Hilbert Spaces and Fourier Series
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Construction of Determinantal Representation of Trigonometric Polynomials ∗ Mao-Ting Chien A, ,1, Hiroshi Nakazato B
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Linear Algebra and its Applications 435 (2011) 1277–1284 Contents lists available at ScienceDirect Linear Algebra and its Applications journal homepage: www.elsevier.com/locate/laa Construction of determinantal representation of trigonometric polynomials ∗ Mao-Ting Chien a, ,1, Hiroshi Nakazato b a Department of Mathematics, Soochow University, Taipei 11102, Taiwan b Department of Mathematical Sciences, Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan ARTICLE INFO ABSTRACT Article history: For a pair of n × n Hermitian matrices H and K, a real ternary homo- Received 6 December 2010 geneous polynomial defined by F(t, x, y) = det(tIn + xH + yK) is Accepted 10 March 2011 hyperbolic with respect to (1, 0, 0). The Fiedler conjecture (or Lax Available online 2 April 2011 conjecture) is recently affirmed, namely, for any real ternary hyper- SubmittedbyR.A.Brualdi bolic polynomial F(t, x, y), there exist real symmetric matrices S1 and S such that F(t, x, y) = det(tI + xS + yS ).Inthispaper,we AMS classification: 2 n 1 2 42A05 give a constructive proof of the existence of symmetric matrices for 14Q05 the ternary forms associated with trigonometric polynomials. 15A60 © 2011 Elsevier Inc. All rights reserved. Keywords: Hyperbolic polynomial Bezoutian matrix Trigonometric polynomial Numerical range 1. Introduction Let p(x) = p(x1, x2,...,xm) be a real homogeneous polynomial of degree n. The polynomial p(x) is called hyperbolic with respect to a real vector e = (e1, e2,...,em) if p(e) = 0, and for all vectors w ∈ Rm linearly independent of e, the univariate polynomial t → p(w − te) has all real roots. -
HARMONIC ANALYSIS AS the EXPLOITATION of SYMMETRY-A HISTORICAL SURVEY Preface 1. Introduction 2. the Characters of Finite Groups
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 3, Number 1, July 1980 HARMONIC ANALYSIS AS THE EXPLOITATION OF SYMMETRY-A HISTORICAL SURVEY BY GEORGE W. MACKEY CONTENTS Preface 1. Introduction 2. The Characters of Finite Groups and the Connection with Fourier Analysis 3. Probability Theory Before the Twentieth Century 4. The Method of Generating Functions in Probability Theory 5. Number Theory Before 1801 6. The Work of Gauss and Dirichlet and the Introduction of Characters and Harmonic Analysis into Number Theory 7. Mathematical Physics Before 1807 8. The Work of Fourier, Poisson, and Cauchy, and Early Applications of Harmonic Analysis to Physics 9. Harmonic Analysis, Solutions by Definite Integrals, and the Theory of Functions of a Complex Variable 10. Elliptic Functions and Early Applications of the Theory of Functions of a Complex Variable to Number Theory 11. The Emergence of the Group Concept 12. Introduction to Sections 13-16 13. Thermodynamics, Atoms, Statistical Mechanics, and the Old Quantum Theory 14. The Lebesgue Integral, Integral Equations, and the Development of Real and Abstract Analysis 15. Group Representations and Their Characters 16. Group Representations in Hilbert Space and the Discovery of Quantum Mechanics 17. The Development of the Theory of Unitary Group Representations Be tween 1930 and 1945 Reprinted from Rice University Studies (Volume 64, Numbers 2 and 3, Spring- Summer 1978, pages 73 to 228), with the permission of the publisher. 1980 Mathematics Subject Classification. Primary 01,10,12, 20, 22, 26, 28, 30, 35, 40, 42, 43, 45,46, 47, 60, 62, 70, 76, 78, 80, 81, 82. -
7: Inner Products, Fourier Series, Convolution
