Habitat Preferences, Movement, Size Frequency Patterns and Reproductive Seasonality of the Lesser Electric Ray, Narcine Brasilie

Total Page:16

File Type:pdf, Size:1020Kb

Habitat Preferences, Movement, Size Frequency Patterns and Reproductive Seasonality of the Lesser Electric Ray, Narcine Brasilie Northeast Gulf Science Volume 10 Article 4 Number 2 Number 2 8-1989 Habitat Preferences, Movement, Size Frequency Patterns and Reproductive Seasonality of the Lesser Electric Ray, Narcine brasiliensis Anne Rudlow Gulf Specimen Marine Laboratory DOI: 10.18785/negs.1002.04 Follow this and additional works at: https://aquila.usm.edu/goms Recommended Citation Rudlow, A. 1989. Habitat Preferences, Movement, Size Frequency Patterns and Reproductive Seasonality of the Lesser Electric Ray, Narcine brasiliensis. Northeast Gulf Science 10 (2). Retrieved from https://aquila.usm.edu/goms/vol10/iss2/4 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Rudlow: Habitat Preferences, Movement, Size Frequency Patterns and Reprod Northeast Gulf Science Vol. 10, No.2 August 1989 p. 103-112 HABITAT PREFERENCES, MOVEMENT, SIZE FREQUENCY PATTERNS AND REPRODUCTIVE SEASONALITY OF THE LESSER ELECTRIC RAY, Narcine brasiliensis Anne Rudloe Gulf Specimen Marine Laboratory P. 0. Box 237 Panacea, Florida 32346 ABSTRACT: The lesser electric ray, Narcine brasiliensis, is often used in neurochemical studies of cholinergic neurons. Data on habitat preferences, seasonal movements, growth rates and reproductive seasonality are presented. Narcine brasiliensis is highly localized within an area, concentrating in surf zones adjacent to barrier beaches and on offshore sand bars in warm months and moving offshore in winter. Females larger than 29 em total length are reproductively active and give birth to less than 20 young in August and September. Young are estimated to attain a size of 20 · 29 em TL at the end of their first year. This species is potentially vulnerable to overharvest as a result of its low rate of reproduction and localized distribution. Over the past decade there has been been the model used in 45 neuro­ a growing use of electric rays of the chemical studies reported in Biological family Torpedinidae, order Rajiformes, in Abstracts since 1968. neurophysiological and biochemical In view of the importance of Narcine research. From 1980 to 1984, over 900 in the neurophysiological laboratory, the papers dealing with the biochemistry and dearth of information on its life history neurophysiology of Torpedo california and ecology is remarkable. Bigelow and and Torpedo nobiliana were cited in Schroeder (1953) reported that poly­ Biological Abstracts. Torpedo are large chaete annelids are its primary diet. It (approximately 2m total length), deep occurs inshore during the summer water, cold temperature rays that are months in Mississippi Sound in the vicin­ difficult to keep in the laboratory. ity of passes between barrier islands The lesser electric ray, Narcine (Funicelli, 1975; Migdalski & Fichter, brasiliensis, which is roughly one third 1976). The taxonomy of the family has the size of Torpedo, is perhaps more suit­ most recently been reviewed by Fech­ able as a laboratory animal. Occurring in helm and McEachran (1984). shallow warm water from Argentina to Studies of behavior and electric North Carolina, it is locally common in organ discharge using various species of the Gulf of Mexico and off the south­ the genus Torpedo are reported by Bray eastern coast of the United States, mak­ and Hixon (1978), Belbenoit (1986, 1977), ing it potentially available for a routine Michaelson eta/. (1979) and Mellinger et and dependable supply to researchers. at. (1978). However, these larger, cold Unlike Torpedo a refrigerated sea water water species of electric ray are piscivor­ system is not necessary. It provides a ous. A recent review of the evolution and neurophysiological preparation compar­ function of electric organs in fishes is able to Torpedo in that both genera have provided by Bass (1986). electric organs densely innervated with This two year investigation of popu­ exclusively cholinergic neurons and has lation characteristics and movement 103 Published by The Aquila Digital Community, 1988 1 Gulf of Mexico Science, Vol. 10 [1988], No. 2, Art. 4 104 Rudloe, A. patterns of Narcine brasiliensis was part tative sampling was done in waters in of an exploration of the feasibility of and just beyond the surf zone at Dog routinely providing Narclne brasiliensis Island, St. George Island and Little St. for biomedical laboratories. Methods George Island, Franklin County, Florida developed for maintaining Narcine in (Figure 1) and at a site approximately 15 laboratory are reported elsewhere (Rudloe, miles offshore from St. George Island in 1989). approximately 30 meters depth (C Tower site). STUDY AREA METHODS The study was conducted in coastal waters from Alligator Point, Franklin A 21 m vessel pulling two 