Vehicular Wifi Offloading: Challenges and Solutions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												
												Mobile Networks and Internet of Things Infrastructures to Characterize Smart Human Mobility
smart cities Article Mobile Networks and Internet of Things Infrastructures to Characterize Smart Human Mobility Luís Rosa 1,* , Fábio Silva 1,2 and Cesar Analide 1 1 ALGORITMI Centre, Department of Informatics, University of Minho, 4710-057 Braga, Portugal; [email protected] (F.S.); [email protected] (C.A.) 2 CIICESI, School of Management and Technology, Politécnico do Porto, 4610-156 Felgueiras, Portugal * Correspondence: [email protected] Abstract: The evolution of Mobile Networks and Internet of Things (IoT) architectures allows one to rethink the way smart cities infrastructures are designed and managed, and solve a number of problems in terms of human mobility. The territories that adopt the sensoring era can take advantage of this disruptive technology to improve the quality of mobility of their citizens and the rationalization of their resources. However, with this rapid development of smart terminals and infrastructures, as well as the proliferation of diversified applications, even current networks may not be able to completely meet quickly rising human mobility demands. Thus, they are facing many challenges and to cope with these challenges, different standards and projects have been proposed so far. Accordingly, Artificial Intelligence (AI) has been utilized as a new paradigm for the design and optimization of mobile networks with a high level of intelligence. The objective of this work is to identify and discuss the challenges of mobile networks, alongside IoT and AI, to characterize smart human mobility and to discuss some workable solutions to these challenges. Finally, based on this discussion, we propose paths for future smart human mobility researches. - 
												
												Oracle Communications Mobile Security Gateway
` ORACLE DATA SHEET Oracle Communications Mobile Security Gateway The Oracle Communications Mobile Security Gateway is a high-performance gateway that allows the Communications Service Provider (CSP) to cost effectively expand network coverage and increase capacity by incorporating Heterogeneous Networks (HetNets). It secures the delivery of voice and data services from the trusted service provider’s core network through untrusted, internet and/or Wi-Fi access to Wi-Fi devices and femtocells. Network Capacity and Coverage Challenges Mobile data traffic is projected to grow at a 57% CAGR between 2014 and 20191 KEYBUSNIESS BENEFITS stressing the capacity of the macro network. Peaks in demand at stadiums during • Cost effectively improve coverage and increase capacity sporting events or at airports can exceed cell capacity. Further, gaps in coverage leave • Address indoor coverage challenges some areas with no or poor coverage and modern building techniques with reinforced concrete and double glazed windows make indoor coverage a difficult challenge. With • Efficiently improve capacity in the macro network to serve more 80% of traffic being consumed indoors and indoor traffic growing 20% faster than customers outdoor traffic, indoor coverage can significantly impact the customer’s experience. For • Increase customer satisfaction and example, in the hospitality industry it has been reported that 54% of adults will not return decrease churn to a hotel where they have experienced poor cell phone coverage2 resulting in a material • Regain mindshare with customers impact on the business. KEY FEATURES • Safely and securely leverage Wi-Fi and the internet to supplement Macro RAN • Wi-Fi Calling to address indoor voice coverage • Wi-Fi Offload to mitigate macro network expansions • Onload Wi-Fi devices to regain mindshare and create monetization Figure 1: Coverage and Capacity Challenges opportunities Adding additional spectrum is an expensive option to address coverage and capacity • Femtocell support to address issues. - 
												
												Evaluation of Mobile Wimax and Intelligent Video for Enhanced Rail Transit Safety
SharpRAIL: Evaluation of Mobile WiMAX and Intelligent Video for Enhanced Rail Transit Safety Report Number FTA-MD-26-7132-08.1 June 2008 DISCLAIMER NOTICE This document is disseminated under the sponsorship of the United States Department of Transportation, Federal Transit Administration, in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the contents of the report. Form Approved OMB No. 0704-0188 REPORT DOCUMENTATION PAGE Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED June, 2008 Final Report, April 2007-January 2008 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS SharpRAIL: Evaluation of Mobile WiMAX and Intelligent Video for Enhanced Rail Transit Safety MD-26-7132-00 6. AUTHOR(S) Santosh Kesavan, Eddie Wu and William Toeller 8. PERFORMING ORGANIZATION 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) REPORT NUMBER VT Aepco Inc 555 Quince Orchard Road, Suite 488 Gaithersburg, MD 20878 9. - 
												