7: FOURIER SERIES STEVEN HEILMAN Contents 1. Review 1 2. Introduction 1 3. Periodic Functions 2 4. Inner Products on Periodic Functions 3 5. Trigonometric Polynomials 5 6. Periodic Convolutions 7 7. Fourier Inversion and Plancherel Theorems 10 8. Appendix: Notation 13 1. Review Exercise 1.1. Let (X; h·; ·i) be a (real or complex) inner product space. Define k·k : X ! [0; 1) by kxk := phx; xi. Then (X; k·k) is a normed linear space. Consequently, if we define d: X × X ! [0; 1) by d(x; y) := ph(x − y); (x − y)i, then (X; d) is a metric space. Exercise 1.2 (Cauchy-Schwarz Inequality). Let (X; h·; ·i) be a complex inner product space. Let x; y 2 X. Then jhx; yij ≤ hx; xi1=2hy; yi1=2: Exercise 1.3. Let (X; h·; ·i) be a complex inner product space. Let x; y 2 X. As usual, let kxk := phx; xi. Prove Pythagoras's theorem: if hx; yi = 0, then kx + yk2 = kxk2 + kyk2. 1 Theorem 1.4 (Weierstrass M-test). Let (X; d) be a metric space and let (fj)j=1 be a sequence of bounded real-valued continuous functions on X such that the series (of real num- P1 P1 bers) j=1 kfjk1 is absolutely convergent. Then the series j=1 fj converges uniformly to some continuous function f : X ! R. 2. Introduction A general problem in analysis is to approximate a general function by a series that is relatively easy to describe. With the Weierstrass Approximation theorem, we saw that it is possible to achieve this goal by approximating compactly supported continuous functions by polynomials. -
Trigonometric Interpolation and Quadrature in Perturbed Points∗
SIAM J. NUMER.ANAL. c 2017 Society for Industrial and Applied Mathematics Vol. 55, No. 5, pp. 2113{2122 TRIGONOMETRIC INTERPOLATION AND QUADRATURE IN PERTURBED POINTS∗ ANTHONY P. AUSTINy AND LLOYD N. TREFETHENz Abstract. The trigonometric interpolants to a periodic function f in equispaced points converge if f is Dini-continuous, and the associated quadrature formula, the trapezoidal rule, converges if f is continuous. What if the points are perturbed? With equispaced grid spacing h, let each point be perturbed by an arbitrary amount ≤ αh, where α 2 [0; 1=2) is a fixed constant. The Kadec 1/4 theorem of sampling theory suggests there may be trouble for α ≥ 1=4. We show that convergence of both the interpolants and the quadrature estimates is guaranteed for all α < 1=2 if f is twice continuously differentiable, with the convergence rate depending on the smoothness of f. More precisely, it is enough for f to have 4α derivatives in a certain sense, and we conjecture that 2α derivatives are enough. Connections with the Fej´er{Kalm´artheorem are discussed. Key words. trigonometric interpolation, quadrature, Lebesgue constant, Kadec 1/4 theorem, Fej´er–Kalm´artheorem, sampling theory AMS subject classifications. 42A15, 65D32, 94A20 DOI. 10.1137/16M1107760 1. Introduction and summary of results. The basic question of robustness of mathematical algorithms is \What happens if the data are perturbed?" Yet little literature exists on the effect on interpolants, or on quadratures, of perturbing the interpolation points. The questions addressed in this paper arise in two almost equivalent settings: in- terpolation by algebraic polynomials (e.g., in Gauss or Chebyshev points) and periodic interpolation by trigonometric polynomials (e.g., in equispaced points). -
Harmonic Analysis from Fourier to Wavelets
STUDENT MATHEMATICAL LIBRARY ⍀ IAS/PARK CITY MATHEMATICAL SUBSERIES Volume 63 Harmonic Analysis From Fourier to Wavelets María Cristina Pereyra Lesley A. Ward American Mathematical Society Institute for Advanced Study Harmonic Analysis From Fourier to Wavelets STUDENT MATHEMATICAL LIBRARY IAS/PARK CITY MATHEMATICAL SUBSERIES Volume 63 Harmonic Analysis From Fourier to Wavelets María Cristina Pereyra Lesley A. Ward American Mathematical Society, Providence, Rhode Island Institute for Advanced Study, Princeton, New Jersey Editorial Board of the Student Mathematical Library Gerald B. Folland Brad G. Osgood (Chair) Robin Forman John Stillwell Series Editor for the Park City Mathematics Institute John Polking 2010 Mathematics Subject Classification. Primary 42–01; Secondary 42–02, 42Axx, 42B25, 42C40. The anteater on the dedication page is by Miguel. The dragon at the back of the book is by Alexander. For additional information and updates on this book, visit www.ams.org/bookpages/stml-63 Library of Congress Cataloging-in-Publication Data Pereyra, Mar´ıa Cristina. Harmonic analysis : from Fourier to wavelets / Mar´ıa Cristina Pereyra, Lesley A. Ward. p. cm. — (Student mathematical library ; 63. IAS/Park City mathematical subseries) Includes bibliographical references and indexes. ISBN 978-0-8218-7566-7 (alk. paper) 1. Harmonic analysis—Textbooks. I. Ward, Lesley A., 1963– II. Title. QA403.P44 2012 515.2433—dc23 2012001283 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. -
