Spectroscopic Tools for Quantitative Studies of DNA Structure And

Total Page:16

File Type:pdf, Size:1020Kb

Spectroscopic Tools for Quantitative Studies of DNA Structure And Doctoral Thesis On Some Aspects of Bayesian Modeling in Reliability THESIS submitted for the award of the degree of DOCTOR OF PHILOSOPHY in STATISTICS By: Under the Supervision of: Md. Tanwir Akhtar Prof. Athar Ali Khan Department of Statistics and Operations Research Aligarh Muslim University Aligarh-202002 India 2015 List of Papers Papers included in the thesis Published Papers I. Akhtar, M. T. and Khan, A. A. (2014) Bayesian analysis of generalized log-Burr family with R. SpringerPlus, 3:185. II. Akhtar, M. T. and Khan, A. A. (2014) Log-logistic distribution as a reliability model: A Bayesian analysis. American Journal of Mathematics and Statistics, 4(3): 162-170. Communicated Paper I. Akhtar, M. T. and Khan, A. A. (2015) Hierarchical Bayesian approach with R and JAGS: Some Reliability Applica- tions. Journal of Data Science. Paper not included in the thesis Published Papers I. Khan, Y., Akhtar, M. T., and Khan, A. A. (2015) Bayesian Modeling of Forestry Data with R Using Optimization and Simula- tion Tools. Journal of Applied Analysis and Computation, 5(1): 38-51. Dedicated to My Family Especially My Father Dr. (Late) Md. Akhtar Hassan Preface There has been a dramatic growth in the development and applications of Bayesian statistics. One reason behind the dramatic growth in Bayesian modeling is the availability and development of computational algorithms to compute the range of integrals that are necessary in a Bayesian posterior analysis. Due to the speed and smoothness of modern computational tools and techniques, it is now possible to use the Bayesian paradigm to fit any statistical model whose likelihood and priors are specified or even very complex model that cannot be fit by alternative frequentist methods. Since the mid-1980s, the development of widely accessible powerful compu- tational tools and the implementation of Markov chain Monte Carlo (MCMC) methods have led to an explosion of interest in Bayesian statistics and modeling. This was followed by an extensive research for new Bayesian methodologies gener- ating the practical application of complicated models used over a wide range of sciences. During the late 1990s, BUGS emerged in the foreground. BUGS is a free software that could fit complicated models in a relatively easy manner, using stan- dard MCMC methods. Since 1998 and 2003, the WinBUGS and JAGS, respectively, has earned great popularity among researchers of diverse scientific fields. The present thesis entitled On Some Aspects of Bayesian Modeling in Reliability is a brief collection of modern methods and techniques for modeling of reliability data in Bayesian perspective. Bayesian modeling means that the process of fitting a probability model to a set of data and summarising the results by a probability distribution on the parameters of the models and on unobserved quantities, such as, prediction of new observations. The acceptance and appli- cations of Bayesian methods in virtually all branches of science and engineering vi 0. Preface have significantly increased over the last few decades. This increase is largely due to advances in simulation based computational tools for implementing Bayesian methods. Such tools are extensively used in this thesis. This thesis focuses on assessing the reliability of components or components of a system with particular attention to models containing covariates (or explanatory or regressor variables). Such models include failure time linear models, generalised linear models, and hierarchical models. Throughout the thesis, Laplace approx- imation, sampling importance resampling algorithm, and MCMC methods are used for implementing Bayesian analyses. MCMC makes the Bayesian approach to reliability computationally feasible and computationally straightforward. This is an important advantage in complex setting, e.g., hierarchical modeling, where classical approach fails or becomes too difficult for practical implementation. The objective of the present thesis is to apply Bayesian methods for model- ing of reliability data (discrete as well as continuous), with emphasis on model building and model implementation using the highly acclaimed, freely available LaplacesDemon and JAGS software packages, as run from within R. The bulk of this thesis forms a progression from the trivially simple to the moderately complex and cover linear, generalized linear, and hierarchical models. For fitting the model for reliability data, one needs a statistical computing environment. This environment should be such that one can write scripts to define Bayesian model, that is, specification of likelihood and prior distributions, use or write functions to summarize a posterior distribution, use function to simulate from the posterior distribution, and finally construct numerical as well as graphi- cal summaries to illustrate posterior inference. An environment that meet that requirements is the R system, which provides a wide range of functions for data manipulation, calculation, and graphics. Moreover, it includes a