Dissertation / Doctoral Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Dissertation / Doctoral Thesis DISSERTATION / DOCTORAL THESIS Titel der Dissertation /Title of the Doctoral Thesis Low scaling GW method: implementation and applications verfasst von / submitted by Peitao Liu angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Doktor der Naturwissenschaften (Dr. rer. nat.) Wien, 2017 / Vienna, 2017 Studienkennzahl lt. Studienblatt / A 796 605 411 degree programme code as it appears on the student record sheet: Dissertationsgebiet lt. Studienblatt / Physik field of study as it appears on the student record sheet: Betreut von / Supervisor: Univ.-Prof. Dipl.-Ing. Dr. Georg Kresse Univ.- Assoz. Prof. Dipl.-Ing. Dr. Cesare Franchini Vorwort Die vorliegende Arbeit setzt sich aus drei Teilen zusammen. Der erste Teil deckt die Grundlagen zum elektronischen Vielteilchenproblem in der Physik der kondensierten Materie ab und stellt den theoretischen Hintergrund der GW Methode vor. Nach einer Einfuhrung¨ zur Dichtefunk- tionaltheorie (DFT) werden spater¨ Methoden welche uber¨ konventionelle DFT hinausgehen, wie DFT+U und Hybridfunktionale vorgestellt. Dabei werden auch die jeweiligen Grenzen der Anwendbarkeit dieser Methoden diskutiert. Anschließend wird ein Uberblick¨ uber¨ die GW Ap- proximation gegeben, beginnend mit dem Bandluckenproblem¨ und experimenteller Photoemis- sionsspektroskopie. Die Herleitung der GW Approximation aus der Vielkorper-St¨ orungstheorie¨ wird danach ausfuhrlich¨ behandelt. Insbesondere werden die Ein-Teilchen-Green’s-Funktionen, die Dyson-Gleichung und die Hedin-Gleichungen eingefuhrt.¨ Zuletzt wird die praktische Um- setzung der GW Approximation besprochen, einschließlich der konventionellen GW Implemen- tierungen sowie der Space-Time-Methode. Hierbei werden auch die Nachteile der bestehenden GW Implementierungen aufgezeigt, wodurch die Notwendigkeit fur¨ einen niedrig skalierenden GW Algorithmus deutlich wird. Aus dieser Uberlegung¨ stammt die Motivation zu dieser Ar- beit. Abschließend kann gesagt werden, dass dieser Teil eine solide Grundlage bildet und eine konsequente Terminologie fur¨ den zweiten Teil der Arbeit einfuhrt.¨ Der zweite Teil prasentiert¨ unsere kurzlich¨ entwickelte Low-Scaling-GW Methode, die im ”Vienna ab-initio Simulation Package” (VASP), einem weit verbreiteten Programm zur Berech- nung der elektronischen Struktur, implementiert wurde. Diese neue Methode ermoglicht¨ schnelle Quasiteilchenberechnungen mit einer Skalierung, die sich in der Systemgroße¨ kubisch verhalt¨ und linear in der Anzahl der k-Punkte, die verwendet werden um die Brillouin-Zone zu sampeln. Dadurch werden sowohl die Nachteile der konventionellen GW Implementierungen, welche in der Regel auf kleine Systeme beschrankt¨ sind, als auch jene der speicherintensiven Space-Time- Methode uberwunden.¨ Es wird ausfuhrlich¨ erlautert,¨ wie eine so gunstige¨ Skalierung erreicht werden kann. Danach wird der Erfolg der Methode bei der Berechnung von Quasiteilchen- Energien und Spektralfunktionen typischer Isolatoren, Halbleiter und Metalle diskutiert. Die Ergebnisse werden mit konventionellen GW Berechnungen verglichen und es zeigt sich eine sehr hohe Ubereinstimmung.¨ Daruber¨ hinaus wurde die neue Methode auch erfolgreich zur Bes- timmung der Ionisierungspotentiale und der Elektronenaffinitaten¨ von hundert Closed-Shell- Molekulen¨ angewandt. Die Ergebnisse werden mit experimentellen Daten sowie Ergebnissen 3 aus anderen elektronischen Strukturpaketen verglichen. Insgesamt wurde eine gute Ubereinstimmung¨ erzielt. Um diese Ubereinstimmung¨ zu erreichen, korrigieren wir die Fehler fur¨ endliche Ba- sissatze¨ sowie Fehler, die durch periodisch wiederholte Bilder entstehen. Fur¨ die etwas großeren¨ Abweichungen der Elektronenaffinitaten¨ werden mogliche¨ Erklarungen¨ diskutiert. Wegen der geringen Skalierung unserer neuen Methode glauben wir, dass sie ein großes Anwendungspoten- zial besitzt, insbesondere fur¨ große Einheitszellen. Dies wird im Bereich der Materialmodel- lierung dazu beitragen, Methoden welche uber¨ DFT hinaus gehen zu etablieren. Die vorgestellte Low-Scaling-GW stellt zwar einen großen Fortschritt gegenuber¨ alterer¨ GW Methoden dar, jedoch wird in der aktuellen Implementierung die