Extremal Positive Trigonometric Polynomials Dimitar K
APPROXIMATION THEORY: A volume dedicated to Blagovest Sendov 2002, 1-24 Extremal Positive Trigonometric Polynomials Dimitar K. Dimitrov ∗ In this paper we review various results about nonnegative trigono- metric polynomials. The emphasis is on their applications in Fourier Series, Approximation Theory, Function Theory and Number The- ory. 1. Introduction There are various reasons for the interest in the problem of constructing nonnegative trigonometric polynomials. Among them are: Ces`aromeans and Gibbs’ phenomenon of the the Fourier series, approximation theory, univalent functions and polynomials, positive Jacobi polynomial sums, or- thogonal polynomials on the unit circle, zero-free regions for the Riemann zeta-function, just to mention a few. In this paper we summarize some of the recent results on nonnegative trigonometric polynomials. Needless to say, we shall not be able to cover all the results and applications. Because of that this short review represents our personal taste. We restrict ourselves to the results and problems we find interesting and challenging. One of the earliest examples of nonnegative trigonometric series is the Poisson kernel ∞ X 1 − ρ2 1 + 2 ρk cos kθ = , −1 < ρ < 1, (1.1) 1 − 2ρ cos θ + ρ2 k=1 which, as it was pointed out by Askey and Gasper [8], was also found but not published by Gauss [30]. The problem of constructing nonnegative trigonometric polynomials was inspired by the development of the theory ∗Research supported by the Brazilian science foundation FAPESP under Grant No. 97/06280-0 and CNPq under Grant No. 300645/95-3 2 Positive Trigonometric Polynomials of Fourier series and by the efforts for giving a simple proof of the Prime Number Theorem. -
Lecture Notes: Harmonic Analysis
Lecture notes: harmonic analysis Russell Brown Department of mathematics University of Kentucky Lexington, KY 40506-0027 August 14, 2009 ii Contents Preface vii 1 The Fourier transform on L1 1 1.1 Definition and symmetry properties . 1 1.2 The Fourier inversion theorem . 9 2 Tempered distributions 11 2.1 Test functions . 11 2.2 Tempered distributions . 15 2.3 Operations on tempered distributions . 17 2.4 The Fourier transform . 20 2.5 More distributions . 22 3 The Fourier transform on L2. 25 3.1 Plancherel's theorem . 25 3.2 Multiplier operators . 27 3.3 Sobolev spaces . 28 4 Interpolation of operators 31 4.1 The Riesz-Thorin theorem . 31 4.2 Interpolation for analytic families of operators . 36 4.3 Real methods . 37 5 The Hardy-Littlewood maximal function 41 5.1 The Lp-inequalities . 41 5.2 Differentiation theorems . 45 iii iv CONTENTS 6 Singular integrals 49 6.1 Calder´on-Zygmund kernels . 49 6.2 Some multiplier operators . 55 7 Littlewood-Paley theory 61 7.1 A square function that characterizes Lp ................... 61 7.2 Variations . 63 8 Fractional integration 65 8.1 The Hardy-Littlewood-Sobolev theorem . 66 8.2 A Sobolev inequality . 72 9 Singular multipliers 77 9.1 Estimates for an operator with a singular symbol . 77 9.2 A trace theorem. 87 10 The Dirichlet problem for elliptic equations. 91 10.1 Domains in Rn ................................ 91 10.2 The weak Dirichlet problem . 99 11 Inverse Problems: Boundary identifiability 103 11.1 The Dirichlet to Neumann map . 103 11.2 Identifiability . 107 12 Inverse problem: Global uniqueness 117 12.1 A Schr¨odingerequation . -
Stepanov and Weyl Almost Periodic Functions on Locally Compact