12m County, Florida, to Cape San Bias, Gulf trawls was used to sample offshore County, Florida. Four offshore stations while a shallow drafted nine m trawler were used, one in a depth of 10m and pulling one 12m trawl was used for the one in 16m several miles south of St. inshore sampling. Trawling was the only George Island, one at West Pass between feasible sampling method due to highly St. George Island and St. Vincent Island, turbid conditions and the necessity to and one at Cape San Bias, Gulf County, sample at night when animals were Florida. active. Trawling was considered an The West Pass and Cape San Bias efficient sampling method for this sites are both regions of sand bars and species in view of its sluggish swimming gullies at depths of 8-10 meters. The behavior and benthic feeding habits. The West Pass site ("ray bar") is perpen­ offshore stations south of St. George dicular to the west end of St. George Island and at West Pass were sampled Island at West Pass between St. George twice a month from March 1985 to Febru­ and St. Vincent Island, and the other is ary 1986, except in August 1985 (equip­ part of a large complex of underwater ment failure). The Cape San Bias station bars south of Cape San Bias. They are was sampled twice a month from June offshore from passes between barrier 1985, to January, 1986. The inshore sta­ islands that carry most of the outflow tion at Alligator Point was sampled once from estuarine Apalachicola Bay (Living­ a month from April 1986 to March 1987. ston, 1983) and are characterized by The other 3 beach sites were sampled strong currents and high turbidity. qualitatively a total of 13 times between Temperatures ranged from 14.6°C to June 1985 and March 1987. 31 °C and salinities varied from 22-35 ppt A one hour tow was made at each during the study. station. Stations which yielded rays were One inshore station was located at then sampled further using up to eight Alligator Point, Franklin County, Florida, additional 1 hour tows per station. All in and just beyond the surf zone. The sta­ electric rays captured were measured tions were chosen based on preliminary and sexed and all individuals longer than sampling from December 1984, to Febru­ 20 em TL were tagged with a plastic dart ary 1985, and during the preceding sum­ tag (FT-6) manufactured by Floy Tag and mer. Sampling was designed to include Manufacturing, Seattle, Washington. The areas utilized by the species at various barbed shaft was inserted into the mus­ seasons as the fish move on and off­ culature posterior to the body disc. In shore through the year. In addition quali- animals held in captivity, tagging did not https://aquila.usm.edu/goms/vol10/iss2/4 2 DOI: 10.18785/negs.1002.04 Rudlow: Habitat Preferences, Movement, Size Frequency Patterns and Reprod Habitat Preferences of the Lesser Electric Ray 105 TALLAHASSEE• 110 females were dissected and their ovaries weighed periodically from March + 1985 through April 1986. Swollen clas­ 8km N H pers were noted on males. RESULTS A total of 3,913 rays were captured from March 1985 to March 1987 from all sites. Of these 3,229 were returned to shore, 455 tagged and released and 229 released untagged due to small size. Ten tagged rays were recaptured (Table 1). OFF SHORE SITES Figure 1. Sampling sites for electric rays, March The catch per unit effort (CPUE) of 1985- March 1987. the four offshore stations offshore from impede the fish, or cause infection or the barrier beaches is plotted Figure 2. necrosis and <1% tag loss was ob­ The CPUE at the sites ranged from served. All body lengths are expressed as 3-31 rays/hour. However, rays were con­ total length. centrated over an extremely limited area Surface water temperature and sal­ on each bar. As little as several tens of inity, and wind and sea state were meters change in position could deter­ recorded at each station. Bottom temper­ mine whether there were two or 20 rays atures were recorded in December 1985 in the catch. CPUE of rays declined dur­ and January 1986. Trawling began at ing the August-September birthing dark and continued until shortly after season (see section on Reproductive dawn. The majority of animals were Seasonality) at these sites and then returned to shore with tag numbers used increased in October. Adults left the area to track individuals in subsequent neuro­ in November. Only young of the year chemical or culture methods studies were present in December. The 10m and (Rud loe, 1989). 16m stations were frequented primarily Animals not needed for laboratory in November and February, periods im­ research were released at the collection mediately preceding and following the site. Posters offering a reward for season of occupancy of the ray bars and returned tags were placed at seafood beaches. plants within 160 km of the study area. The length frequency distribution of To determine reproductive seasonality rays taken at Cape San Bias and West Table 1.
