Using the Agile Unified Process in Banking Agile Methods

Total Page:16

File Type:pdf, Size:1020Kb

Using the Agile Unified Process in Banking Agile Methods featureagile methods Using the Agile Unified Process in Banking Ioannis T. Christou, Athens Information Technology Stavros T. Ponis, National Technical University of Athens Eleni Palaiologou, Athens Information Technology he banking sector is well known for using large, sometimes monolithic, leg- A banking-sector acy systems. Now, banks find themselves having to catch up with rapid ad- project combined vancements in software development that call for new service-oriented com- agile methods puting paradigms. Unfortunately, this task is nontrivial and often requires with the Rational Thuge projects that are costly, time consuming, and risky. The safe choice for a develop- Unified Process ment methodology is a process framework such as the Rational Unified Process (RUP), to exploit service- which is customizable enough to fit any project. However, customizing RUP isn’t trivial, oriented architecture so it’s often used in its full-blown out-of-the-box project, regardless of its size. Still, customizing RUP functionality and form, which entails significant sacrifices of time, demands both experienced staff and preparation 1–3 user interface cost, and flexibility. But what if the organiza- time, otherwise it could result in an oversimplified tion is unwilling to make these sacrifices? What project or, worse, a failure to meet essential require- integration of legacy happens when time, cost, and flexibility aren’t ne- ments. To avoid the effort and risk, organizations applications. gotiable issues but hard management constraints? often implement RUP with little or no customiza- We recently applied the Agile Unified Process tion, resulting in a complex process requiring nu- (AUP)4—a hybrid approach designed by Scott Am- merous documentation artifacts. On the other bler combining RUP with agile methods5–7—to a hand, agile methods are considered more light- successful project in the banking sector. The proj- weight, emphasizing people and shifting authority ect achieved on-time delivery within budget, inte- to the developers at the heart of the project. Never- grating heavy legacy back-end application systems theless, the two methods aren’t incompatible. with newly reengineered client user-interface appli- AUP is an agile public-domain instantiation cations on a modern service-oriented architecture of RUP.9–11 It’s a simple, easy-to-understand ap- (SOA) platform.8 proach to developing business-related software us- ing agile techniques and concepts while remaining The Agile Unified Process true to RUP. It applies agile techniques including Agile methods and RUP are among the most widely agile modeling (AM), test-driven design (TDD), ag- used software development methods. Although ile change management, and database refactoring both are iterative, they seem to have significant to improve productivity. AM is the basis for agile differences. model-driven development and is a key concept in- For starters, RUP is a process framework of- troduced in AUP to effectively model and document fering adaptability to every software development software systems. Simply put, AM is a collection of 72 IEEE SOFTWARE Published by the IEEE Computer Society 0740-7459/10/$26.00 © 2010 IEEE values, principles, and practices for modeling soft- project’s scope to ensure that it’s delivered on ware in a lightweight manner.9–10 It values commu- time and within budget. nication, simplicity, courage, feedback, and humil- ■ Environment. Support the rest of the effort by ity. Its principles include ensuring that the team has the proper process, guidance (standards and guidelines), and tools ■ assuming simplicity, which is the equivalent of (hardware, software, and so on). Occam’s razor in software engineering; ■ embracing change, in that requirements will in- Ambler designed AUP around a few basic con- evitably change during the project lifecycle; cepts. First, people won’t read detailed process doc- ■ incremental change of a system over time to ac- umentation, but they will want high-level guidance commodate requirement changes; and and training from time to time. Second, describe ■ rapid feedback from project stakeholders after things concisely in a few pages, not thousands. every software release. Third, focus on the important activities and risks, not every minute detail. Fourth, teams should use AM practices are a set of best practices that include any tools they prefer for a given job, not have tools creating several models in parallel, modeling in imposed on them by the process. And finally, the small increments, iterating to another artifact, and process should be highly customizable so that you updating models only when it hurts. can tailor it to a specific project’s needs. As in RUP, AUP has four major phases: The Integrated Desktop 1. Inception. The team identifies the project’s ini- Using AUP, one of the largest banks in Greece im- tial scope, a potential architecture, and obtains plemented a small to medium-scale project called initial funding and stakeholder acceptance. the Integrated Desktop (ID). It was an important 2. Elaboration. The team establishes the system’s part of a large company-wide project that aimed feasibility and proposed architecture. to transition the company’s IT architecture from 3. Construction. The team builds working soft- the aged client-server model to one using SOA ware on a regular, incremental basis that meets concepts. The parent project was based on an en- the project stakeholders’ highest-priority needs. terprise service bus