												SON Functions for Multi-Layer LTE and Multi-RAT Networks
INFSO-ICT-316384 SEMAFOUR D4.1 SON functions for multi-layer LTE and multi-RAT networks (first results) Contractual Date of Delivery to the EC: November 30th, 2013 Actual Date of Delivery to the EC: November 29th, 2013 Work Package WP4 Participants: NSN-D, EAB, iMinds, FT, TNO, TUBS, NSN-DK Authors Daniela Laselva, Zwi Altman, Irina Balan, Andreas Bergström, Relja Djapic, Hendrik Hoffmann, Ljupco Jorguseski, István Z. Kovács, Per Henrik Michaelsen, Dries Naudts, Pradeepa Ramachandra, Cinzia Sartori, Bart Sas, Kathleen Spaey, Kostas Trichias, Yu Wang Reviewers Thomas Kürner, Kristina Zetterberg Estimated Person Months: 53 Dissemination Level Public Nature Report Version 1.0 Total number of pages: 141 Abstract: Five promising SON functionalities for future multi-RAT and multi-layer networks have been identified within the SEMAFOUR project, namely, Dynamic Spectrum Allocation and Interference Management, multi-layer LTE / Wi-Fi Traffic Steering (TS), Idle Mode mobility Handling, tackling the problem of High Mobility users and Active/reconfigurable Antenna Systems. This document covers the detailed description of the SON features, the Controllability and Observability analysis as well as initial directions of the SON design for the above-mentioned five use cases. Furthermore, initial performance evaluation in the realistic “Hannover scenario” is provided for the proposed TS SON algorithms. Keywords: Self-management, Self-optimization, SON, Multi-layer, Multi-RAT, Spectrum Allocation, Traffic steering, High Mobility, Active Antenna, Controllability and Observability SEMAFOUR (316384) D4.1 SON functions (first results) Executive Summary Self-management and self-optimization will play critical roles in the future evolution of wireless networks. The complexity of future multi-layer / RAT technologies and the pressure to be competitive, e.g. - 
												
												El MULTICAST81 BROADCAST. I‘ X; SERVICE SERVER
US 20070189162A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0189162 A1 Song et al. (43) Pub. Date: Aug. 16, 2007 (54) METHOD FOR SETTING MULTICAST AND (30) Foreign Application Priority Data BROADCAST SERVICE IN BROADBAND WIRELESS ACCESS SYSTEM Feb. 15, 2006 (KR) ............... .. 2006-14858 Publication Classi?cation (75) Inventors: KWan-Woong Song, Seoul (KR); Yong-Deok Kim, Seoul (KR); (51) Int. Cl. Young-Hun J 00, Yongin-si (KR); H04L 12/26 (2006.01) Han-Sang Kim, Yeongtong-gu (52) us. c1. ..................................................... .. 370/230 (KR) (57) ABSTRACT Correspondence Address: A method for setting a multicast and broadcast service CHA & REITER, LLC (MBS) of a broadband Wireless access system includes: 210 ROUTE 4 EAST STE 103 previously receiving and storing the information on the PARAMUS, NJ 07652 MBS setting from a MBS server by a radio access station; and broadcasting the information on the MBS setting stored Assignee: Samsung Electronics Co., LTD in the PSS, Which exists in the service area of the radio (73) access station, by the radio access station. In the step of broadcasting the information on the MBS setting, a preset (21) Appl. No.: 11/636,832 pilot tone, uplink/doWnlink information, or the sub-carriers unused in bandwidth of the system are used for broadcasting (22) Filed: Dec. 11, 2006 the information. INTERNET PROTOCOL ’ NETWORK El MULTICAST81 BROADCAST. I‘ x; SERVICE SERVER ACR Patent Application Publication Aug. 16, 2007 Sheet 1 0f 5 US 2007/0189162 A1 . PORTABLE RADIO MULTICAST & SUBSCRIBER ACCESS BROADCAST STATION (PS3) STATIONS (RAS) SERVICE SERVER 101 Go to Awake Mode (If PS8 is in Idle Mode) Content Sen/er Discovery (102) HTTP Request (List) (103) HTTP Response (MBS Contents List)(i04) eoro idle Mode . - 
												
