Lesson 10 Visualising and Analysing Network Data

Total Page:16

File Type:pdf, Size:1020Kb

Lesson 10 Visualising and Analysing Network Data ISSS608 Visual Analytics and Applications 11/18/2015 Lesson 10: Visualising and Analysing Network Data Lesson 10 Visualising and Analysing Network Data Mentor: Dr. Kam Tin Seong Associate Professor of Information Systems (Practice) School of Information Systems, Singapore Management University Content • Introduction to Graph Visual Analytics • Graph Visualisation in Actions • Basic Principles of Graph – Network data sets – Graph data format • Network Visualisation and Analysis – Network visualisation and analysis process model – Graph layouts and visual attributes – Network metrics • Network visualisation and analysis tools – NodeXL – Gephi 2 10-1 ISSS608 Visual Analytics and Applications 11/18/2015 Lesson 10: Visualising and Analysing Network Data Network in real World • Physical – Transportation (i.e. road, port, rail, etc) – Utility (electricity, water, gas, network cable, etc) – Natural (river, etc) • Abstract – Social media (i.e. e-mail, Facebook, Twitter, Wikipedia, etc) – Organisation (i.e. NGO, politics, customer-company, staff-to-staff, criminal, terrorist, disease, etc) 3 Classical Graph Theory • The Seven Bridges of Königsberg is a historically notable problem in mathematics. Its negative resolution by Leonhard Euler in 1735 laid the foundations of graph theory and prefigured the idea of topology. Source: http://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg 4 10-2 ISSS608 Visual Analytics and Applications 11/18/2015 Lesson 10: Visualising and Analysing Network Data Classical Graph Visualisation and Analysis • Using sociogram, also know as network graph Early 20th-century social graph used in studying workflows among employees Source: Valdis Krebs (2010) “Your Choice Reveal Who You Are: Mining and Visualizing Social Patterns” in Beautiful Visualization. 5 Graph Visualisation in action 1 • Graph visualisation is used to understand online social network - Sociogram 6 10-3 ISSS608 Visual Analytics and Applications 11/18/2015 Lesson 10: Visualising and Analysing Network Data Graph Visualisation in action 2 • Graph visualisation is used to show how the news are all connected by degrees of separation Link: http://whichlight.github.io/reddit-network- vis/?discussion=http://reddit.com/r/gaming/comments/3d2ewz/ninten do_president_satoru_iwata_passes_away/ 7 Graph Visualisation in action 3 • Using graph visualisation to understand business networks 8 10-4 ISSS608 Visual Analytics and Applications 11/18/2015 Lesson 10: Visualising and Analysing Network Data Graph Visualisation in action 4 • Graph visualisation is used to reveal voting patterns among United States senators 9 Graph Visualisation in action 5 • The social graph above shows the email flows amongst a large project team. 10 10-5 ISSS608 Visual Analytics and Applications 11/18/2015 Lesson 10: Visualising and Analysing Network Data Graph Visualisation in action 6 • (a) Similarity graph of log entries and (b) Similarity graph of network scans (b) (a) Source: Graph Drawing for Security Visualization 11 Graph Visualisation in action 7 • Networks of the below universities are expanded in a breadth first manner up to the depth of 2, (showing university, alumni and companies they are associated with through employment, investment or other activities) • Size of the node reflects degree of the node (scaled logarithmically). Source: http://www.innovation-ecosystems.org/wp-content/uploads/2010/12/2011.educon.pdf 12 10-6 ISSS608 Visual Analytics and Applications 11/18/2015 Lesson 10: Visualising and Analysing Network Data Graph Visualisation in actin 8 • SNA in Construction Industry Source: Pryke, S.D.”Analysing construction project coalitions: exploring the application of social network analysis”, Construction Management and Economics, (2004), 22. pp. 787-797. Graph Visualisation in actin 9 • Community structure in protein-protein interaction networks. Source: http://arxiv.org/pdf/0906.0612.pdf 14 10-7 ISSS608 Visual Analytics and Applications 11/18/2015 Lesson 10: Visualising and Analysing Network Data Graph Visualisation in action 9 • Spatial Network Analysis for Multi-modal Urban Transport Systems Source: http://www.snamuts.com/melbourne.html 15 Graph Visualisation in action 10 • Global Maritime Transport http://onlinelibrary.wiley.com/doi/10.1111/j.1471-0374.2011.00355.x/pdf 16 10-8 ISSS608 Visual Analytics and Applications 11/18/2015 Lesson 10: Visualising and Analysing Network Data To learn more, go to Visual Complexity Source: http://www.visualcomplexity.com/vc/index.cfm?domain=Transportation%20Networks 17 Source of network data I • Unstructured data (for example, Tweets) 18 10-9 ISSS608 Visual Analytics and Applications 11/18/2015 Lesson 10: Visualising and Analysing Network Data Source of network data II • Node and link dataset (for example, phone call) 19 Source of network data III • Transaction records (for example, EZLink card) 20 10-10 ISSS608 Visual Analytics and Applications 11/18/2015 Lesson 10: Visualising and Analysing Network Data Source of network data • Company directory such as OneSource and opencorporates (https://opencorporates.com/) 21 An undirected link table • Focus on interaction but not the direction. – For example C1 -> C6 and C6 -> C1 are considered as one interaction. • The table is symmetric. 