framework—a standard archi- 4. Transition. The team validates and deploys the tectural framework in the world of SOAs—devel- system in the production environment. oped for the company’s particular needs. The project’s main objective was to host private- Unlike RUP however, AUP is guided by seven banking applications with single sign-on capabil- principles: ity, thus automating daily tasks via global customer handling, exploiting the enterprise service bus ■ Understanding. Understand the business of the framework architecture, and managing multiple organization and the problem domain the proj- and concurrent customer sessions. Modifying ex- ect addresses, and identify a viable solution. isting functionality or creating new functionality in ■ Implementation. Transform models into ex- the existing back-end systems was beyond the proj- ecutable code, and perform a basic level of test- ect’s scope. ing, particularly unit testing. In the context of the parent project, the bank ■ Testing. Find defects, validate that the system adopted RUP as its development methodology. ID works as designed, and verify that it meets the was the first to adopt AUP to produce quick-win requirements. user results. The bank’s IT strategy unit and IT de- ■ Deployment. Plan for the system’s delivery, velopment units authorized AUP’s adoption. and execute the plan to make it available to end Figure 1 summarizes the project’s main char - users. acteristics. ■ Configuration management. Manage access to project artifacts. This includes tracking arti- Project Life Cycle Based on AUP fact versions over time and then controlling and The team followed the SOA-phased deployment managing changes to them. approach based on AUP and Microsoft’s Smart ■ Project management. Direct the activities that Client and Customer Care Framework (CCF).9 take place within the project. This includes The ID phased deployment stopped at CCF step managing risks, directing people (assigning 2. The project included an integrated user interface tasks, tracking progress, and so on), and coor- that combined existing user interfaces and new ap- dinating with people and systems outside the plications based on a small set of enterprise service May/June 2010 IEEE SOFTWARE 73 Figure 1. Project information summary. The Project name Integrated Desktop project involved 23 people spanning a large Project owner Private banking unit portion of the organizational hierarchy. In addition to the purely technical core, the Bank units IT development and operations, organization and plan- people involved included five users and involved in the ning, private banking (top management, relationship four top managers who formed the project project managers, middle office, customer documentation, and MIS) steering committee. The project lasted six months, during which the team implemented Team size Nine developers, three technicians (operational and administrative support), two test managers, five users, a total of 13 use cases. and four top managers (see steering committee) The team followed AUP’s four phases through- Steering Project manager, IT development manager, and top committee management review (private-banking operations unit out the project life cycle. Figure 3 shows the project manager, brands unit manager, area manager, and time line. private-banking general manager) Project An author of this article who has much experience in Inception manager successfully managing large-scale IT projects During inception, the team defined the project Project duration Six months scope as follows: Project size 13 use cases ■ A role-based integrated user desktop hosts pri- vate-banking applications. ■ The ID system automates daily tasks via global customer handling, exploiting the SOA-based parent project architecture and managing mul- Host native user interface tiple and concurrent customer sessions. Start now ■ The ID system prefetches customer information Quick bene ts and shares it intelligently among different appli- cations to eliminate redundancy and radically reduce the time users
Recommended publications
  • Writing and Reviewing Use-Case Descriptions
    Bittner/Spence_06.fm Page 145 Tuesday, July 30, 2002 12:04 PM PART II WRITING AND REVIEWING USE-CASE DESCRIPTIONS Part I, Getting Started with Use-Case Modeling, introduced the basic con- cepts of use-case modeling, including defining the basic concepts and understanding how to use these concepts to define the vision, find actors and use cases, and to define the basic concepts the system will use. If we go no further, we have an overview of what the system will do, an under- standing of the stakeholders of the system, and an understanding of the ways the system provides value to those stakeholders. What we do not have, if we stop at this point, is an understanding of exactly what the system does. In short, we lack the details needed to actually develop and test the system. Some people, having only come this far, wonder what use-case model- ing is all about and question its value. If one only comes this far with use- case modeling, we are forced to agree; the real value of use-case modeling comes from the descriptions of the interactions of the actors and the system, and from the descriptions of what the system does in response to the actions of the actors. Surprisingly, and disappointingly, many teams stop after developing little more than simple outlines for their use cases and consider themselves done. These same teams encounter problems because their use cases are vague and lack detail, so they blame the use-case approach for having let them down. The failing in these cases is not with the approach, but with its application.