												Deliverable 1.4 SODALES Simulations
Ref. Ares(2015)10335 - 05/01/2015 Deliverable D1.4 Project SODALES Doc Simulations Date 29/12/2014 Grant Agreement No.: 318600 SODALES SOftware-Defined Access using Low-Energy Subsystems Funding Scheme: Small or medium-scale focused research project STREP - CP-FP- INFSO Activity: ICT-8-1.1 - Future Networks D1.4 Simulations and physical layer validations Due date of the Deliverable: Month 24 Actual submission date: 29th December 2014 Start date of project: November 1st 2012 Duration: 36 months Project Manager: Carlos Bock | i2CAT Version: 1.0 Author List: Carlos Bock (i2CAT), Jordi Ferrer Riera (i2CAT), Eduard Escalona (i2CAT), Michael C. Parker (UEssex) Project co-funded by the European Commission in the 7th Framework Programme (2007-2013) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) Page 1 of 68 Deliverable D1.4 Project SODALES Doc Simulations Date 29/12/2014 This page is intentionally left blank. Page 2 of 68 Deliverable D1.4 Project SODALES Doc Simulations Date 29/12/2014 Abstract Deliverable 1.4 aims to demonstrate the benefits of deploying the SODALES convergent access infrastructure combining fixed and mobile access, by means of traffic studies and simulations. The objective of the work is to validate the SODALES architecture and to achieve a solid solution that supports high speed connectivity services in a robust manner, carefully analysing the requirements of present and future transmission services and studying the trends and behaviours of end users. - 
												
												Next Generation Wireless Technologies: High Throughput
NextNext GenerationGeneration WirelessWireless Technologies:Technologies: HighHigh ThroughputThroughput WiFiWiFi ,, WiMAX,WiMAX, andand UWUWBB Raj Jain Department of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 [email protected] http://www.cse.wustl.edu/~jain/ Globecom Tutorial, November 30, 2007 1 ©2007 Raj Jain OverviewOverview 1. Wireless Equipment/Revenue Trends 2. Recent Developments in Wireless PHY 3. Ultra Wideband 4. High Throughput WiFi: 802.11n 5. WiMAX 6. Other Competing Broadband Access Technologies Globecom Tutorial, November 30, 2007 2 ©2007 Raj Jain PartPart I:I: WirelessWireless RevenueRevenue TrendsTrends Home Networking Equipment Trends Global Broadband Wireless Equipment Broadband Market by Regions Fixed vs. Mobile Voice vs. Data Globecom Tutorial, November 30, 2007 3 ©2007 Raj Jain TelecomTelecom RevenueRevenue Revenue in Billions 2003 2004 2005 2006 2007 2008 Annual Growth Video 0.2 0.3 .05 1.0 1.6 2.5 65.7% Consumer Broadband 2.8 3.5 4.0 4.2 4.6 4.8 11.4% Consumer long distance 20.7 18.2 16.0 13.6 11.3 9.2 -15.0% Business local 26.3 26.7 26.4 26.1 25.8 25.5 -0.6% Business long distance 26.1 24.5 23.0 21.3 19.7 18.2 -7.0% Business data 44.8 45.6 46.6 47.1 46.8 45.4 0.3% Consumer local 46.9 42.2 39.0 36.2 34.0 32.3 -7.25% Wireless 91.5 108.7 119.2 132.8 144.5 153.6 10.9% Total 260.7 271.5 277.0 285.0 291.3 294.9 2.5% 48% revenues are from wireless. - 
												