well-developed, simple programming language that users can extend by adding new functions. vii LaplacesDemon and JAGS are called from within R. JAGS is called by using its an interface from within R via R2jags package. Complete R, LaplacesDemon, and JAGS code concerning model building, priors specification, and model fitting for all analyses are provided. The interpretation of LaplacesDemon and JAGS output are also provided. All analyses using JAGS are directly compared with analyses using the same data using LaplacesDemon or standard R functions such as bayesglm or glmer. This thesis comprises of four chapters with a comprehensive list of bibliography provided at the end. Chapter 1 is an introductory chapter. This chapter covers basic concepts com- mon to all Bayesian analyses, including Bayes’ theorem, building blocks of Bayesian statistics, hierarchical Bayes, posterior predictive distribution, and model goodness of fit. The basic definitions of reliability, including reliability function, hazard function, mean time to failure, concept of censoring in Bayesian paradigm, are also included. This chapter also covers the tools and techniques for the Bayesian com- putation. Analytic approximation and simulation methods are covered here, but most of the emphasis is on Laplace approximation and MCMC method including Metropolis-Hastings algorithm and Gibbs sampler are currently the most powerful and popular techniques. An introduction to software packages R, LaplacesDemon, and JAGS used for Bayesian computations is also provided in this chapter. Important parametric reliability models and discrete as well as continuous reliability data analyses for component level data are presented and developed in Chapter 2. In this chapter, for the Bayesian computation of reliability data, R and JAGS code for binomial, Poisson, and lifetime models are developed. Both types of censored and uncensored data are considered for the Bayesian analysis. Analytic and parallel simulation techniques are implemented to approximate the marginal posterior densities of model parameters. viii 0. Preface Chapter 3 extends the Bayesian computation methods to the standard regression models used in reliability analysis using parametric models. In practical, logistic, Poisson, and lifetime regression models are considered for the analysis in Bayesian perspective. Real reliability data, which depends on concomitant variables are used. R and JAGS code are developed for the purpose of Bayesian computation. To app- roximate the posterior densities, both analytic and simulation methods are used. Chapter 4 introduces Bayesian computation methods for hierarchical models, which reveals the full power and conceptual simplicity of the Bayesian approach for the practical reliability problems. Also, Bayesian analysis of hierarchical models facilitate the joint analysis of data collected from similar components. For the Bayesian computation of hierarchical models, R and JAGS code are written and its output results are interpreted and provided. The research work presented in Chapter 2 and 3 of this thesis is based on my two published papers and the contents of Chapter 4 are based on a communicated paper, which are listed below. 1. Akhtar, M. T. and Khan, A. A. (2014). Bayesian Analysis of Generalized Log-Burr Family with R. SpringerPlus, 3:185. 2. Akhtar, M. T. and Khan, A. A. (2014). Log-logistic Distribution as a Reliability Model: A Bayesian analysis. American Journal of Mathematics and Statistics, 4(3): 162-170. 3. Akhtar, M. T. and Khan, A. A. (2015). Hierarchical Bayesian Approach with R and JAGS – Some Reliability Applications. Journal of Data Science. Acknowledgements All the praise and thanks are to ALLAH ‘the one universal Being’ who inspire entire humanity toward knowledge, truth and eternal commendation, who blessed me with strength and required passionate order to overcome all the obstacles in the way of this toilsome journey. In utter gratitude I bow my head before HIM. Words are not sufficient for expressing my intensity of sentiments. So, most humbly I express my deep sense of gratitude and indebtedness to my reverend supervisor Professor Athar Ali Khan who has always been a source of inspiration, whose constructive criticism, affectionable attitude, strong motivation and constant encouragement have added greatly to the readability and relevance of each chapter. I am grateful to him, who unsparingly helped me by sharing the in-depth knowledge of the subject, which has improved and made this thesis presentable. I will remain ever
Recommended publications
  • The Top Resources for Learning 13 Statistical Topics