22 10-11 ISSS608 Visual Analytics and Applications 11/18/2015 Lesson 10: Visualising and Analysing Network Data A directed link table • Focus on both interaction and direction. – For example C1 -> C6 and C6 -> C1 are considered as two different interactions. • The table is asymmetric. 23 Graph Data File Formats • GraphML, an XML-based file format for graphs. • GXL, graph exchange format based on XML. • Trivial Graph Format, simple text based format. • GML is another widely used graph exchange format. • DGML, Directed Graph Markup Language from Microsoft. • XGMML, an XML-based graph markup language closely related to GML. • Dot Language, a format for describing graphs and their presentation, for the Graphviz set of tools. 24 10-12 ISSS608 Visual Analytics and Applications 11/18/2015 Lesson 10: Visualising and Analysing Network Data Graph database - Reference: http://neo4j.com/developer/get-started/ Graph representation • On the left is a normal graph, in the centre is a graph in which each edge is given a numerical value, and to the right is a directed graph. 26 10-13 ISSS608 Visual Analytics and Applications 11/18/2015 Lesson 10: Visualising and Analysing Network Data Complete Graph • A complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. 27 A sample graph • A complete graph is a simple undirected graph in which every pair of distinct vertices (also known as nodes) are connected by an unique edge. edge vertex 28 10-14 ISSS608 Visual Analytics and Applications 11/18/2015 Lesson 10: Visualising and Analysing Network Data Basic Visual Attributes 29 A directed graph • Have a clear origin and destination. • Also known as asymmetric edges. • Suitable for representing network with non reciprocal relationships such as Twitter. 30 10-15 ISSS608 Visual Analytics and Applications 11/18/2015 Lesson 10: Visualising and Analysing Network Data A weighted graph • A weighted edge includes values associated with each edge that indicate the strength or frequency of tie. – For example, numbers of calls between two staffs. 31 A weighted graph • Edges with different thickness are used to represent the monthly calls by staffs. 32 10-16 ISSS608 Visual Analytics and Applications 11/18/2015 Lesson 10: Visualising and Analysing Network Data An ego-centric graph • Network consisting of an individual and their immediate peers (Heer & Boyd, 2005) 33 A Multimodel Graph • Social network connecting different types of vertices. – For example, a network may connect peers to discussion forums and blog posts they have commented on. SeriousEats visualization emphasizing the most important people (black circles), forums (orange squares), and blogs (blue diamonds). 34 10-17 ISSS608 Visual Analytics and Applications 11/18/2015 Lesson 10: Visualising and Analysing Network Data Bipartite Graph • A graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V; that is, U and V are independent sets. • Equivalently, a bipartite graph is a graph that does not contain any odd- length cycles. 35 Affiliation Networks - Bipartite Graph • Nodes are partitions into two subsets and all Two-mode view of the Southern lines are between pairs of nodes belonging to Women social event dataset different subsets • As there are g actors and h events, there are g + h nodes • The lines on the graph represent the relation “is affiliated with” from the perspective of the actor and the relation “has as a member” from the perspective of the event. • No two actors are adjacent and no two events are adjacent. If pairs of actors are reachable, it is only via paths containing one or more events. Similarly, if pairs of events are reachable, it is only via paths containing one or more actors. Valdis Krebs (2010) “Your Choice Reveal Who You Are: Mining and Visualizing Social Patterns” in Beautiful Visualization. 36 10-18 ISSS608 Visual Analytics and Applications 11/18/2015 Lesson 10: Visualising and Analysing Network Data Measures of Power and Influence - Network Metrics • A collection of statistical measures to report: – the connectivity of a node within a network, – the complexity of a network, – the clusters or sub- groups within a network. 37 Network Metrics: Degree • Degree, the number of