    [Show full text]
  • The Guide to Succeeding with Use Cases
    USE-CASE 2.0 The Guide to Succeeding with Use Cases Ivar Jacobson Ian Spence Kurt Bittner December 2011 USE-CASE 2.0 The Definitive Guide About this Guide 3 How to read this Guide 3 What is Use-Case 2.0? 4 First Principles 5 Principle 1: Keep it simple by telling stories 5 Principle 2: Understand the big picture 5 Principle 3: Focus on value 7 Principle 4: Build the system in slices 8 Principle 5: Deliver the system in increments 10 Principle 6: Adapt to meet the team’s needs 11 Use-Case 2.0 Content 13 Things to Work With 13 Work Products 18 Things to do 23 Using Use-Case 2.0 30 Use-Case 2.0: Applicable for all types of system 30 Use-Case 2.0: Handling all types of requirement 31 Use-Case 2.0: Applicable for all development approaches 31 Use-Case 2.0: Scaling to meet your needs – scaling in, scaling out and scaling up 39 Conclusion 40 Appendix 1: Work Products 41 Supporting Information 42 Test Case 44 Use-Case Model 46 Use-Case Narrative 47 Use-Case Realization 49 Glossary of Terms 51 Acknowledgements 52 General 52 People 52 Bibliography 53 About the Authors 54 USE-CASE 2.0 The Definitive Guide Page 2 © 2005-2011 IvAr JacobSon InternationAl SA. All rights reserved. About this Guide This guide describes how to apply use cases in an agile and scalable fashion. It builds on the current state of the art to present an evolution of the use-case technique that we call Use-Case 2.0.
    [Show full text]
  • Challenges and Opportunities for the Medical Device Industry Meeting the New IEC 62304 Standard 2 Challenges and Opportunities for the Medical Device Industry
    IBM Software Thought Leadership White Paper Life Sciences Challenges and opportunities for the medical device industry Meeting the new IEC 62304 standard 2 Challenges and opportunities for the medical device industry Contents With IEC 62304, the world has changed—country by country— for medical device manufacturers. This doesn’t mean, however, 2 Executive summary that complying with IEC 62304 must slow down your medical 2 Changes in the medical device field device software development. By applying best practices guid- ance and process automation, companies have a new opportunity 3 What is so hard about software? to improve on their fundamental business goals, while getting through regulatory approvals faster, lowering costs and deliver- 4 Disciplined agile delivery: Flexibility with more structure ing safer devices. 4 Meeting the specification: A look at some of the details This paper will explore what IEC 62304 compliance means for manufacturers in some detail, and also describe the larger con- text of systems and software engineering best practices at work 6 Process steps for IEC 62304 compliance in many of today’s most successful companies. 7 Performing the gap analysis Changes in the medical device field 8 Choosing software tools for IEC 62304 The IEC 62304 standard points to the more powerful role that software plays in the medical device industry. Once hardware 11 Conclusion was king. Older systems used software, of course, but it was not the main focus, and there wasn’t much of a user interface. Executive summary Software was primarily used for algorithmic work. Not to overly The recent IEC 62304 standard for medical device software is generalize, but the focus of management was on building causing companies worldwide to step back and examine their hardware that worked correctly; software was just a necessary software development processes with considerable scrutiny.
    [Show full text]
  • The Timeboxing Process Model for Iterative Software Development
    The Timeboxing Process Model for Iterative Software Development Pankaj Jalote Department of Computer Science and Engineering Indian Institute of Technology Kanpur – 208016; India Aveejeet Palit, Priya Kurien Infosys Technologies Limited Electronics City Bangalore – 561 229; India Contact: [email protected] ABSTRACT In today’s business where speed is of essence, an iterative development approach that allows the functionality to be delivered in parts has become a necessity and an effective way to manage risks. In an iterative process, the development of a software system is done in increments, each increment forming of an iteration and resulting in a working system. A common iterative approach is to decide what should be developed in an iteration and then plan the iteration accordingly. A somewhat different iterative is approach is to time box different iterations. In this approach, the length of an iteration is fixed and what should be developed in an iteration is adjusted to fit the time box. Generally, the time boxed iterations are executed in sequence, with some overlap where feasible. In this paper we propose the timeboxing process model that takes the concept of time boxed iterations further by adding pipelining concepts to it for permitting overlapped execution of different iterations. In the timeboxing process model, each time boxed iteration is divided into equal length stages, each stage having a defined function and resulting in a clear work product that is handed over to the next stage. With this division into stages, pipelining concepts are employed to have multiple time boxes executing concurrently, leading to a reduction in the delivery time for product releases.