STEPANOV AND WEYL ALMOST PERIODICITY IN LOCALLY COMPACT ABELIAN GROUPS TIMO SPINDELER Abstract. We study Stepanov and Weyl almost periodic functions on locally compact Abelian groups, which naturally appear in the theory of aperiodic order. 1. Introduction Almost periodic functions are natural generalisations of periodic functions, and they ap- pear in many different areas of mathematics. They are well studied objects on the real line because they are used in boundary value problems for differential equations [13]. A system- atic treatment of these functions can be found in [5]. Also, there is a well established theory for Bohr almost periodic functions and weakly almost periodic functions on locally compact Abelian groups [6, 8]. Bohr almost periodic functions turned out to be an important tool in harmonic analysis. Firstly, they are used to study finite-dimensional representations of locally compact Abelian groups [7, Ch. 16.2]. Secondly, they describe those autocorrelations which give rise to a pure point diffraction measure; more on that below. However, recent progress in the study of aperiodic order and dynamical systems [10, 11, 18] makes it clear that we also need to aim at a better understanding of Stepanov and Weyl almost periodic functions on locally compact Abelian groups. Let us be more precise. Meyer sets and cut and project sets are important tools in the study of aperiodic order, since they are used to model quasicrystals. If µ denotes a translation bounded measure (e.g. the Dirac comb of a Meyer set), then the diffraction measure γµ, which −1 is the Fourier transform of the autocorrelation γµ := limn An (µ A µ A ), indicates →∞ | | | n ∗ | n how (dis)ordered the system that µ models is [1]; note that (An)n∈N is a suitable averagingc sequence. -
Numerical Methods I Trigonometric Polynomials and the FFT
Numerical Methods I Trigonometric Polynomials and the FFT Aleksandar Donev Courant Institute, NYU1 [email protected] 1MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 Nov 13th, 2014 A. Donev (Courant Institute) Lecture X 11/2014 1 / 41 Outline 1 Trigonometric Orthogonal Polynomials 2 Fast Fourier Transform 3 Applications of FFT 4 Wavelets 5 Conclusions A. Donev (Courant Institute) Lecture X 11/2014 2 / 41 Trigonometric Orthogonal Polynomials Periodic Functions Consider now interpolating / approximating periodic functions defined on the interval I = [0; 2π]: 8x f (x + 2π) = f (x); as appear in practice when analyzing signals (e.g., sound/image processing). Also consider only the space of complex-valued square-integrable 2 functions L2π, Z 2π 2 2 2 8f 2 Lw :(f ; f ) = kf k = jf (x)j dx < 1: 0 Polynomial functions are not periodic and thus basis sets based on orthogonal polynomials are not appropriate. Instead, consider sines and cosines as a basis function, combined together into complex exponential functions ikx φk (x) = e = cos(kx) + i sin(kx); k = 0; ±1; ±2;::: A. Donev (Courant Institute) Lecture X 11/2014 3 / 41 Trigonometric Orthogonal Polynomials Fourier Basis ikx φk (x) = e ; k = 0; ±1; ±2;::: It is easy to see that these are orhogonal with respect to the continuous dot product Z 2π Z 2π ? (φj ; φk ) = φj (x)φk (x)dx = exp [i(j − k)x] dx = 2πδij x=0 0 The complex exponentials can be shown to form a complete 2 trigonometric polynomial basis for the space L2π, i.e., 1 2 X ^ ikx 8f 2 L2π : f (x) = fk e ; k=−∞ where the Fourier coefficients can be computed for any frequency or wavenumber k using: Z 2π (f ; φk ) 1 −ikx f^k = = : f (x)e dx: 2π 2π 0 A. -
Harmonic Analysis