Recommended publications
  • The Occurrences and Reclassification of Torpedo Panthera in Iraqi Marine Waters
    Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 6, 2021, Pages. 3736 - 3741 Received 25 April 2021; Accepted 08 May 2021. The Occurrences and Reclassification of Torpedo Panthera in Iraqi Marine Waters Mujtaba. A.T. Ankush1, Ahmed Chasib Al-Shamary2 1Department of Fish and Marine Resources, College of Agriculture, University of Basrah, Iraq. 2Marine Science Center, College of Agriculture, University of Basrah, Iraq. E-mail: [email protected] ABSTRACT When two specimens of the Torpedo Panthera electric straw were caught in Iraqi marine waters in November 2020, their presence was known and reclassified through the study of 17 Morphometric characters, some of which were correlated with salinity Disk length, Disk width, and Eye diameter, and others with temperature First dorsal fin length, Second dorsal fin and Tail length, During the research, the chemical composition of the ray was investigated. KEYWORDS Torpedo Panthera, Iraqi Marine Water, Morphometric Characters, Rays. Introduction They are unmistakably monophyletic, with large pectoral electric organs derived from bronchial muscles, anteriorly expanded and branched antorbital cartilages, a neurocranium lacking supraorbital crests, and posteriorly arched scapulocoracoids, among other features, distinguishing them from other batoids (Compagno, 1977; McEachran et al., 1996). Electric ray species belonging to the genus Torpedo panthera Torpedo Houttuyn, 1764, is a genus of medium to large electric rays that can grow up to 180 cm in total length and can be found in tropical and temperate waters all over the world, from the shoreline to about 600 m on the continental slope. Larger specimens are capable of producing strong electric shocks that have been reported to reach a discharge of 220 volts (Coates and Cox, 1942; Bigelow and Schroeder, 1953).
    [Show full text]
  • Bibliography Database of Living/Fossil Sharks, Rays and Chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the Year 2016
    www.shark-references.com Version 13.01.2017 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2016 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, Munich, Germany ISSN: 2195-6499 copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 13.01.2017 Abstract: This paper contains a collection of 803 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2016. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2016, list of descriptions of extinct and extant species from 2016, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide information on the geographic and depth distribution of newly described species, i.e. the type specimens from the year 1990- 2016 in a hot spot analysis. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however,
    [Show full text]
  • USF Board of Trustees ( March 7, 2013)
    Agenda item: (to be completed by Board staff) USF Board of Trustees ( March 7, 2013) Issue: Proposed Ph.D. in Integrative Biology ________________________________________________________________ Proposed action: New Degree Program Approval ________________________________________________________________ Background information: This application for a new Ph.D is driven by a recent reorganization of the Department of Biology. The reorganization began in 2006 and was completed in 2009. The reorganization of the Department of Biology, in part, reflected the enormity of the biological sciences, and in part, different research perspectives and directions taken by the faculty in each of the respective areas of biology. Part of the reorganization was to replace the original Ph.D. in Biology with two new doctoral degrees that better serve the needs of the State and our current graduate students by enabling greater focus of the research performed to earn the Ph.D. The well-established and highly productive faculty attracts students to the Tampa Campus from all over the United States as well as from foreign countries. The resources to support the two Ph.D. programs have already been established in the Department of Biology and are sufficient to support the two new degree programs. The reorganization created two new departments; the Department of Cell Biology, Microbiology, and Molecular Biology (CMMB) and the Department of Integrative Biology (IB). This proposal addresses the creation of a new Ph.D., in Integrative Biology offered by the Department of Integrative Biology (CIP Code 26.1399). The name of the Department, Integrative Biology, reflects the belief that the study of biological processes and systems can best be accomplished by the incorporation of numerous integrated approaches Strategic Goal(s) Item Supports: The proposed program directly supports the following: Goal 1 and Goal 2 Workgroup Review: ACE March 7, 2013 Supporting Documentation: See Complete Proposal below Prepared by: Dr.