    The Analysis Factor Ebook: The Top Resources for Learning 13 Statistical Topics The Top Resources for Learning 11131333 Statistical Topics By Karen Grace-Martin Founder & President © Copyright 2008 Karen Grace-Martin, All rights reserved www.analysisfactor.com 1 The Analysis Factor Ebook: The Top Resources for Learning 13 Statistical Topics About the Author Karen Grace-Martin is the founder and president of The Analysis Factor . She is a professional statistical consultant with Masters degrees in both applied statistics and social psychology. Her career started in psychology research, where her frustration in applying statistics to her data led her to take more and more statistics classes. She soon realized that her favorite part of research was data analysis, leading to a career change. Her background in experimental research and working with real data has been invaluable in understanding the challenges that researchers face in using statistics and has spurred her passion for deciphering statistics for academic researchers. Karen was a professional statistical consultant at Cornell University for seven years before founding The Analysis Factor. Karen has worked with clients from undergraduate honors students on their first research project to tenured Ivy League professors, as well as non-profits and businesses. Her ability to understand what researchers need and to explain technical information at the level of the researcher’s understanding has been one of her strongest assets as a consultant. She treats all clients with respect, and derives genuine satisfaction from the relief she hears in their voices when they realize that someone can help them. Before consulting, Karen taught statistics courses for economics, psychology, and sociology majors at the University of California, Santa Barbara and Santa Barbara City College.
    [Show full text]
  • Best-Practice Recommendations for Defining, Identifying, and Handling
    Article Organizational Research Methods 16(2) 270-301 ª The Author(s) 2013 Best-Practice Reprints and permission: sagepub.com/journalsPermissions.nav Recommendations for DOI: 10.1177/1094428112470848 orm.sagepub.com Defining, Identifying, and Handling Outliers Herman Aguinis1, Ryan K. Gottfredson1, and Harry Joo1 Abstract The presence of outliers, which are data points that deviate markedly from others, is one of the most enduring and pervasive methodological challenges in organizational science research. We provide evidence that different ways of defining, identifying, and handling outliers alter substantive research conclusions. Then, we report results of a literature review of 46 methodological sources (i.e., journal articles, book chapters, and books) addressing the topic of outliers, as well as 232 organizational science journal articles mentioning issues about outliers. Our literature review uncovered (a) 14 unique and mutually exclusive outlier defi- nitions, 39 outlier identification techniques, and 20 different ways of handling outliers; (b) inconsistencies in how outliers are defined, identified, and handled in various methodological sources; and (c) confusion and lack of transparency in how outliers are addressed by substantive researchers. We offer guidelines, including decision-making trees, that researchers can follow to define, identify, and handle error, inter- esting, and influential (i.e., model fit and prediction) outliers. Although our emphasis is on regression, structural equation modeling, and multilevel modeling, our general framework forms the basis for a research agenda regarding outliers in the context of other data-analytic approaches. Our recommenda- tions can be used by authors as well as journal editors and reviewers to improve the consistency and transparency of practices regarding the treatment of outliers in organizational science research.
    [Show full text]
  • Society for the Provision of Education in Rural Australia National Rural
    Society for the Provision of Education in Rural Australia National Rural Education Conference July 2006 Hobart, Tasmania Conference Proceedings COMMUNITY, DIVERSITY and INNOVATION in RURAL and REMOTE EDUCATION and TRAINING Edited by Colin Boylan COMMUNITY, DIVERSITY and INNOVATION in RURAL and REMOTE EDUCATION and TRAINING Proceedings of National Rural Education Conference Society for the Provision of Education in Rural Australia Edited by Colin Boylan Society for the Provision of Education in Rural Australia Inc. PO Box 1766 Osborne Park Western Australia 6916 Copyright © Society for the Provision of Education in Rural Australia Inc. 2006 ISBN 0 9775493 0 5 Society for the Provision of Education in Rural Australia, 22nd Annual Conference ii Hobart, Tasmania- July 2006 SPERA Mission and Goals Mission The Society for the Provision of Education in Rural Australia Incorporated (SPERA) links people with a diverse range of interests in education and training to promote the development of rural Australia by: • promoting a positive view of education in rural areas and encouraging innovation and initiative in the provision of rural education services; and • providing a framework for the sharing of concerns, issues and experiences relating to education and training in rural areas. Goals SPERA advances the education and training opportunities for all people in rural Australia by: • promoting State and regional delivery systems which bring about efficient and effective education for people in rural areas; • encouraging both the collection and sharing of relevant information on the provision of education in rural areas; • conducting an annual National Conference to exchange ideas and information about education and training in rural education; and • serving as a national advocate representing rural education and training.