Spin-Orbit-Kopplung (SOC) nicht berucksichtigt,¨ wahrend¨ dies bei der herkommlichen¨ GW Implementierung in VASPmoglich¨ ist. In diesem Abschnitt werden daher einige Anderungen¨ an der herkommlichen¨ Implemen- tierung der GW besprochen, welche es erlauben maßig¨ große Systeme zu behandeln, bei denen SOC nicht vernachlassigt¨ werden darf. Dies wird durch optimierte imaginare¨ Zeit/Frequenz Gitter sowie außerst¨ effiziente diskrete Fourier-Transformationen erreicht, beides Hauptmerk- male der neuen Low-Scaling-GW Methode. Die modifizierte GW Methode wurde fur¨ ZnO und CdTe getestet und es zeigt sich eine ausgezeichnete Ubereinstimmung¨ mit der herkommlichen,¨ unmodifizierten GW Implementierung. Daruber¨ hinaus wird eine teilweise selbst-konsistente Low-Scaling-GW0r Methode vorgestellt und vorlaufige¨ Testergebnisse fur¨ Si werden prasentiert.¨ Die Auswirkungen der Selbstkonsis- tenz werden in Bezug auf Teilchenzahlerhaltung und Bandlucken¨ diskutiert. Abschließend wird noch eine praktikable Moglichkeit¨ zur Kombination unserer Low-Scaling-GW Methode mit der Dynamical-Mean-Field-Theorie (DMFT), d.h. GW+DMFT, vorgestellt. Besonders hervorge- hoben und ausfuhrlich¨ besprochen wird die frequenzabhangige,¨ partiell abgeschirmte Wechsel- wirkung U(i!), welche mittels der Constrained-Random-Phase-Approximation (cRPA) berech- net wird sowie das Double-Counting, das bei GW+DMFT auftritt. Vorlaufige¨ Ergebnisse von GW+DMFT fur¨ SrVO3 werden prasentiert.¨ Am Ende der Arbeit befindet sich eine Conclusio in welcher die Ergebnisse und Schlussfolgerungen zusammengefasst werden und ein Ausblick uber¨ die weitere Entwicklung skizziert ist. Es sei noch angemerkt, dass einige Gleichungen und Herleitungen separat in den Anhangen¨ platziert wurden. Obwohl viele dieser Gleichungen zum besseren Verstandnis¨ des Haupttextes beitragen, wurde zum Zwecke der besseren Lesbarkeit und Ubersicht¨ diese Aufteilung gewahlt.¨ Der interessierte Leser wird daher in den Anhangen¨ nutzliche¨ und ausfuhrliche¨ Details finden. 4 Preface The thesis is divided into three main parts. The first part covers basic textbook and literature knowledge about the electronic structure problem in condensed matter physics. It introduces the theoretical background of the GW method. Starting from density functional theory (DFT), methods beyond DFT, such as DFT+U and hybrid functionals are then introduced, followed by a discussion of their limitations. Afterwards, an overview of the GW approximation is given, setting out from the band gap problem and experimental photoemission spectroscopy. Then, the GW approximation is established starting from many-body perturbation theory. In particular, the one-particle Green’s functions, Dyson equation, and Hedin’s equations are introduced. At the end, practical implementations of the GW approximation including the conventional GW implementations and the space-time method are discussed. Also, the drawbacks of existing GW implementations are raised, highlighting the need for a low-scaling GW scheme. This provides the motivation for the thesis. The first part lays a solid foundation and builds a consistent terminology for the second part of the thesis. The second part presents our recently developed low-scaling GW method, which is im- plemented in the widely used electronic structure code Vienna ab-initio simulation package (VASP). This new implementation allows for fast quasiparticle calculations with a scaling that is cubic in the system size and linear in the number of k-points used to sample the Brillouin zone. This overcomes the shortcomings of conventional GW implementations that are usually restricted to small systems. It also addresses some of the drawbacks of the first implementations of the space-time method such as the large memory requirements. An exhaustive explanation regarding how such low scaling can be achieved is given. Then, the success of this method in predicting the quasiparticle energies and spectral functions of typical insulators, semiconductors and metals is discussed. The results are compared to conventional GW calculations, showing very good agreement. In addition, the new method is also successfully applied to predict the ionization potentials and electron affinities of 100 closed shell molecules. The