    [Show full text]
  • Field Identification Guide to the Sharks and Rays of the Red Sea and Gulf of Aden
    FAO SPECIES IDENTIFICATION GUIDE FOR FISHERY PURPOSES ISSN 1020-6868 FIELD IDENTIFICATION GUIDE TO THE SHARKS AND RAYS OF THE RED SEA AND GULF OF ADEN PERSGA FAO SPECIES IDENTIFICATION GUIDE FOR FISHERY PURPOSES FIELD IDENTIFICATION GUIDE TO THE SHARKS AND RAYS OF THE RED SEA AND GULF OF ADEN by Ramón Bonfil Marine Program Wildlife Conservation Society Bronx, New York, USA and Mohamed Abdallah Strategic Action Program Regional Organization for the Conservation of the Environment of the Red Sea and Gulf of Aden Jeddah, Saudi Arabia FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2004 iii PREPARATION OF THIS DOCUMENT This document was prepared under the coordination of the Species Identification and Data Programme of the Marine Resources Service, Fishery Resources and Environment Division, Fisheries Department, Food and Agriculture Organization of the United Nations (FAO). This field guide is largely based on material prepared for training courses on elasmobranch identification delivered in the region by the first author, and promoted by the Regional Organization for the Conservation of the Environment of the Red Sea and Gulf of Aden (PERSGA), as an activity of PERSGA’s Strategic Action Programme (SAP) towards capacity building and technical assistance in the Red Sea and Gulf of Aden region. Printing was supported by Japanese Government funds. The increasing recognition of the significance of sharks and batoid fishes as ecosystem health indicators, as well as their particular importance in exploited ecosystems in the Red Sea and the Gulf of Aden, have been key considerations to promote the preparation of this Field Guide. Furthermore, in recent years the reported catches of elasmobranchs in the Red Sea and the Gulf of Aden showed a marked increase.
    [Show full text]
  • An Introduction to the Classification of Elasmobranchs
    An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved.
    [Show full text]
  • Bulletin No 7.Qxd
    Electrolux addisoni, a new genus and species of electric ray from the east coast of South Africa (Rajiformes: Torpedinoidei: Narkidae), with a review of torpedinoid taxonomy Leonard J.V. Compagno 1 and Phillip C. Heemstra 2 1 Shark Research Centre, Iziko-South African Museum, Cape Town, South Africa, e-mail [email protected] 2 South African Institute for Aquatic Biodiversity, Grahamstown, South Africa, e-mail [email protected] (Submitted 7 December 2006; accepted 23 February 2007) ABSTRACT . A new genus and species of sleeper ray, Electrolux addisoni (Family Narkidae), with two dorsal fins is described from two adult males (total lengths 50 and 52 cm) caught on a shallow reef off the east coast of South Africa. Electrolux is distinguished from other genera of Narkidae by its prominent spiracular papillae, the morphology of its nostrils, nasal curtain, mouth, jaws, chondrocranium, basibranchial skeleton, pectoral and pelvic girdles, and unique and complex colour pattern. It has higher vertebral, pectoral radial, tooth and intestinal valve counts than other narkids and reaches a greater size than all species with the possibly exception of Typhlonarke aysoni . Taxonomic definitions are provided for the electric rays, for the family Narkidae, and for Electrolux, as well as keys to families of electric rays and to the genera of Narkidae. The systematics of the narkid genus Heteronarce is reviewed and the genus validated. Members of the Narkidae may include the smallest, or at least the shortest, living chondrichthyans ( Temera hardwickii and an undescribed species of Narke ). Electrolux addisoni is a reef-dweller that eats polychaete worms and small crustaceans, and has been photographed and videotaped by divers while actively feeding in the daytime.
    [Show full text]
  • Malaysia National Plan of Action for the Conservation and Management of Shark (Plan2)
    MALAYSIA NATIONAL PLAN OF ACTION FOR THE CONSERVATION AND MANAGEMENT OF SHARK (PLAN2) DEPARTMENT OF FISHERIES MINISTRY OF AGRICULTURE AND AGRO-BASED INDUSTRY MALAYSIA 2014 First Printing, 2014 Copyright Department of Fisheries Malaysia, 2014 All Rights Reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic, mechanical, including photocopy, recording, or any information storage and retrieval system, without prior permission in writing from the Department of Fisheries Malaysia. Published in Malaysia by Department of Fisheries Malaysia Ministry of Agriculture and Agro-based Industry Malaysia, Level 1-6, Wisma Tani Lot 4G2, Precinct 4, 62628 Putrajaya Malaysia Telephone No. : 603 88704000 Fax No. : 603 88891233 E-mail : [email protected] Website : http://dof.gov.my Perpustakaan Negara Malaysia Cataloguing-in-Publication Data ISBN 978-983-9819-99-1 This publication should be cited as follows: Department of Fisheries Malaysia, 2014. Malaysia National Plan of Action for the Conservation and Management of Shark (Plan 2), Ministry of Agriculture and Agro- based Industry Malaysia, Putrajaya, Malaysia. 50pp SUMMARY Malaysia has been very supportive of the International Plan of Action for Sharks (IPOA-SHARKS) developed by FAO that is to be implemented voluntarily by countries concerned. This led to the development of Malaysia’s own National Plan of Action for the Conservation and Management of Shark or NPOA-Shark (Plan 1) in 2006. The successful development of Malaysia’s second National Plan of Action for the Conservation and Management of Shark (Plan 2) is a manifestation of her renewed commitment to the continuous improvement of shark conservation and management measures in Malaysia.