    [Show full text]
  • Bayesian Estimation and Inferenceq
    Greene-50558 book June 21, 2007 15:50 18 BAYESIAN ESTIMATION AND INFERENCEQ 18.1 INTRODUCTION The preceding chapters (and those that follow this one) are focused primarily on para- metric specifications and classical estimation methods. These elements of the economet- ric method present a bit of a methodological dilemma for the researcher. They appear to straightjacket the analyst into a fixed and immutable specification of the model. But in any analysis, there is uncertainty as to the magnitudes, sometimes the signs and, at the extreme, even the meaning of parameters. It is rare that the presentation of a set of empirical results has not been preceded by at least some exploratory analysis. Pro- ponents of the Bayesian methodology argue that the process of “estimation” is not one of deducing the values of fixed parameters, but rather, in accordance with the scientific method, one of continually updating and sharpening our subjective beliefs about the state of the world. Of course, this adherence to a subjective approach to model building is not necessarily a virtue. If one holds that “models” and “parameters” represent objec- tive truths that the analyst seeks to discover, then the subjectivity of Bayesian methods may be less than perfectly comfortable. Contemporary applications of Bayesian methods typically advance little of this the- ological debate. The modern practice of Bayesian econometrics is much more pragmatic. As we will see below in several examples, Bayesian methods have produced some re- markably efficient solutions to difficult estimation problems. Researchers often choose the techniques on practical grounds, rather than in adherence to their philosophical basis; indeed, for some, the Bayesian estimator is merely an algorithm.1 Bayesian methods have have been employed by econometricians since well be- fore Zellner’s classic (1971) presentation of the methodology to economists, but until fairly recently, were more or less at the margin of the field.
    [Show full text]
  • Inequities in Access to Five Types of Healthcare Services
    UNIVERSITY OF CALIFORNIA Los Angeles Rurality and Race: Inequities in Access to Five Types of Healthcare Services A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Public Health by Julia Thornton Caldwell 2015 © Copyright by Julia Thornton Caldwell 2015 ABSTRACT OF THE DISSERTATION Rurality and Race: Inequities in Access to Five Types of Healthcare Services by Julia Thornton Caldwell Doctor of Philosophy in Public Health University of California, Los Angeles, 2015 Professor Chandra L. Ford, Chair Background. Rurality may influence racial/ethnic disparities in access to healthcare. This study sought to: (1) compare and contrast measures used to assess rurality and urbanicity; (2) determine if racial/ethnic disparities in access to healthcare differ for rural vs. urban areas; and, (3) determine if residential segregation and access to healthcare differ for rural vs. urban areas. Sample. The sample was adult respondents to the 2005-2010 Medical Expenditure Panel Survey (MEPS), a nationally representative sample of U.S. households. Each aim had five samples; sample size ranged from 49,839 to 112,125. Measures. Aim 1 involved five measures used to identify rurality relative to urbanicity. Aim 2 and aim 3 involved five self-reported MEPS outcomes indicating whether respondents had (1) a usual source of healthcare, (2) unmet need for healthcare, (3) cholesterol screenings, (4) cervical cancer screenings, or (5) dental visits. The main explanatory factors, which were based on respondents’ residential location, were rurality and residential segregation, which were examined separately for blacks and Hispanics using the isolation index. Respondents’ residential areas were characterized by using geographic identifiers to link the MEPS data with ii census tract and county information available via the American Community Survey (2005-2010), the Area Health Resource File (2010), and five publically available rurality indicators.