    [Show full text]
  • Descriptive Approach to Software Development Life Cycle Models
    7797 Shaveta Gupta et al./ Elixir Comp. Sci. & Engg. 45 (2012) 7797-7800 Available online at www.elixirpublishers.com (Elixir International Journal) Computer Science and Engineering Elixir Comp. Sci. & Engg. 45 (2012) 7797-7800 Descriptive approach to software development life cycle models Shaveta Gupta and Sanjana Taya Department of Computer Science and Applications, Seth Jai Parkash Mukand Lal Institute of Engineering & Technology, Radaur, Distt. Yamunanagar (135001), Haryana, India. ARTICLE INFO ABSTRACT Article history: The concept of system lifecycle models came into existence that emphasized on the need to Received: 24 January 2012; follow some structured approach towards building new or improved system. Many models Received in revised form: were suggested like waterfall, prototype, rapid application development, V-shaped, top & 17 March 2012; Bottom model etc. In this paper, we approach towards the traditional as well as recent Accepted: 6 April 2012; software development life cycle models. © 2012 Elixir All rights reserved. Keywords Software Development Life Cycle, Phases and Software Development, Life Cycle Models, Traditional Models, Recent Models. Introduction Software Development Life Cycle Models The Software Development Life Cycle (SDLC) is the entire Software Development Life Cycle Model is an abstract process of formal, logical steps taken to develop a software representation of a development process. SDLC models can be product. Within the broader context of Application Lifecycle categorized as: Management (ALM), the SDLC
    [Show full text]
  • Multi Objective Analysis for Timeboxing Models of Software Development
    MULTI OBJECTIVE ANALYSIS FOR TIMEBOXING MODELS OF SOFTWARE DEVELOPMENT Vassilis C. Gerogiannis and Pandelis G. Ipsilandis Department of Project Management, Technological Education Institute of Larissa, Larissa, Greece Keywords: Software Project Management, Iterative Development, Timeboxing, Project Scheduling, Linear Programming, Multi-Objective Optimization. Abstract: In iterative/incremental software development, software deliverables are built in iterations - each iteration providing parts of the required software functionality. To better manage and monitor resources, plan and deliverables, iterations are usually performed during specific time periods, so called “time boxes”. Each time box is further divided into a sequence of stages and a dedicated development team is assigned to each stage. Iterations can be performed in parallel to reduce the project completion time by exploiting a “pipelining” concept, that is, when a team completes the tasks of a stage, it hands over the intermediate deliverables to the team executing the next stage and then starts executing the same stage in the next iteration. In this paper, we address the problem of optimizing the schedule of a software project that follows an iterative, timeboxing process model. A multi objective linear programming technique is introduced to consider multiple parameters, such as the project duration, the work discontinuities of development teams in successive iterations and the release (delivery) time of software deliverables. The proposed model can be used to generate alternative project plans based on the relative importance of these parameters. 1 INTRODUCTION team of experts is usually assigned to each stage, i.e., a team for a stage performs only the activities In iterative and incremental development, software for that stage.
    [Show full text]
  • Software Development a Practical Approach!
    Software Development A Practical Approach! Hans-Petter Halvorsen https://www.halvorsen.blog https://halvorsen.blog Software Development A Practical Approach! Hans-Petter Halvorsen Software Development A Practical Approach! Hans-Petter Halvorsen Copyright © 2020 ISBN: 978-82-691106-0-9 Publisher Identifier: 978-82-691106 https://halvorsen.blog ii Preface The main goal with this document: • To give you an overview of what software engineering is • To take you beyond programming to engineering software What is Software Development? It is a complex process to develop modern and professional software today. This document tries to give a brief overview of Software Development. This document tries to focus on a practical approach regarding Software Development. So why do we need System Engineering? Here are some key factors: • Understand Customer Requirements o What does the customer needs (because they may not know it!) o Transform Customer requirements into working software • Planning o How do we reach our goals? o Will we finish within deadline? o Resources o What can go wrong? • Implementation o What kind of platforms and architecture should be used? o Split your work into manageable pieces iii • Quality and Performance o Make sure the software fulfills the customers’ needs We will learn how to build good (i.e. high quality) software, which includes: • Requirements Specification • Technical Design • Good User Experience (UX) • Improved Code Quality and Implementation • Testing • System Documentation • User Documentation • etc. You will find additional resources on this web page: http://www.halvorsen.blog/documents/programming/software_engineering/ iv Information about the author: Hans-Petter Halvorsen The author currently works at the University of South-Eastern Norway.