אוניברסיטת תל אביב University Aviv Tel הפקולטה להנדסה Engineering of Faculty בית הספר להנדסת חשמל Engineering Electrical of School Harmonic Analysis Fall Semester LECTURER Nir Sharon Office: 03-640-7729 Location: Room 14M, Schreiber Bldg E-mail: [email protected] COURSE DESCRIPTION The aim of this course is to introduce the fundamentals of Harmonic analysis. In particular, we focus on three main subjects: the theory of Fourier series, approximation in Hilbert spaces by a general orthogonal system, and the basics of the theory of Fourier transform. Harmonic analysis is the study of objects (functions, measures, etc.), defined on different mathematical spaces. Specifically, we study the question of finding the "elementary components" of functions, and how to analyse a given function based on its elementary components. The trigonometric system of cosine and sine functions plays a major role in our presentation of the theory. The course is intended for undergraduate students of engineering, mathematics and physics, although we deal almost exclusively with aspects of Fourier analysis that are usefull in physics and engeneering rather than those of pure mathematics. We presume knowledge in: linear algebra, calculus, elementary theory of ordinary differential equations, and some acquaintance with the system of complex numbers. COURSE TOPICS Week 1: Fourier Series of piecewise continuous functions on a symmetrical segment. Complex and real representations of the Fourier Series. Week 2: Bessel Inequality, the Riemann-Lebesgue Lemma, partial -
FOURIER ANALYSIS 1. the Best Approximation Onto Trigonometric
FOURIER ANALYSIS ERIK LØW AND RAGNAR WINTHER 1. The best approximation onto trigonometric polynomials Before we start the discussion of Fourier series we will review some basic results on inner–product spaces and orthogonal projections mostly presented in Section 4.6 of [1]. 1.1. Inner–product spaces. Let V be an inner–product space. As usual we let u, v denote the inner–product of u and v. The corre- sponding normh isi given by v = v, v . k k h i A basic relation between the inner–productp and the norm in an inner– product space is the Cauchy–Scwarz inequality. It simply states that the absolute value of the inner–product of u and v is bounded by the product of the corresponding norms, i.e. (1.1) u, v u v . |h i|≤k kk k An outline of a proof of this fundamental inequality, when V = Rn and is the standard Eucledian norm, is given in Exercise 24 of Section 2.7k·k of [1]. We will give a proof in the general case at the end of this section. Let W be an n dimensional subspace of V and let P : V W be the corresponding projection operator, i.e. if v V then w∗ =7→P v W is the element in W which is closest to v. In other∈ words, ∈ v w∗ v w for all w W. k − k≤k − k ∈ It follows from Theorem 12 of Chapter 4 of [1] that w∗ is characterized by the conditions (1.2) v P v, w = v w∗, w =0 forall w W. -
Structure of Fourier Exponents of Almost Periodic Functions and Periodicity of Almost Periodic Functions
Mathematica Bohemica Alexandr Fischer Structure of Fourier exponents of almost periodic functions and periodicity of almost periodic functions Mathematica Bohemica, Vol. 121 (1996), No. 3, 249–262 Persistent URL: http://dml.cz/dmlcz/125993 Terms of use: © Institute of Mathematics AS CR, 1996 Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz 121 (1996) MATHEMATICA BOHEMICA No. 3, 249-262 STRUCTURE OF FOURIER EXPONENTS OF ALMOST PERIODIC FUNCTIONS AND PERIODICITY OF ALMOST PERIODIC FUNCTIONS ALEXANDR FISCHER, Praha (Received October 12, 1993) Summary. The paper deals with almost periodic functions which are limits of sequences of continuous periodic functions, and determines the structure of their Fourier exponents and their ranges. It is shown that the class CP(&) of continuous periodic functions is not densely distributed in the space AP(Sf). Keywords: almost periodicity (Bohr), Fourier coefficient, Fourier exponent, Bochner transformation AMS classification: 42A75 1. INTRODUCTION 1.1. Preliminaries. Oscillating motions enjoy a privileged position in many technical as well as theoretical domains. The central role is played here by peri odic motions represented by periodic functions. Unfortunately, the class of periodic functions is not linear since the sum of two periodic functions, which do not have a non-zero period in common, gives rise to a non-periodic function. This lack of linearity is circumvented by introducing almost periodic functions.