Recommended publications
  • Fcastone - FCA file Format Conversion and Interoperability Software
    FcaStone - FCA file format conversion and interoperability software Uta Priss Napier University, School of Computing, [email protected] www.upriss.org.uk Abstract. This paper presents FcaStone - a software for FCA file format con- version and interoperability. The paper both describes the features of FcaStone and discusses FCA interoperability issues (such as the specific difficulties en- countered when connecting FCA tools to other tools). The paper ends with a call to the FCA community to develop some sort of standard FCA Interchange For- mat, which could be used for data exchange between stand-alone applications and across the web. 1 Introduction FcaStone1 (named in analogy to ”Rosetta Stone”) is a command-line utility that con- verts between the file formats of commonly-used FCA2 tools (such as ToscanaJ, Con- Exp, Galicia, Colibri3) and between FCA formats and other graph and vector graph- ics formats. The main purpose of FcaStone is to improve the interoperability between FCA, graph editing and vector graphics software. Because it is a command-line tool, FcaStone can easily be incorporated into server-side web applications, which generate concept lattices on demand. FcaStone is open source software and available for down- load from Sourceforge. FcaStone is written in an interpreted language (Perl) and thus platform-independent. Installation on Linux and Apple OS X consists of copying the file to a suitable location. Installation on Windows has also been tested and is also fairly easy. The need for interoperability software was highlighted in discussions among ICCS participants in recent years. Several ICCS authors expressed disappointment with the lack of progress in conceptual structures (CS) research with respect to applications and software (Chein & Genest (2000); Keeler & Pfeiffer (2006)) and with respect to current web developments (Rudolph et al., 2007).
    [Show full text]
  • The Hitchhiker's Guide to Graph Exchange Formats
    The Hitchhiker’s Guide to Graph Exchange Formats Prof. Matthew Roughan [email protected] http://www.maths.adelaide.edu.au/matthew.roughan/ Work with Jono Tuke UoA June 4, 2015 M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 1 / 31 Graphs Graph: G(N; E) I N = set of nodes (vertices) I E = set of edges (links) Often we have additional information, e.g., I link distance I node type I graph name M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 2 / 31 Why? To represent data where “connections” are 1st class objects in their own right I storing the data in the right format improves access, processing, ... I it’s natural, elegant, efficient, ... Many, many datasets M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 3 / 31 ISPs: Internode: layer 3 http: //www.internode.on.net/pdf/network/internode-domestic-ip-network.pdf M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 4 / 31 ISPs: Level 3 (NA) http://www.fiberco.org/images/Level3-Metro-Fiber-Map4.jpg M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 5 / 31 Telegraph submarine cables http://en.wikipedia.org/wiki/File:1901_Eastern_Telegraph_cables.png M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 6 / 31 Electricity grid M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 7 / 31 Bus network (Adelaide CBD) M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 8 / 31 French Rail http://www.alleuroperail.com/europe-map-railways.htm M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 9 / 31 Protocol relationships M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 10 / 31 Food web M.Roughan (UoA) Hitch Hikers
    [Show full text]
  • A DSL for Defining Instance Templates for the ASMIG System
    A DSL for defining instance templates for the ASMIG system Andrii Kovalov Dissertation 2014 Erasmus Mundus MSc in Dependable Software Systems Department of Computer Science National University of Ireland, Maynooth Co. Kildare, Ireland A dissertation submitted in partial fulfilment of the requirements for the Erasmus Mundus MSc Dependable Software Systems Head of Department : Dr Adam Winstanley Supervisor : Dr James Power Date: June 2014 Abstract The area of our work is test data generation via automatic instantiation of software models. Model instantiation or model finding is a process of find- ing instances of software models. For example, if a model is represented as a UML class diagram, the instances of this model are UML object diagrams. Model instantiation has