results are com- pared with the ones from experiments and other electronic structure packages. Overall, good agreement is obtained. In order to achieve this agreement, we correct for finite basis set errors as well as errors introduced by periodically repeated images. For the slightly larger deviations on the electron affinities, tentative explanations are given. Due to the low scaling of our new method, we believe that this method has great potential for applications, in particular for large 5 unit cells. This will greatly help to establish methods beyond DFT in the realm of materials modeling. However, the spin-orbit coupling (SOC) has not yet been implemented in our low-scaling GW method, which is instead covered by the conventional GW implementation in the VASP code. Hence, some modifications are made to the conventional GW implementation. This makes possible the applications of the conventional GW method to moderately large systems where SOC is non-negligible. This is achieved by employing the optimized imaginary time/frequency grids and efficient discrete Fourier transformations which are the key features
Recommended publications
  • (DFT) and Its Application to Defects in Semiconductors
    Introduction to DFT and its Application to Defects in Semiconductors Noa Marom Physics and Engineering Physics Tulane University New Orleans The Future: Computer-Aided Materials Design • Can access the space of materials not experimentally known • Can scan through structures and compositions faster than is possible experimentally • Unbiased search can yield unintuitive solutions • Can accelerate the discovery and deployment of new materials Accurate electronic structure methods Efficient search algorithms Dirac’s Challenge “The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an P. A. M. Dirac explanation of the main features of Physics Nobel complex atomic systems ... ” Prize, 1933 -P. A. M. Dirac, 1929 The Many (Many, Many) Body Problem Schrödinger’s Equation: The physical laws are completely known But… There are as many electrons in a penny as stars in the known universe! Electronic Structure Methods for Materials Properties Structure Ionization potential (IP) Absorption Mechanical Electron Affinity (EA) spectrum properties Fundamental gap Optical gap Vibrational Defect/dopant charge Exciton binding spectrum transition levels energy Ground State Charged Excitation Neutral Excitation DFT
    [Show full text]
  • Scalable Molecular GW Calculations: Valence and Core Spectra Arxiv
    Scalable Molecular GW Calculations: Valence and Core Spectra , , , , Daniel Mejia-Rodriguez,∗ y Alexander Kunitsa,∗ z x Edoardo Apra,` ∗ y and , Niranjan Govind∗ { Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, y Richland, WA 99352, USA Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, z Urbana, Illinois, 61801, USA Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, { Richland, WA 99352, USA Present Address: Zapata Computing, Inc., 100 Federal Street, Boston, MA 02110, USA x E-mail: [email protected]; [email protected]; [email protected]; [email protected] arXiv:2107.10423v1 [physics.chem-ph] 22 Jul 2021 1 Abstract We present a scalable implementation of the GW approximation using Gaussian atomic orbitals to study the valence and core ionization spectroscopies of molecules. The implemen- tation of the standard spectral decomposition approach to the screened Coulomb interaction, as well as a contour deformation method are described. We have implemented both of these approaches using the robust variational fitting approximation to the four-center electron repul- sion integrals. We have utilized the MINRES solver with the contour deformation approach to reduce the computational scaling by one order of magnitude. A complex heuristic in the quasiparticle equation solver further allows a speed-up of the computation of core and semi- core ionization energies. Benchmark tests using the GW100 and CORE65 datasets and the carbon 1s binding energy of the well-studied ethyl trifluoroacetate, or ESCA molecule, were performed to validate the accuracy of our implementation. We also demonstrate and discuss the parallel performance and computational scaling of our implementation using a range of water clusters of increasing size.
