mathematics Article A Study of Determinants and Inverses for Periodic Tridiagonal Toeplitz Matrices with Perturbed Corners Involving Mersenne Numbers Yunlan Wei 1,2, Yanpeng Zheng 1,3,∗, Zhaolin Jiang 1,∗ and Sugoog Shon 2 1 School of Mathematics and Statistics, Linyi University, Linyi 276000, China;
[email protected] 2 College of Information Technology, The University of Suwon, Hwaseong-si 445-743, Korea;
[email protected] 3 School of Automation and Electrical Engineering, Linyi University, Linyi 276000, China * Correspondence:
[email protected] (Y.Z.);
[email protected] or
[email protected] (Z.J.) Received: 5 July 2019; Accepted: 20 September 2019; Published: 24 September 2019 Abstract: In this paper, we study periodic tridiagonal Toeplitz matrices with perturbed corners. By using some matrix transformations, the Schur complement and matrix decompositions techniques, as well as the Sherman-Morrison-Woodbury formula, we derive explicit determinants and inverses of these matrices. One feature of these formulas is the connection with the famous Mersenne numbers. We also propose two algorithms to illustrate our formulas. Keywords: determinant; inverse; Mersenne number; periodic tridiagonal Toeplitz matrix; Sherman-Morrison-Woodbury formula 1. Introduction Mersenne numbers are ubiquitous in combinatorics, group theory, chaos, geometry, physics, etc. [1]. They are generated by the following recurrence [2]: Mn+1 = 3Mn − 2Mn−1 where M0 = 0, M1 = 1, n ≥ 1; (1) 3 1 1 M = M− − M where M = 0, M− = − , n ≥ 1. (2) −(n+1) 2 n 2 −(n−1) 0 1 2 n The Binet formula says that the nth Mersenne number Mn = 2 − 1 [3]. One application we would like to mention is that Nussbaumer [4] applied number theoretical transform closely related to Mersenne number to deal with problems of digital filtering and convolution of discrete signals.