several applications: finding solutions to problems expressed as models, model testing and test data generation. There are sys- tems that automatically generate model instances, one of them is ASMIG (A Small Metamodel Instance Generator). This system is focused on a `problem solving' use case. The motivation of our work is to adapt ASMIG system for use as a test data generator and make the instance generation process more transparent for the user. In order to achieve this we provided a way for the user to interact with ASMIG internal data structure, the instance template graph via a specially designed graph definition domain-specific language. As a result, the user is able to configure the instance template in order to get plausible instances, which can be then used as test data. Although model finding is only suitable for obtaining test inputs, but not the expected test outputs, it can be applied effectively for smoke testing of systems that process complex hierarchic data structures such as programming language parsers.
    [Show full text]
  • Review Article Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis
    Hindawi Advances in Bioinformatics Volume 2017, Article ID 1278932, 8 pages https://doi.org/10.1155/2017/1278932 Review Article Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis Georgios A. Pavlopoulos,1 David Paez-Espino,1 Nikos C. Kyrpides,1 and Ioannis Iliopoulos2 1 Department of Energy, Joint Genome Institute, Lawrence Berkeley Labs, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA 2Division of Basic Sciences, University of Crete Medical School, Andrea Kalokerinou Street, Heraklion, Greece Correspondence should be addressed to Georgios A. Pavlopoulos; [email protected] and Ioannis Iliopoulos; [email protected] Received 22 February 2017; Revised 14 May 2017; Accepted 4 June 2017; Published 18 July 2017 Academic Editor: Klaus Jung Copyright © 2017 Georgios A. Pavlopoulos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Gene expression, signal transduction, protein/chemical interactions, biomedical literature cooccurrences, and other concepts are often captured in biological network representations where nodes represent a certain bioentity and edges the connections between them. While many tools to manipulate, visualize, and interactively explore such networks already exist, only few of them can scale up and follow today’s indisputable information growth. In this review, we shortly list a catalog of available network visualization tools and, from a user-experience point of view, we identify four candidate tools suitable for larger-scale network analysis, visualization, and exploration. We comment on their strengths and their weaknesses and empirically discuss their scalability, user friendliness, and postvisualization capabilities.
    [Show full text]
  • An Exchange Format for Graph Transformation Systems
    Electronic Notes in Theoretical Computer Science 127 (2005) 51–63 www.elsevier.com/locate/entcs A New Version of GTXL : An Exchange Format for Graph Transformation Systems Leen Lambers Institut f¨ur Softwaretechnik und Theoretische Informatik Technische Universit¨at Berlin Germany Abstract GTXL (Graph Transformation Exchange Language) is designed to support and stimulate develop- ers to provide their graph transformation-based tools with an exchange functionality regarding the integration with other tools. For this exchange XML was chosen as underlying technology. The exchange of graphs is facilitated by the exchange format GXL which is also XML-based. GTXL uses GXL to describe the graph parts of a graph transformation system. A first version of GTXL arose from the format discussion within the EU Working Group APPLIGRAPH. Trying to restim- ulate the discussion on a common exchange format for graph transformation systems, this paper presents a new version of GTXL. Three important changes have been made. At first, an integrated presentation of rules is introduced, secondly the expression of more general conditions is supported and finally the storage of the underlying semantics of a graph transformation system by means of special attributes is proposed. Keywords: exchange format, graph transformation system, graph transformation-based tools, XML 1 Introduction Graph transformation systems (GTSs) comprise graphs and rules changing these graphs. Comparing them with term rewrite systems, terms correspond to graphs and term rewrite rules to graph rewrite rules. Since graphs are widely used to model various data structures in computer science, graph trans- formation systems can be used to define various modifications of these data 1 Email: [email protected] 1571-0661/$ – see front matter © 2005 Elsevier B.V.