    [Show full text]
  • Quantitative Methods for Science, Social Science and Medicine
    Lancaster University Faculty of Science and Technology Department of Mathematics and Statistics QUANTITATIVE METHODS FOR SCIENCE, SOCIAL SCIENCE AND MEDICINE POSTGRADUATE DEGREE COURSE PROGRAMME 2016-2017 This booklet is issued on the condition that it does not form part of any contract between the University and any student. The information given has been made as accurate as possible at the time of going to press, but the University reserves the right to modify or alter without prior notice any of the contents advertised; it may not be possible to offer all courses or components of a course as described in the booklet in each academic session. October 2016. 1 CONTENTS 1 Introduction ............................................................................................. 4 1.1 The Department ................................................................................ 4 1.2 Admission requirements ................................................................... 4 1.3 Course Office .................................................................................... 4 1.4 Staff .................................................................................................. 5 1.5 General Information for Current Students ......................................... 5 2 MSc in Quantitative Methods ................................................................. 6 2.1 Aims and Objectives ......................................................................... 6 2.2 Structure of MSc in Quantitative Methods .......................................
    [Show full text]
  • Antony Fielding B. Sc. (Econ.), M. Sc., FSS, C.Stat. MILT
    Antony Fielding B. Sc. (Econ.), M. Sc., FSS, C.Stat. MILT CURRICULUM VITAE 30th October 2005 Date of Birth: 12.5.44 Married with three daughters Next of Kin: Alison Ann Fielding. Education, Qualifications and Recognitions: 1955-1962 Chadderton Grammar School: GCE "O" Level (1959) 9 subjects. GCE "A" Level (1961) History (with distinction), Economics, Pure Mathematics. GCE "A" Level (1992) Pure Mathematics (with distinction), History (with distinction), Economics. GCE "S" Level (1962) History, Pure Mathematics. 1962 Awarded State Scholarship. 1962-1966 London School of Economics (University of London): B.Sc. (Econ.), Specialism: Statistics. M.Sc., Statistics and Operational Research. 1966 Elected FSS, Fellow of the Royal Statistical Society. 1993 Awarded Professional Status of C.Stat. (Chartered Statistician). 2002 Member of the Institute of Learning and Teaching, now Higher Education Academy. Career Posts to Date: 2003- to date Reader in Social and Educational Statistics, University of Birmingham. 1976 -2003 Lecturer then Senior Lecturer in Social Statistics, University of Birmingham. 1972 - 1976 Lecturer in Statistics, London School of Economics, University of London. 1966 - 1972 Assistant Lecturer and then Lecturer, Department of Statistics, University of Edinburgh. 1 1965 -1966 Research Assistant, Unit for Economic and Statistical Studies in Higher Education, London School of Economics. Other Relevant Honours: 2005 Appointed by Royal Statistical Society as Editor of its Journal (Journal of the Royal Statistical Society, Series A, Statistics in Society). 2005 Birmingham LEA: Governors Recognition Certificate for Services to Birmingham’s Children. 2004 Prize Awarded for a Best Paper in Invited Presentations to 2nd Workshop on Correlated Data Modelling, Scientific Meeting in Honour of Diego de Castro: Common Ideas in Biometrics and Econometrics, University of Turin (with Spencer, N.).
    [Show full text]
  • A User's Guide to Mlwin
    A User's Guide to MLwiN Version 2.10 by Jon Rasbash, Fiona Steele, William J. Browne & Harvey Goldstein Centre for Multilevel Modelling, University of Bristol ii A User's Guide to MLwiN Copyright © 2009 Jon Rasbash, Fiona Steele, William J. Browne and Harvey Goldstein. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, for any purpose other than the owner's personal use, without the prior written permission of one of the copyright holders. ISBN: 978-0-903024-97-6 Printed in the United Kingdom First Printing November 2004. Updated for University of Bristol, October 2005 and February 2009. iii This manual is dedicated to the memory of Ian Lang- ford, a greatly missed friend and colleague. iv Note When working through this manual, you may notice some minor discrepan- cies between the results you get and the screenshots presented here. This is due to two changes that have been made to the software between the Beta version used to create the screenshots in the manual and the current version. The first affects the −2 × log(likelihood) values. The version used to create the screenshots gives a slightly different value to the current version and to MLwiN version 2.02 in some cases. The second is that an improvement to the estimation procedure in the current version may lead to small improvements in some parameter estimates when using (R)IGLS. The version used to create the screenshots gives identical parameter estimates to MLwiN version 2.02.
