2(9)777780

WilliamsTJ(1979)ProstaglandinE2,prostaglandinI2andthevascular changesofinflammation. Br.J.Pharmacol. 65 (3)517524

WilsonIIIDMandMcNeillDR(2007)Baseexcisionrepairandthecentral nervoussystem. Neuroscience . 145 (4)11871200

226 Ph.D.Thesis2012AlanCarter

WolferDP,CrusioWEandLippHP(2002)Knockoutmice:simplesolutions totheproblemsofgeneticbackgroundandflankinggenes. Trends Neurosci. 25 (7)336340

WoodC(2000)Futuretrendsinhumanreproduction.Aust.N.Z.J. Obstet.Gynaecol. 40 (2)127132

WoodRD,MitchellM,SgourosJandLindahlT(2001)HumanDNArepair genes. Science . 291 (5507)12841289

XanthoudakisS,SmeyneRJ,WallaceJDandCurranT(1996)The redox/DNArepairprotein,Ref1,isessentialforearlyembryonic developmentinmice. Proc.Natl.Acad.Sci.U.S.A . 93 (17)89198923

XieY,YangH,CunananC,OkamotoK,ShibataD,PanJ,BarnesDE, LindahlT,McIlhattonM,FishelRandMillerJH(2004)Deficienciesin mouseMyhandOgg1resultintumorpredispositionandGtoTmutations incodon12oftheKrasoncogeneinlungtumors. CancerRes. 64 (9) 30963102

YamashitaT,KawashimaS,OhashiY,OzakiM,UeyamaT,IshidaT,Inoue N,HirataK,AkitaHandYokoyamaM(2000)Resistancetoendotoxin shockintransgenicmiceoverexpressingendothelialnitricoxidesynthase. Circulation . 101 (8)931937

YangD,ElnerSG,BianZM,TillGO,PettyHRandElnerVM(2007)Pro inflammatorycytokinesincreasereactiveoxygenspeciesthrough mitochondriaandNADPHoxidaseinculturedRPEcells. Exp.EyeRes. 85 (4)462472

YeSMandJohnsonRW(2001)Anagerelateddeclineininterleukin10 maycontributetotheincreasedexpressionofinterleukin6inbrainof agedmice. Neuroimmunomodulation. 9(4)183192

ZelissenPMJ,BastEJEGandCroughsRJM(1995)Associated AutoimmunityinAddison'sDisease. J.Autoimmun. 8(1)121130

ZhangL,FujiiSandKosakaH(2007)Effectofoestrogenonreactive oxygenspeciesproductionintheaortasofovariectomizedDahlsalt sensitiverats. J.Hypertens. 25 (2)407414

ZhengL,DaiH,ZhouM,LiM,SinghP,QiuJ,TsarkW,HuangQ, KernstineK,ZhangX,LinDandShenB(2007)Fen1mutationsresultin autoimmunity,chronicinflammationandcancers. Nat.Med. 13 (7)812 819

ZodyMC,GarberM,AdamsDJ,SharpeT,HarrowJ,LupskiJR,Nicholson C,SearleSM,WilmingL,YoungSK,AbouelleilA,AllenNR,BiW,BloomT, BorowskyML,BugalterBE,ButlerJ,ChangJL,ChenCK,CookA,CorumB, CuomoCA,deJongPJ,DeCaprioD,DewarK,FitzGeraldM,GilbertJ,

227 Ph.D.Thesis2012AlanCarter

GibsonR,GnerreS,GoldsteinS,GrafhamDV,GrocockR,HafezN, HagopianDS,HartE,NormanCH,HumphrayS,JaffeDB,JonesM,Kamal M,KhodiyarVK,LaButtiK,LairdG,LehoczkyJ,LiuX,LokyitsangT, LovelandJ,LuiA,MacdonaldP,MajorJE,MatthewsL,MauceliE, McCarrollSA,MihalevAH,MudgeJ,NguyenC,NicolR,O'LearySB, OsoegawaK,SchwartzDC,ShawSmithC,StankiewiczP,StewardC, SwarbreckD,VenkataramanV,WhittakerCA,YangX,ZimmerAR,Bradley A,HubbardT,BirrenBW,RogersJ,LanderESandNusbaumC(2006) DNAsequenceofhumanchromosome17andanalysisofrearrangement inthehumanlineage. Nature . 440 (7087)10451049

228