    [Show full text]
  • An XML-Based Description of Structured Networks
    Massimo Ancona, Walter Cazzola, Sara Drago, and Francesco Guido. An XML-Based Description of Structured Networks. In Proceedings of Interna- tional Conference Communications 2004, pages 401–406, Bucharest, Romania, June 2004. IEEE Press. An XML-Based Description of Structured Networks Massimo Ancona£ Walter Cazzola† Sara Drago£ Francesco Guido‡ £ DISI University of Genova, e-mail: fancona,[email protected] † DICo University of Milano, e-mail: [email protected] ‡ Marconi Selenia Communication, e-mail: [email protected] Abstract In this paper we present an XML-based formalism to describe hierarchically organized communication networks. After a short overview of existing graph description languages, we discuss the advantages and disadvantages of their application in network optimization. We conclude by extending one of these formalisms with features supporting the description of the relationship between the optimized logical layout of a network and its physical counterpart. Elements for describing traffic parameters are also given. 1 Introduction The problem of network design and optimization has a strategical importance especially for military networks. In this case, design for fault tolerance and security plays a role more and more crucial than the equivalent importance required for commercial and research networks. The reengineering of a large communication network is a complex problem, which consists of different aspects that can be strongly affected by the way of describing data. The plainest way to describe a communication network is to model the relationship among sites and links by means of a weighted undirected graph, but unless some more assumptions are taken, this approach can raise several problems. A first issue is encountered when an analysis and a visualization of the network has to be realized: practical networks include hundreds or often thousands of nodes and links, so that even a simple description and documentation of the network structure is hard to maintain and update.
    [Show full text]
  • Rendering UML Class Diagrams to Support Layout Design
    Rendering UML Class Diagrams to Support Layout Design A thesis submitted to the Kent State University Honors College in partial fulfillment of the requirements for University Honors by Paul “P.J.” Leyden December, 2019 Thesis written by Paul “P.J.” Leyden Approved by _______________________________________________________________________, Advisor _____________________________________________, Chair, Department of Computer Science Accepted by ___________________________________________________________, Dean, Honors College ii TABLE OF CONTENTS LIST OF FIGURES ........................................................................................................... iv LIST OF TABLES .............................................................................................................. v Acknowledgements ............................................................................................................ vi CHAPTER 1 Introduction................................................................................................... 1 CHAPTER 2 Related Work ................................................................................................ 4 2.1 UML .......................................................................................................................... 4 2.2 Comprehension and Layout ...................................................................................... 5 2.3 Automatically Reverse Engineering UML Class Diagrams ..................................... 7 2.4 srcUML ....................................................................................................................
    [Show full text]
  • Bioinformatics Methods for the Genetic and Molecular Characterisation Of
    BIOINFORMATICS METHODSFORTHE GENETICAND MOLECULAR CHARACTERISATION OFCANCER Dissertation zur Erlangung des Grades des Doktors der Naturwissenschaften der Naturwissenschaftlich-Technischen Fakultäten der Universität des Saarlandes vo n DANIELSTÖCKEL Universität des Saarlandes, MI – Fakultät für Mathematik und Informatik, Informatik b e t r e u e r PROF.DR.HANS-PETERLENHOF 6. dezember 2016 Daten der Verteidigung Datum 25.11.2016, 15 Uhr ct. Vorsitzender Prof. Dr. Volkhard Helms Erstgutachter Prof. Dr. Hans-Peter Lenhof Zweitgutachter Prof. Dr. Andreas Keller Beisitzerin Dr. Christina Backes Dekan Prof. Dr. Frank-Olaf Schreyer This thesis is also available online at: https://somweyr.de/~daniel/ dissertation.zip ii a b s t r ac t Cancer is a class of complex, heterogeneous diseases of which many types have proven to be difficult to treat due to the high ge- netic variability between and within tumours. To improve ther- apy, some cases require a thorough genetic and molecular charac- terisation that allows to identify mutations and pathogenic pro- cesses playing a central role for the development of the disease. Data obtained from modern, biological high-throughput exper- iments can offer valuable insights in this regard. Therefore, we developed a range of interoperable approaches that support the analysis of high-throughput datasets on multiple levels of detail. Mutations are a main driving force behind the development of cancer. To assess their impact on an affected protein, we de- signed BALL-SNP which allows to visualise and analyse single nucleotide variants in a structure context. For modelling the ef- fect of mutations on biological processes we created CausalTrail which is based on causal Bayesian networks and the do-calculus.