												Wireless Evolution •..••••.•.•...•....•.•..•.•••••••...••••••.•••.••••••.••.•.••.••••••• 4
Department of Justice ,"'''''''''<11 Bureau of Investigation ,Operational Technology Division WIRELESS EVDLUTIDN IN THIS Iselil-it:: .. WIRELESS EVOLUTIDN I!I TECH BYTES • LONG TERM EVOLUTIQN ill CLDUD SERVICES • 4G TECHNOLOGY ill GESTURE-RECOGNITION • FCC ON BROADBAND • ACTIVITY-BASED NAVIGATION 'aw PUIi! I' -. q f. 8tH'-.1 Waa 8RI,. (!.EIi/RiW81 R.d-nl)) - 11 - I! .el " Ij MESSAGE FROM MANAGEMENT b7E he bou~~aries of technology are constantly expanding. develop technical tools to combat threats along the Southwest Recognizing the pathway of emerging technology is Border. a key element to maintaining relevance in a rapidly changing technological environment. While this The customer-centric approach calls for a high degree of T collaboration among engineers, subject matter experts (SMEs), proficiency is fundamentally important in developing strategies that preserve long-term capabilities in the face of emerging and the investigator to determine needs and requirements. technologies, equally important is delivering technical solutions To encourage innovation, the technologists gain a better to meet the operational needs of the law enforcement understanding of the operational and investigative needs customer in a dynamic 'threat' environment. How can technical and tailor the technology to fit the end user's challenges. law enforcement organizations maintain the steady-state Rather than developing solutions from scratch, the customer production of tools and expertise for technical collection, while centric approach leverages and modifies the technoloe:v to infusing ideas and agility into our organizations to improve our fit the customer's nFlFlrt~.1 ability to deliver timely, relevant, and cutting edge tools to law enforcement customers? Balancing these two fundamentals through an effective business strategy is both a challenge and an opportunity for the Federal Bureau of Investigation (FBI) and other Federal, state, and local law enforcement agencies. - 
												
												Deliverable D2.1 Use Cases
Deliverable D2.1 Use Cases Project name 5G Enablers for Network and System Security and Resilience Short name 5G-ENSURE Grant agreement 671562 Call H2020-ICT-2014-2 Delivery date 2016-02-01 Dissemination Level: Public Lead beneficiary EAB Göran Selander, [email protected] Authors EAB: Mats Näslund, Göran Selander IT INNOV: Stephen Phillips, Bassem Nasser LMF: Vesa Torvinen, Vesa Lehtovirta NEC: FeliX Klaedtke NIXU: Seppo Heikkinen, Tommi Pernilä, AleXander Zahariev ORANGE: Ghada Arfaoui, José Sanchez, Jean-Philippe Wary UOXF: Piers O'Hanlon SICS: Martin Svensson, Rosario Giustolisi TASE: Gorka Lendrino, Carla Salas TIIT: Madalina Baltatu, Luciana Costa VTT: Janne Vehkaperä, Olli Mämmelä, Jani Suomalainen D2.1 Use Cases Executive summary This document describes a number of use cases illustrating security and privacy aspects of 5G networks. Based on similarities in technical, service and/or business-model related aspects, the use cases are grouped into use case clusters covering a wide variety of deployments including, for example, the Internet of Things, Software Defined Networks and virtualization, ultra-reliable and standalone operations. The use cases address security and privacy enhancements of current networks as well as security and privacy functionality needed by new 5G features. Each use case is described in a common format where actors, assumptions and a sequence of steps characterising the use case are presented together with a short analysis of the security challenges and the properties of a security solution. Each use case cluster description is concluded with a “5G Vision” outlining the associated enhancements in security and privacy anticipated in 5G networks and systems. A summary of the 5G visions and conclusions are provided at the end of the document. - 
												