    [Show full text]
  • The Unified Software Development Process and Framework Development
    Doğuş Üniversitesi Dergisi, 2002, (5), 109-122 THE UNIFIED SOFTWARE DEVELOPMENT PROCESS AND FRAMEWORK DEVELOPMENT Abdelaziz Khamis & Ashraf Abdelmonem Department of Computer Science, Institute of Statistics, Cairo University ABSTRACT: Application frameworks are a very promising software reuse technology. The development of application frameworks is a complex process. Many methodologies and approaches have been proposed with the purpose of minimizing the complexities. The Unified Software Development Process directly addresses the complexity challenge of today's software applications. in this paper, we explore the role of the Unified Software Development Process together with a popular CASE tool: Rational Rose, in managing the complexity of developing application frameworks. Keywords: Application Frameworks, The Unified Software Development Process, Model Tracing Tutors, Rational Rose. ÖZET: Uygulama iskelet yapıları çok umut vaadeden bir yeniden kullanım yazılım teknolojisidir. Uygulama iskelet yapılarının geliştirilmesi karmaşık bir süreci gerektirir. Bu karmaşık süreci minimize etmek amacıyla birçok yöntem ve yaklaşım önerilmiştir. Birleşik Yazılım Geliştirme Süreci bugünkü yazılım uygulamalarındaki karmaşıklık engelini direkt olarak hedefleyen bir yöntemdir. Bu yazıda uygulama iskelet yapılarındaki karmaşıklığın yönetimi konusunda Birleşik Yazılım Geliştirme Süreci'nin rolü yaygın olarak kullanılan bir CASE (Bilgisayar Destekli Yazılım Mühendisliği) aracı olan "Rational Rose" ile birlikte araştırılmaya çalışılmıştır. Anahtar Kelimeler: Uygulama Geliştirme Yapıları, Birleşik Yazılım Geliştirme Süreci, Model İzleme Öğretmeni, Rational Rose. 1. Introduction The reuse of software components is recognized as an important way to increase productivity in software development (Jacobson, Griss and Jonsson, 1997). Application frameworks are a very promising softvvare reuse technology. The concept of framevvorks makes it possible to reuse not just code, but also analysis and design (Fayad, Schmidt and Johnson, 1999; Fayad and Schmidt, 1997).
    [Show full text]
  • An Analysis on Waterfall and RUP Models
    Journal of Engineering, Computing and Architecture ISSN NO: 1934-7197 An Analysis on Waterfall and RUP Models Dr. K. Sunil Manohar Reddy Associate Professor, Department of CSE, Matrusri Engineering College, Hyderabad, Telangana. [email protected] Abstract: Two of the vastly used software engineering processes are Waterfall model and Rational Unified Process (RUP) model. The waterfall model is a classical model of software engineering. It is used in governmental projects as well as many major companies associated with software engineering. RUP is a unified model used for large business applications. The main concern in this research is to represent the mentioned models of software development and compare them to show pros and cons of each model. Keywords: Waterfall Model, Unified Process Model, Agile Models 1. Introduction Computer is considered as a time saving mechanism and its progress helps in executing long, complex, repeated processes at a high speed and short time. Noticeably, the number of companies that produce software programs for the purpose of facilitating works of offices, administrations, banks, etc., has increased recently which results in the difficulty of enumerating such companies. During the last five decades, software has been developed from a tool used for solving a problem to a product in itself. Software consists of instructions and programs that contain a collection that has been established to be a part of software engineering procedures [1]. Moreover, the aim of software engineering is to create a suitable work
    [Show full text]
  • The IBM Rational Unified Process for System Z
    Front cover The IBM Rational Unified Process for System z RUP for System z includes a succinct end-to-end process for z practitioners RUP for System z includes many examples of various deliverables RUP for System z is available as an RMC/RUP plug-in Cécile Péraire Mike Edwards Angelo Fernandes Enrico Mancin Kathy Carroll ibm.com/redbooks International Technical Support Organization The IBM Rational Unified Process for System z July 2007 SG24-7362-00 Note: Before using this information and the product it supports, read the information in “Notices” on page vii. First Edition (July 2007) This edition applies to the IBM Rational Method Composer Version 7.1 © Copyright International Business Machines Corporation 2007. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . vii Trademarks . viii Preface . ix The team that wrote this IBM Redbooks publication . .x Become a published author . xii Comments welcome. xii Part 1. Introduction to the IBM Rational Unified Process for System z. 1 Chapter 1. Introduction. 3 1.1 Purpose. 4 1.2 Audience . 4 1.3 Rationale . 4 1.4 Scope . 5 1.5 Overview . 5 Part 2. The IBM Rational Unified Process for System z for Beginners . 9 Chapter 2. Introduction to the IBM Rational Unified Process and its extension to Service-Oriented Architecture. 11 2.1 Overview . 12 2.2 Introduction to RUP. 13 2.2.1 The heart of RUP . 13 2.2.2 The IBM Rational Method Composer (RMC) platform . 13 2.3 Key principles for successful software development.