    [Show full text]
  • Compiler Support for Operator Overloading and Algorithmic Differentiation in C++
    Compiler Support for Operator Overloading and Algorithmic Differentiation in C++ Zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr.rer.nat.) genehmigte Dissertation von Alexander Hück, M.Sc. aus Wiesbaden Tag der Einreichung: 16.01.2020, Tag der Prüfung: 28.02.2020 1. Gutachten: Prof. Dr. Christian Bischof 2. Gutachten: Prof. Dr. Martin Bücker Darmstadt – D 17 Computer Science Department Scientific Computing Compiler Support for Operator Overloading and Algorithmic Differentiation in C++ Doctoral thesis by Alexander Hück, M.Sc. 1. Review: Prof. Dr. Christian Bischof 2. Review: Prof. Dr. Martin Bücker Date of submission: 16.01.2020 Date of thesis defense: 28.02.2020 Darmstadt – D 17 Bitte zitieren Sie dieses Dokument als: URN: urn:nbn:de:tuda-tuprints-115226 URL: http://tuprints.ulb.tu-darmstadt.de/11522 Dieses Dokument wird bereitgestellt von tuprints, E-Publishing-Service der TU Darmstadt http://tuprints.ulb.tu-darmstadt.de [email protected] Die Veröffentlichung steht unter folgender Creative Commons Lizenz: Namensnennung – Keine Bearbeitungen 4.0 International (CC BY–ND 4.0) The publication is under the following Creative Commons license: Attribution – NoDerivatives 4.0 International (CC BY–ND 4.0) Erklärungen laut Promotionsordnung §8 Abs. 1 lit. c PromO Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der schriftli- chen Version übereinstimmt. §8 Abs. 1 lit. d PromO Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthe- ma und Ergebnis dieses Versuchs mitzuteilen. §9 Abs. 1 PromO Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter Verwendung der angegebenen Quellen verfasst wurde.
    [Show full text]
  • Drawing Graphs with Graphviz
    Drawing graphs with Graphviz Emden R. Gansner June 11, 2012 1 Graphviz Drawing Library Manual, June 11, 2012 2 Contents 1 Introduction 3 1.1 String-based layouts . 3 1.1.1 dot . 4 1.1.2 xdot . 4 1.1.3 plain . 5 1.1.4 plain-ext . 6 1.1.5 GXL and GML . 6 1.2 Graphviz as a library . 6 2 Basic graph drawing 7 2.1 Creating the graph . 7 2.1.1 Attributes . 9 2.2 Laying out the graph . 15 2.3 Rendering the graph . 15 2.3.1 Drawing nodes and edges . 17 2.4 Cleaning up a graph . 18 3 Inside the layouts 19 3.1 dot ............................................... 19 3.2 neato ............................................. 20 3.3 fdp ............................................... 21 3.4 twopi ............................................. 22 3.5 circo .............................................. 22 4 The Graphviz context 22 4.1 Application-specific data . 24 5 Graphics renderers 24 5.1 The GVJ t data structure . 27 5.2 Inside the obj state t data structure . 28 5.3 Color information . 29 6 Adding Plug-ins 30 6.1 Writing a renderer plug-in . 32 6.2 Writing a device plug-in . 33 6.3 Writing an image loading plug-in . 33 7 Unconnected graphs 34 A Compiling and linking 40 B A sample program: simple.c 41 C A sample program: dot.c 42 D A sample program: demo.c 43 E Some basic types and their string representations 44 Graphviz Drawing Library Manual, June 11, 2012 3 1 Introduction The Graphviz package consists of a variety of software for drawing attributed graphs.