    [Show full text]
  • Arxiv:2012.06321V2 [Physics.Chem-Ph] 8 Mar 2021
    Low-scaling GW with benchmark accuracy and application to phosphorene nanosheets Jan Wilhelm,∗,y Patrick Seewald,z and Dorothea Golze{ yInstitute of Theoretical Physics, University of Regensburg, D-93053 Regensburg, Germany zDepartment of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland {Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland E-mail: [email protected] Abstract GW is an accurate method for computing electron addition and removal energies of molecules and solids. In a conventional GW implementation, however, its computational cost is O(N4) in the system size N, which prohibits its application to many systems of interest. We present a low-scaling GW algorithm with notably improved accuracy compared to our previous algorithm [J. Phys. Chem. Lett. 2018, 9, 306 – 312]. This is demonstrated for frontier orbitals using the GW100 benchmark set, for which our algorithm yields a mean absolute deviation of only 6 meV with respect to canonical implementations. We show that also excitations of deep valence, semi-core and unbound states match conventional schemes within 0.1 eV. The high accuracy is achieved by using minimax grids with 30 grid points and the resolution of the identity with the truncated Coulomb metric. We apply the low-scaling GW algorithm with improved accuracy to phosphorene nanosheets of increasing size. We find that their fundamental gap is strongly size-dependent varying from 4.0 eV (1.8 nm × 1.3 nm, 88 atoms) to 2.4 eV (6.9 nm × 4.8 nm, 990 atoms) at the evGW0@PBE level. 1 Introduction tivated approximations to novel numerical methods.
    [Show full text]
  • Electronic Structure of Molecules and Materials from Quantum Simulations
    THE UNIVERSITY OF CHICAGO ELECTRONIC STRUCTURE OF MOLECULES AND MATERIALS FROM QUANTUM SIMULATIONS A DISSERTATION SUBMITTED TO THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMISTRY BY HE MA CHICAGO, ILLINOIS DECEMBER 2020 ProQuest Number:28153743 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. ProQuest 28153743 Published by ProQuest LLC (2020). Copyright of the Dissertation is held by the Author. All Rights Reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 Copyright c 2020 by He Ma All Rights Reserved To my family TABLE OF CONTENTS LIST OF FIGURES . vi LIST OF TABLES . xiii ACKNOWLEDGMENTS . xvii ABSTRACT . xviii 1 INTRODUCTION . 1 2 THEORETICAL BACKGROUND . 5 2.1 The electronic structure problem . 5 2.2 Density functional theory . 7 2.3 Many-body perturbation theory . 9 3 FINITE FIELD ALGORITHM FOR MANY-BODY PERTURBATION THEORY 12 3.1 Finite field calculation of response functions . 13 3.1.1 Introduction . 13 3.1.2 The finite-field approach . 16 3.1.3 GW calculations . 24 3.1.4 Technical details . 35 3.1.5 Conclusions . 48 3.2 Bethe-Salpeter equation .
    [Show full text]
  • Arxiv:1912.04893V1 [Cond-Mat.Mtrl-Sci] 10 Dec 2019 F
    The GW compendium: A practical guide to theoretical photoemission spectroscopy Dorothea Golze, Marc Dvorak, and Patrick Rinke Department of Applied Physics, Aalto University School of Science, 00076-Aalto, Finland (Dated: December 11, 2019) The GW approximation in electronic structure theory has become a widespread tool for predicting electronic excitations in chemical compounds and materials. In the realm of theoretical spectroscopy, the GW method provides access to charged excitations as mea- sured in direct or inverse photoemission spectroscopy. The number of GW calculations in the past two decades has exploded with increased computing power and modern codes. The success of GW can be attributed to many factors: favorable scaling with respect to system size, a formal interpretation for charged excitation energies, the importance of dynamical screening in real systems, and its practical combination with other theories. In this review, we provide an overview of these formal and practical considerations. We expand, in detail, on the choices presented to the scientist performing GW calculations for the first time. We also give an introduction to the many-body theory behind GW , a review of modern applications like molecules and surfaces, and a perspective on methods which go beyond conventional GW calculations. This review addresses chemists, physi- cists and material scientists with an interest in theoretical spectroscopy. It is intended for newcomers to GW calculations but can also serve as an alternative perspective for experts and an up-to-date source of computational techniques. CONTENTS B. Eigenvalue self-consistency and level alignment 32 C. Self-consistency via a new ground state 33 I. Introduction 2 VI.