    [Show full text]
  • A Hybrid Approach Using RUP and Scrum As a Software Development Strategy Dalila Castilla University of North Florida
    UNF Digital Commons UNF Graduate Theses and Dissertations Student Scholarship 2014 A Hybrid Approach Using RUP and Scrum as a Software Development Strategy Dalila Castilla University of North Florida Suggested Citation Castilla, Dalila, "A Hybrid Approach Using RUP and Scrum as a Software Development Strategy" (2014). UNF Graduate Theses and Dissertations. 514. https://digitalcommons.unf.edu/etd/514 This Master's Thesis is brought to you for free and open access by the Student Scholarship at UNF Digital Commons. It has been accepted for inclusion in UNF Graduate Theses and Dissertations by an authorized administrator of UNF Digital Commons. For more information, please contact Digital Projects. © 2014 All Rights Reserved A HYBRID APPROACH USING RUP AND SCRUM AS A SOFTWARE DEVELOPMENT STRATEGY by Dalila Castilla A thesis submitted to the School of Computing In partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences UNIVERSITY OF NORTH FLORIDA SCHOOL OF COMPUTING August, 2014 Copyright (©) 2014 by Dalila Castilla All rights reserved. Reproduction in whole or in part in any form requires the prior written permission of Dalila Castilla or designed representative. ii The thesis “A Hybrid Approach Using RUP and Scrum as a Software Development Strategy” submitted by Dalila Castilla in partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences has been Approved by the thesis committee: Date ___________________________________ _____________________ Dr. Robert F. Roggio Thesis Advisor and Committee Chairperson ___________________________________ _____________________ Dr. Ching-Hua Chuan ___________________________________ _____________________ Dr. Sherif A. Elfayoumy Accepted for the School of Computing: ___________________________________ _____________________ Dr.
    [Show full text]
  • Unified Process
    Information Systems Concepts Unified Process Roman Kontchakov Birkbeck, University of London Based on Chapter 3, 5 and 21 of Bennett, McRobb and Farmer: Object Oriented Systems Analysis and Design Using UML, (4th Edition), McGraw Hill, 2010 1 Outline n RUP / USDP n Section 3.4.1 (pp. 77 – 79) n Section 5.4 (pp. 128 – 135) n Section 21.3 (pp. 614 – 618) 2 Unified Process n Unified Software Development Process (USDP) n A public domain development methodology originally proposed by the same team (in Rational Software, 1999) who created UML n brought the Booch method, OMT and Objectory together n Large and complex n significant learning curve involved, or tailor to fit n Rational Unified Process (RUP) n Proprietary methodology owned by IBM (since 2003) n The most mature OO methodology to date n USDP has been largely superseded by RUP (though they are very similar in their main aspects) 3 Underlying Principles n Iterative n Incremental n Requirements (use case) driven n Component based n Architecture centric n Visual modelling techniques 4 UP is Use-Case Driven A use case is a single interaction between user and system. 5 Phases n Phases are organized along time Each phase consists of a number of iterations n Inception Phase n Determining the scope and purpose of the project n Elaboration Phase n Capturing the requirements n Determining the structure of the system n Construction Phase n Building the system n Transition Phase n Product installation and roll-out 6 Milestones n Phases matter to project managers n Phases are sequential and delineated
    [Show full text]