    [Show full text]
  • Disease Mapping with Winbugs and Mlwin
    Disease Mapping with WinBUGS and MLwiN Andrew B. Lawson Department of Epidemiology and Biostatistics University of South Carolina, USA William J. Browne School of Mathematical Sciences University of Nottingham, UK Carmen L. Vidal Rodeiro Department of Epidemiology and Biostatistics University of South Carolina, USA Disease Mapping with WinBUGS and MLwiN STATISTICS IN PRACTICE Advisory Editor Stephen Senn University College London, UK Founding Editor Vic Barnett Nottingham Trent University, UK Statistics in Practice is an important international series of texts which provide detailed coverage of statistical concepts, methods and worked case studies in specific fields of investigation and study. With sound motivation and many worked practical examples, the books show in down-to-earth terms how to select and use an appropriate range of statistical techniques in a particular practical field within each title’s special topic area. The books provide statistical support for professionals and research workers across a range of employment fields and research environments. Subject areas covered include medicine and pharmaceutics; industry, finance and commerce; public services; the earth and environmental sciences, and so on. The books also provide support to students studying statistical courses applied to the above areas. The demand for graduates to be equipped for the work environment has led to such courses becoming increasingly prevalent at uni- versities and colleges. It is our aim to present judiciously chosen and well-written workbooks to meet everyday practical needs. Feedback of views from readers will be most valuable to monitor the success of this aim. A complete list of titles in this series appears at the end of the volume.
    [Show full text]
  • Simulation Study to Compare the Random Data Generation from Bernoulli Distribution in Popular Statistical Packages
    Simulation Study to Compare the Random Data Generation from Bernoulli Distribution in Popular Statistical Packages Manash Pratim Kashyap Department of Business Administration Assam University, Silchar, India [email protected] Nadeem Shafique Butt PIQC Institute of Quality Lahore, Pakistan [email protected] Dibyojyoti Bhattacharjee Department of Business Administration Assam University, Silchar, India [email protected] Abstract In study of the statistical packages, simulation from probability distributions is one of the important aspects. This paper is based on simulation study from Bernoulli distribution conducted by various popular statistical packages like R, SAS, Minitab, MS Excel and PASW. The accuracy of generated random data is tested through Chi-Square goodness of fit test. This simulation study based on 8685000 random numbers and 27000 tests of significance shows that ability to simulate random data from Bernoulli distribution is best in SAS and is closely followed by R Language, while Minitab showed the worst performance among compared packages. Keywords: Bernoulli distribution, Goodness of Fit, Minitab, MS Excel, PASW, SAS, Simulation, R language 1. Introduction Use of Statistical software is increasing day by day in scientific research, market surveys and educational research. It is therefore necessary to compare the ability and accuracy of different statistical softwares. This study focuses a comparison of random data generation from Bernoulli distribution among five softwares R, SAS, Minitab, MS Excel and PASW (Formerly SPSS). The statistical packages are selected for comparison on the basis of their popularity and wide usage. Simulation is the statistical method to recreate situation, often repeatedly, so that likelihood of various outcomes can be more accurately estimated.