    [Show full text]
  • SIMPLE Code: Optical Properties with Optimal Basis Functions
    SIMPLE code: optical properties with optimal basis functions Gianluca Prandinia,∗, Mario Galanteb,c, Nicola Marzaria, Paolo Umarib aTheory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole´ Polytechnique F´ed´erale de Lausanne, 1015 Lausanne, Switzerland bDipartimento di Fisica e Astronomia, Universit`adi Padova, via Marzolo 8, I-35131 Padova, Italy cSchool of Physics and CRANN Institute, Trinity College Dublin, College Green, Dublin 2, Ireland Abstract We present SIMPLE, a code developed to calculate optical properties of metal- lic and insulating extended systems using the optimal basis method originally proposed by E. L. Shirley in 1996. Two different approaches for the evalua- tion of the complex dielectric function are implemented: (i) the independent- particle approximation considering both interband and intraband contribu- tions for metals and (ii) the Bethe-Salpeter equation for insulators. Since, notably, the optimal basis set is systematically improvable, accurate results can be obtained at a strongly reduced computational cost. Moreover, the simplicity of the method allows for a straightforward use of the code; im- provement of the optimal basis and thus the overall precision of the simula- tions is simply controlled by one (for metals) or two (for insulators) input thresholds. The code is extensively tested, in terms of verification and per- formance, on bulk silver for metals and on bulk silicon for insulators. Keywords: Bethe-Salpeter equation,
    [Show full text]
  • Low-Scaling Many-Body Perturbation Theory for Nanoscopic Systems
    Low-Scaling Many-Body Perturbation Theory for Nanoscopic Systems Dissertation zur Erlangung der naturwissenschaftlichen Doktorwurde¨ (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultat¨ der Universitat¨ Zurich¨ von Jan Wilhelm aus Deutschland Promotionskommission Prof. Dr. Jurg¨ Hutter (Vorsitz) Prof. Dr. Jurg¨ Osterwalder Dr. Joost VandeVondele Zurich,¨ 2017 Abstract Many-body perturbation theory in the form of the GW approximation has become the most widely used quantum mechanical tool to predict bandgaps of molecules and materials. Theoretical knowl- edge of the bandgap is essential to support the design of novel electric devices and photovoltaic materials. A drawback of GW is its high computational cost which increases with the fourth order of the system size N, O(N4). In this thesis, a novel efficient GW algorithm based on Gaussian basis functions is presented where the computational cost scales as O(N3) with the system size. The algorithm is based on a new cubic-scaling method for the Random Phase Approximation (RPA) for the correlation energy. The scaling of RPA can be reduced from O(N4) to O(N3) if it is reformulated in the Gaussian basis together with the resolution of the identity (RI) with the overlap metric. Moreover, imaginary time and imaginary frequency integration techniques as well as sparse linear algebra are necessary for cubic-scaling RPA. Cubic-scaling RPA has been applied to two thousand water molecules using a correlation-consistent triple-zeta quality basis which is the largest RPA calculation that has been reported in the literature so far. All algorithms presented in this thesis have been designed in a way that they could be implemented for massively parallel use on modern supercomputer infrastructures which is the key for the application to large systems.
    [Show full text]
  • CP2K: an Electronic Structure and Molecular Dynamics Software Package - Quickstep: Efficient and Accurate Electronic Structure Calculations
    Research Collection Journal Article CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations Author(s): Kühne, Thomas D.; Iannuzzi, Marcella; Del Ben, Mauro; Rybkin, Vladimir V.; Seewald, Patrick; Stein, Frederick; Laino, Teodoro; Khaliullin, Rustam Z.; Schütt, Ole; Schiffmann, Florian; Golze, Dorothea; Wilhelm, Jan; Chulkov, Sergey; Bani-Hashemian, Mohammad H.; Weber, Valery; Borštnik, Urban; Taillefumier, Mathieu; Jakobovits, Alice S.; Lazzaro, Alfio; Pabst, Hans; Müller, Tiziano; Schade, Robert; Guidon, Manuel; Andermatt, Samuel; Holmberg, Nico; Schenter, Gregory K.; Hehn, Anna; Bussy, Augustin; Belleflamme, Fabian; Tabacchi, Gloria; Glöss, Andreas; Lass, Michael; Bethune, Iain; Mundy, Christopher J.; Plessl, Christian; Watkins, Matt; VandeVondele, Joost; Krack, Matthias; Hutter, Jürg Publication Date: 2020-05-21 Permanent Link: https://doi.org/10.3929/ethz-b-000420659 Originally published in: The Journal of Chemical Physics 152(19), http://doi.org/10.1063/5.0007045 Rights / License: Creative Commons Attribution 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations Cite as: J. Chem. Phys. 152, 194103 (2020); https://doi.org/10.1063/5.0007045 Submitted: 10 March 2020 . Accepted: 22 April 2020 . Published Online: 19 May 2020 Thomas D. Kühne , Marcella Iannuzzi , Mauro Del Ben, Vladimir V. Rybkin , Patrick Seewald, Frederick Stein, Teodoro Laino , Rustam Z. Khaliullin , Ole Schütt, Florian Schiffmann , Dorothea Golze , Jan Wilhelm, Sergey Chulkov, Mohammad Hossein Bani-Hashemian , Valéry Weber, Urban Borštnik, Mathieu Taillefumier, Alice Shoshana Jakobovits , Alfio Lazzaro, Hans Pabst, Tiziano Müller, Robert Schade , Manuel Guidon, Samuel Andermatt, Nico Holmberg, Gregory K.