    [Show full text]
  • Review of Migratory Chondrichthyan Fishes
    Convention on the Conservation of Migratory Species of Wild Animals Secretariat provided by the United Nations Environment Programme 14 TH MEETING OF THE CMS SCIENTIFIC COUNCIL Bonn, Germany, 14-17 March 2007 CMS/ScC14/Doc.14 Agenda item 4 and 6 REVIEW OF MIGRATORY CHONDRICHTHYAN FISHES (Prepared by the Shark Specialist Group of the IUCN Species Survival Commission on behalf of the CMS Secretariat and Defra (UK)) For reasons of economy, documents are printed in a limited number, and will not be distributed at the meeting. Delegates are kindly requested to bring their copy to the meeting and not to request additional copies. REVIEW OF MIGRATORY CHONDRICHTHYAN FISHES IUCN Species Survival Commission’s Shark Specialist Group March 2007 Taxonomic Review Migratory Chondrichthyan Fishes Contents Acknowledgements.........................................................................................................................iii 1 Introduction ............................................................................................................................... 1 1.1 Background ...................................................................................................................... 1 1.2 Objectives......................................................................................................................... 1 2 Methods, definitions and datasets ............................................................................................. 2 2.1 Methodology....................................................................................................................
    [Show full text]
  • An Annotated Checklist of the Chondrichthyan Fishes Inhabiting the Northern Gulf of Mexico Part 1: Batoidea
    Zootaxa 4803 (2): 281–315 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4803.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:325DB7EF-94F7-4726-BC18-7B074D3CB886 An annotated checklist of the chondrichthyan fishes inhabiting the northern Gulf of Mexico Part 1: Batoidea CHRISTIAN M. JONES1,*, WILLIAM B. DRIGGERS III1,4, KRISTIN M. HANNAN2, ERIC R. HOFFMAYER1,5, LISA M. JONES1,6 & SANDRA J. RAREDON3 1National Marine Fisheries Service, Southeast Fisheries Science Center, Mississippi Laboratories, 3209 Frederic Street, Pascagoula, Mississippi, U.S.A. 2Riverside Technologies Inc., Southeast Fisheries Science Center, Mississippi Laboratories, 3209 Frederic Street, Pascagoula, Missis- sippi, U.S.A. [email protected]; https://orcid.org/0000-0002-2687-3331 3Smithsonian Institution, Division of Fishes, Museum Support Center, 4210 Silver Hill Road, Suitland, Maryland, U.S.A. [email protected]; https://orcid.org/0000-0002-8295-6000 4 [email protected]; https://orcid.org/0000-0001-8577-968X 5 [email protected]; https://orcid.org/0000-0001-5297-9546 6 [email protected]; https://orcid.org/0000-0003-2228-7156 *Corresponding author. [email protected]; https://orcid.org/0000-0001-5093-1127 Abstract Herein we consolidate the information available concerning the biodiversity of batoid fishes in the northern Gulf of Mexico, including nearly 70 years of survey data collected by the National Marine Fisheries Service, Mississippi Laboratories and their predecessors. We document 41 species proposed to occur in the northern Gulf of Mexico.