    [Show full text]
  • 113 Sprunt Street 3106E Mcgavran-Greenberg Hall, CB #7420
    CURRICULUM VITAE TODD A. SCHWARTZ HOME : OFFICE (B IOSTATISTICS ): 113 Sprunt Street 3106E McGavran-Greenberg Hall, CB #7420 Chapel Hill, NC 27517 University of North Carolina at Chapel Hill Chapel Hill, NC 27599-7420 PHONE : (919)933-4016 PHONE : (919)966-7280 FAX : (919)966-7285 EMAIL : [email protected] OFFICE (N URSING ): 2013 Carrington Hall, CB #7460 University of North Carolina at Chapel Hill Chapel Hill, NC 27599-7460 PHONE : (919)966-6306 EDUCATION Doctor of Public Health , Biostatistics, 2004 School of Public Health The University of North Carolina at Chapel Hill Doctoral Dissertation: “A Study of Sample Size Re-Calculation with Particular Focus on Active- and Placebo-Controlled Non-Inferiority Trials,” under the direction of Jonathan S. Denne Master of Science , Biostatistics, 1998 School of Public Health The University of North Carolina at Chapel Hill Master’s Paper: “Interim Analyses in Randomized Clinical Trials,” under the direction of Gary G. Koch Bachelor of Arts (Summa Cum Laude), Mathematics (Statistics minor), 1995 Messiah College, Grantham, Pennsylvania PROFESSIONAL EXPERIENCE 2005 to Present Research Assistant Professor Department of Biostatistics Gillings School of Global Public Health The University of North Carolina at Chapel Hill 2005 to Present Research Assistant Professor School of Nursing (Joint Appointment) The University of North Carolina at Chapel Hill 2001 to 2005 Research Instructor Department of Biostatistics School of Public Health The University of North Carolina at Chapel Hill 2001 to 2005 Statistician Research Support Center School of Nursing The University of North Carolina at Chapel Hill 1996 to 2001 Graduate Research Assistant Biometric Consulting Laboratory Department of Biostatistics School of Public Health The University of North Carolina at Chapel Hill 1994 to 1996 Statistical Analyst and Statistical Analyst Intern Center for Biostatistics and Epidemiology Milton S.
    [Show full text]
  • Journal of Transportation and Statistics
    JOURNAL OF TRANSPORTATION AND STATISTICS Volume 6 Number 1, 2003 ISSN 1094-8848 BUREAU OF TRANSPORTATION STATISTICS UNITED STATES DEPARTMENT OF TRANSPORTATION Vo JOURNAL OF TRANSPORTATION lume 6 Number 1, 2003 AND STATISTICS Volume 6 Number 1, 2003 ISSN 1094-8848 CONTENTS DONALD C SHOUP [ with discussion by Carl H Buttke and Eugene D Arnold, Jr ] Truth in Transportation Planning HARIKESH S NAIR + CHANDRA R BHAT Modeling Trip Duration for Mobile Source Emissions Forecasting SHAW-PIN MIAOU, JOON JIN SONG + BANI K MALLICK Roadway Traffic Crash Mapping: A Space-Time Modeling Approach BUREAU OF TRANSPORTATION STATISTICS UNITED STATES DEPARTMENT OF TRANSPORTATION SARAH T BOWLING + LISA AULTMAN-HALL Development of a Random Sampling Procedure for Local Road Traffic Count Locations JOURNAL OF TRANSPORTATION PIYUSH TIWARI, HIDEKAZU ITOH + MASAYUKI DOI Containerized AND STATISTICS Cargo Shipper’s Behavior in China: A Discrete Choice Analysis JOURNAL OF TRANSPORTATION AND STATISTICS JOHN V. WELLS Editor-in-Chief PEG YOUNG Associate Editor MARSHA FENN Managing Editor JENNIFER BRADY Assistant to the Editor-in-Chief DORINDA EDMONDSON Desktop Publisher ALPHA GLASS Editorial Assistant LORISA SMITH Desktop Publisher MARTHA COURTNEY Editor DARCY HERMAN Editor EDITORIAL BOARD KENNETH BUTTON George Mason University TIMOTHY COBURN Abilene Christian University STEPHEN FIENBERG Carnegie Mellon University GENEVIEVE GIULIANO University of Southern California JOSE GOMEZ-IBANEZ Harvard University DAVID GREENE Oak Ridge National Laboratory KINGSLEY HAYNES George Mason University DAVID HENSHER University of Sydney PATRICIA HU Oak Ridge National Laboratory RICHARD JOHN Volpe National Transportation Systems Center, USDOT T.R. LAKSHMANAN Boston University TIMOTHY LOMAX Texas Transportation Institute PETER NIJKAMP Free University KEITH ORD Georgetown University ALAN PISARSKI Consultant ROBERT RAESIDE Napier University JEROME SACKS National Institute of Statistical Sciences TERRY SHELTON U.S.
    [Show full text]