    [Show full text]
  • Many-Body Perturbation Theory: (1) the GW Approximation
    Many-Body Perturbation Theory: (1) The GW Approximation Michael Rohlfing Fachbereich Physik Universit¨atOsnabr¨uck • Motivation MASP, June 29, 2012 • Excited states: electrons, holes • Equation of motion • Approximations and tricks • Examples Relevance of excited electronic states • Spectroscopy: – Electrons: Photoemission / Inverse PE / Tunneling spectroscopy – Light / Electron-hole pairs: Absorption / Emission / Reflectivity • Characterisation of systems: ••••••• – Geometric Structure • • • • • – Defects / interfaces / ... • ••• • ⇐⇒ • • • • • – Macroscopic signature of • • • • •• • microscopic details B B V B ¡ B • Short-time dynamics: B B¡ B B B hω¯ BBN – Electrons (femtoseconds) BN – Atomic structure (picoseconds) V V • Technological relevance / Materials science: – Optoelectronics / Molecular electronics / Photovoltaics – Manipulation of bonds / Photochemistry Density-Functional Theory: from 1960’s until today 1950’s/60’s: Energy of electronic systems (homogeneous electron gas, inhomogeneous systems), including many-body effects (exchange, correlation) Hohenberg, Kohn, Sham and others 1960’s: interrelation between wave function, Z 2 3 3 potential, energy, single-particle density ρ(r) = |Ψ(r, r2, .., rN )| d r2...d rN , ”single-particle orbitals” ψn(r) and ”single-particle energies” ²n =⇒ Intuitive understanding via effective single-particle quantum mechanics Technical issues (1970’s-today): Pseudopotentials, basis sets, iterations, geometry optimization, molecular dynamics, ... Approximation of Exchange+Correlation (1970’s-today): Local-density
    [Show full text]
  • Arxiv:2003.03868V2 [Physics.Chem-Ph] 11 Mar 2020 Methods Using the Gaussian and Plane Wave Approach and Its Augmented All-Electron Extension
    CP2K: An Electronic Structure and Molecular Dynamics Software Package Quickstep: Efficient and Accurate Electronic Structure Calculations Thomas D. K¨uhne,1 Marcella Iannuzzi,2 Mauro Del Ben,3 Vladimir V. Rybkin,2 Patrick Seewald,2 Frederick Stein,2 Teodoro Laino,4 Rustam Z. Khaliullin,5 Ole Sch¨utt,6 Florian Schiffmann,7 Dorothea Golze,8 Jan Wilhelm,9 Sergey Chulkov,10 Mohammad Hossein Bani-Hashemian,11 Val´eryWeber,4 Urban Borˇstnik,12 Mathieu Taillefumier,13 Alice Shoshana Jakobovits,13 Alfio Lazzaro,14 Hans Pabst,15 Tiziano M¨uller,2 Robert Schade,16 Manuel Guidon,2 Samuel Andermatt,11 Nico Holmberg,17 Gregory K. Schenter,18 Anna Hehn,2 Augustin Bussy,2 Fabian Belleflamme,2 Gloria Tabacchi,19 Andreas Gl¨oß,20 Michael Lass,16 Iain Bethune,21 Christopher J. 18 16 10 13 22, 2 Mundy, Christian Plessl, Matt Watkins, Joost VandeVondele, Matthias Krack, ∗ and J¨urgHutter 1Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany 2Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Z¨urich, Switzerland 3Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 4IBM Research - Zurich, S¨aumerstrasse 4, CH-8803 R¨uschlikon,Switzerland 5Department of Chemistry, McGill University, CH-801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada 6Department of Materials, ETH Z¨urich,CH-8092 Z¨urich,Switzerland 7Centre of Policy Studies, Victoria University, Melbourne, Australia
    [Show full text]