    [Show full text]
  • Lesson 8 Graph Visual Analytics: Visualising and Analysing Network Data
    ISSS608 Visual Analytics and Applications 10/14/2016 Lesson 8: Visualising and Analysing Network Data Lesson 8 Graph Visual Analytics: Visualising and Analysing Network Data Mentor: Dr. Kam Tin Seong Associate Professor of Information Systems (Practice) School of Information Systems, Singapore Management University Content • Introduction to Graph Visual Analytics • Graph Visualisation in Actions • Basic Principles of Graph – Network data sets – Graph data format • Network Visualisation and Analysis – Network visualisation and analysis process model – Graph layouts and visual attributes – Network metrics • Network visualisation and analysis tools – NodeXL – Gephi 2 8-1 ISSS608 Visual Analytics and Applications 10/14/2016 Lesson 8: Visualising and Analysing Network Data Network in real World • Physical – Transportation (i.e. road, port, rail, etc) – Utility (electricity, water, gas, network cable, etc) – Natural (river, etc) • Abstract – Social media (i.e. e-mail, Facebook, Twitter, Wikipedia, etc) – Organisation (i.e. NGO, politics, customer-company, staff-to-staff, criminal, terrorist, disease, etc) 3 Classical Graph Theory • The Seven Bridges of Königsberg is a historically notable problem in mathematics. Its negative resolution by Leonhard Euler in 1735 laid the foundations of graph theory and prefigured the idea of topology. Source: http://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg 4 8-2 ISSS608 Visual Analytics and Applications 10/14/2016 Lesson 8: Visualising and Analysing Network Data Classical Graph Visualisation and
    [Show full text]
  • GOLD 3 Un Lenguaje De Programación Imperativo Para La Manipulación De Grafos Y Otras Estructuras De Datos
    GOLD 3 Un lenguaje de programación imperativo para la manipulación de grafos y otras estructuras de datos Autor Alejandro Sotelo Arévalo UNIVERSIDAD DE LOS ANDES Asesora Silvia Takahashi Rodríguez, Ph.D. UNIVERSIDAD DE LOS ANDES TESIS DE MAESTRÍA EN INGENIERÍA DEPARTAMENTO DE INGENIERÍA DE SISTEMAS Y COMPUTACIÓN FACULTAD DE INGENIERÍA UNIVERSIDAD DE LOS ANDES BOGOTÁ D.C., COLOMBIA ENERO 27 DE 2012 > > > A las personas que más quiero en este mundo: mi madre Gladys y mi novia Alexandra. > > > Abstract Para disminuir el esfuerzo en la programación de algoritmos sobre grafos y otras estructuras de datos avanzadas es necesario contar con un lenguaje de propósito específico que se preocupe por mejorar la legibilidad de los programas y por acelerar el proceso de desarrollo. Este lenguaje debe mezclar las virtudes del pseudocódigo con las de un lenguaje de alto nivel como Java o C++ para que pueda ser fácilmente entendido por un matemático, por un científico o por un ingeniero. Además, el lenguaje debe ser fácilmente interpretado por las máquinas y debe poder competir con la expresividad de los lenguajes de propósito general. GOLD (Graph Oriented Language Domain) satisface este objetivo, siendo un lenguaje de propósito específico imperativo lo bastante cercano al lenguaje utilizado en el texto Introduction to Algorithms de Thomas Cormen et al. [1] como para ser considerado una especie de pseudocódigo y lo bastante cercano al lenguaje Java como para poder utilizar la potencia de su librería estándar y del entorno de programación Eclipse. Índice general I Preliminares 1 1 Introducción 2 1.1 Resumen ............................................... 2 1.2 Contexto...............................................
    [Show full text]