												Integrating Wi-Fi and Femtocells a Feasibility Study Based on a Techno Economic Comparison of the Two Technologies
Integrating Wi-Fi and Femtocells A feasibility study based on a techno economic comparison of the two technologies RAZVAN POPESCU Master of Science Thesis Stockholm, Sweden 2013 Integrating Wi-Fi and Femtocells A feasibility study based on a techno economic comparison of the two technologies Student Razvan Popescu Supervisor Ashraf Awadelakrim Widaa Ahmed Examiner Jan I Markendahl Wireless@KTH School of Information and Communication Technology, KTH-Royal Institute of Technology, Stockholm, Sweden June 2013 Abstract At the end of 2009 mobile industry reached an inevitable milestone; the aggregated mobile data traffic exceeded voice traffic in the mobile networks. Starting with this point, data consumption has been continuously increasing and there are no signs that this behaviour will change in the future. For this reason mobile operators face nowadays a new paradox: they have to invest massively in their networks in order to sustain the increasing traffic while revenues are not expected to rise. This means that in order to survive, operators have to add extra capacity in a cost-efficient way. Using indoor solutions and mobile data offloading has been considered one right approach for solving this issue. While indoor solutions like Distributed Antenna Systems and repeaters have been used in the mobile networks for some time now, data offloading represents a relatively newcomer in the mobile industry. Using this concept, data traffic generated by mobile devices is moved towards alternative networks releasing the congestion in the operators’ macrocell layers. Among indoor solutions, two technologies stepped forward, Wi-Fi and Femtocells. This MSc thesis studies these two technologies, making a techno- economic comparison between them with respect on QoS level, interference, security and capacity-cost ratio. - 
												
												ECC Report 21 6
ECC Report 21 6 Practical guidance for TDD networks synchronisation August 2014 ECC REPORT 216 - Page 2 0 EXECUTIVE SUMMARY When more than one TDD network operates in the same geographic area and in the same band, severe interference may impair network performance if the networks are uncoordinated, i.e. if some equipment is transmitting while other equipment is receiving in the same time-slots. In that case, guard band and/or additional filtering and/or other techniques often can be used in order to reduce interference. However in the case of TDD-TDD coexistence, another way to avoid all BS-BS and UE-UE interferences without using guard band and specific filtering is to synchronise base stations so that they roughly transmit and receive in the same time. More precisely, synchronised operation means that no simultaneous uplink and downlink occur between any pairs of cells which may interfere with each other in the same band. The word “synchronisation” is often used in several other contexts (e.g. frequency synchronisation for FDD networks, BS-UE synchronisation, etc.), and this report will focus on phase/time synchronisation for interference-mitigation purposes, which involves different techniques. In order to achieve synchronised operation, the following needs to be implemented on all base stations that may interfere with each other (both within the operator and between other operators in the same frequency band): . Having a common reference phase clock (e.g. for the start of frame). Unlike FDD technology that only requires a frequency reference, TDD needs a common phase reference. The desired accuracy depends on the technology, but the order of magnitude for currently considered IMT technologies is about 1 to 3µs of clock drift between base stations. - 
												
												Voip on 3GPP LTE Network: a Survey
Journal of Information Engineering and Applications www.iiste.org ISSN 2224-5782 (print) ISSN 2225-0506 (online) Vol.3, No.11, 2013 VoIP on 3GPP LTE Network: A Survey Oluwadamilola I. Adu, Babasanjo O. Oshin and Adeyemi A. Alatishe Department of Electrical and Information Engineering, Covenant University Km 10, Idiroko Road, Ota, Ogun State, Nigeria E-mail: [email protected] Abstract As wireless access networks evolve towards an all-IP architecture, the principles of operations of communication services (specifically voice services), which have hitherto been circuit switched are being revisited. Voice over Internet Protocol (VoIP) has been identified as a solution and is potentially capable of completely replacing existing phone networks. However, as opposed to circuit switching technology, the call quality obtained via packet switching through IP has not been encouraging due to certain issues. The increasing demands on data rates, mobility, coverage and better service quality, led to the evolution in Radio Access Technologies (RATs) to an era of last-mile fourth generation (4G) access technologies among which is Long Term Evolution (LTE). LTE is an all-IP network initially meant for carrying data only, while carriers would be able to support voice traffic either by utilizing 2G or 3G systems or by using VoIP. This paper seeks to describe all options for providing VoIP services as a method of voice transfer over the LTE network. Keywords : 4G, Circuit switching, Convergence, LTE, Packet switching, RAT, VoIP. 1. Introduction The Internet Protocol (IP) is the driving force for future communication networks with convergence being an important requirement. Voice over IP (VoIP) can be said to have contributed somewhat to this convergence such that multiple networks including data, voice and video, are being integrated into a single network to share common facilities resulting in efficiency and cost savings; therefore, it has the potential to completely replace existing phone networks.