    [Show full text]
  • Species Composition and Catch of Sharks, Rays and Skates in Ba Ria - Vung Tau and Binh Thuan Provinces of Vietnam
    Nong Lam University, Ho Chi Minh City 31 Species composition and catch of sharks, rays and skates in Ba Ria - Vung Tau and Binh Thuan provinces of Vietnam Manh Q. Bui1∗, Toan X. Nguyen1, Anh H. T. Le2, & Ali Ahmad3 1Research Institute for Marine and Fisheries, Vung Tau, Vietnam 2Directorate of Fisheries, Ha Noi, Vietnam 3Marine Fishery Resources Development and Management Department, Terengganu, Malaysia ARTICLE INFO ABSTRACT Research Paper Research on 2,626 individuals of sharks, rays and skates in total of 123 fishing boats were sampled during 2015 to 2016 in Ba Ria - Vung Tau Received: September 05, 2018 and Binh Thuan provinces. The results identified 77 species of sharks, Revised: December 02, 2018 rays and skates belong to 22 families and 10 orders in Ba Ria - Vung Tau Accepted: December 26, 2018 and Binh Thuan provinces. Of these, 57 species were recorded in Ba Ria - Vung Tau and 48 species in Binh Thuan. The families were found in the Keywords highest number of species such as Carcharhinidae family with 9 species, Dasyatidae family with 19 species and Rajidae family with 5 species. The Ba Ria -Vung Tau province total catch of sharks, rays and skates was 23,599 tons in Ba Ria - Vung Binh Thuan province Tau and was 24,355 tons in Binh Thuan. Sharks, rays and skates ratio made up from 0.2% to 0.5% in total catch landing from landing sites. Ray Total length of sharks ranges from 21.0 cm to 366.0 cm, disc length of Shark rays fluctuates from 11.0 cm to 248.0 cm and skates have a range from Skate 0.7 cm to 152.0 cm in disc length.
    [Show full text]
  • An Annotated Checklist of the Chondrichthyan Fishes Inhabiting the Northern Gulf of Mexico Part 1: Batoidea
    Zootaxa 4803 (2): 281–315 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4803.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:325DB7EF-94F7-4726-BC18-7B074D3CB886 An annotated checklist of the chondrichthyan fishes inhabiting the northern Gulf of Mexico Part 1: Batoidea CHRISTIAN M. JONES1,*, WILLIAM B. DRIGGERS III1,4, KRISTIN M. HANNAN2, ERIC R. HOFFMAYER1,5, LISA M. JONES1,6 & SANDRA J. RAREDON3 1National Marine Fisheries Service, Southeast Fisheries Science Center, Mississippi Laboratories, 3209 Frederic Street, Pascagoula, Mississippi, U.S.A. 2Riverside Technologies Inc., Southeast Fisheries Science Center, Mississippi Laboratories, 3209 Frederic Street, Pascagoula, Missis- sippi, U.S.A. �[email protected]; https://orcid.org/0000-0002-2687-3331 3Smithsonian Institution, Division of Fishes, Museum Support Center, 4210 Silver Hill Road, Suitland, Maryland, U.S.A. �[email protected]; https://orcid.org/0000-0002-8295-6000 4 �[email protected]; https://orcid.org/0000-0001-8577-968X 5 �[email protected]; https://orcid.org/0000-0001-5297-9546 6 �[email protected]; https://orcid.org/0000-0003-2228-7156 *Corresponding author. �[email protected]; https://orcid.org/0000-0001-5093-1127 Abstract Herein we consolidate the information available concerning the biodiversity of batoid fishes in the northern Gulf of Mexico, including nearly 70 years of survey data collected by the National Marine Fisheries Service, Mississippi Laboratories and their predecessors. We document 41 species proposed to occur in the northern Gulf of Mexico.
    [Show full text]
  • Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997
    The IUCN Species Survival Commission Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 Edited by Sarah L. Fowler, Tim M. Reed and Frances A. Dipper Occasional Paper of the IUCN Species Survival Commission No. 25 IUCN The World Conservation Union Donors to the SSC Conservation Communications Programme and Elasmobranch Biodiversity, Conservation and Management: Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 The IUCN/Species Survival Commission is committed to communicate important species conservation information to natural resource managers, decision-makers and others whose actions affect the conservation of biodiversity. The SSC's Action Plans, Occasional Papers, newsletter Species and other publications are supported by a wide variety of generous donors including: The Sultanate of Oman established the Peter Scott IUCN/SSC Action Plan Fund in 1990. The Fund supports Action Plan development and implementation. To date, more than 80 grants have been made from the Fund to SSC Specialist Groups. The SSC is grateful to the Sultanate of Oman for its confidence in and support for species conservation worldwide. The Council of Agriculture (COA), Taiwan has awarded major grants to the SSC's Wildlife Trade Programme and Conservation Communications Programme. This support has enabled SSC to continue its valuable technical advisory service to the Parties to CITES as well as to the larger global conservation community. Among other responsibilities, the COA is in charge of matters concerning the designation and management of nature reserves, conservation of wildlife and their habitats, conservation of natural landscapes, coordination of law enforcement efforts as well as promotion of conservation education, research and international cooperation.
    [Show full text]