HARMONIC ANALYSIS AS the EXPLOITATION of SYMMETRY-A HISTORICAL SURVEY Preface 1. Introduction 2. the Characters of Finite Groups

Total Page:16

File Type:pdf, Size:1020Kb

HARMONIC ANALYSIS AS the EXPLOITATION of SYMMETRY-A HISTORICAL SURVEY Preface 1. Introduction 2. the Characters of Finite Groups BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 3, Number 1, July 1980 HARMONIC ANALYSIS AS THE EXPLOITATION OF SYMMETRY-A HISTORICAL SURVEY BY GEORGE W. MACKEY CONTENTS Preface 1. Introduction 2. The Characters of Finite Groups and the Connection with Fourier Analysis 3. Probability Theory Before the Twentieth Century 4. The Method of Generating Functions in Probability Theory 5. Number Theory Before 1801 6. The Work of Gauss and Dirichlet and the Introduction of Characters and Harmonic Analysis into Number Theory 7. Mathematical Physics Before 1807 8. The Work of Fourier, Poisson, and Cauchy, and Early Applications of Harmonic Analysis to Physics 9. Harmonic Analysis, Solutions by Definite Integrals, and the Theory of Functions of a Complex Variable 10. Elliptic Functions and Early Applications of the Theory of Functions of a Complex Variable to Number Theory 11. The Emergence of the Group Concept 12. Introduction to Sections 13-16 13. Thermodynamics, Atoms, Statistical Mechanics, and the Old Quantum Theory 14. The Lebesgue Integral, Integral Equations, and the Development of Real and Abstract Analysis 15. Group Representations and Their Characters 16. Group Representations in Hilbert Space and the Discovery of Quantum Mechanics 17. The Development of the Theory of Unitary Group Representations Be­ tween 1930 and 1945 Reprinted from Rice University Studies (Volume 64, Numbers 2 and 3, Spring- Summer 1978, pages 73 to 228), with the permission of the publisher. 1980 Mathematics Subject Classification. Primary 01,10,12, 20, 22, 26, 28, 30, 35, 40, 42, 43, 45,46, 47, 60, 62, 70, 76, 78, 80, 81, 82. Copyright 1978 by Rice University 543 License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 544 G. W. MACKEY 18. Harmonie Analysis in Probability; Ergodic Theory and the Generalized Harmonie Analysis of Norbert Wiener 19. Early Application of Group Representations to Number Theory—The Work of Artin and Hecke 20. Idèles, Adèles, and Applications of Pontrjagin-van Kampen Duality to Number Theory, Connections with Almost-Periodic Functions, and the Work of Hardy and Littlewood 21. The Development of the Theory of Unitary Group Representations af­ ter 1945—A Brief Sketch with Emphasis on the First Decade 22. Applications of the General Theory 23. Summary and Conclusion Notes Bibliography PREFACE This paper is an expansion (by a factor of twelve) of two talks that I gave in the spring of 1977 at the Rice University Conference on the history of analysis. I am not a historian in the usual professional sense of the word and I did not pretend to be reporting on the results of a careful scholarly investi­ gation. My talks consisted rather of an informal account of the knowledge and impressions I have gained over the years as I have tried to satisfy my curiosity about the origins and interrelationships of the parts of mathemat­ ics and science which most interest me. Moreover, in contradistinction to most (if not all) professional historians of science and mathematics, I was much more interested in getting an overall approximate idea of how our present understanding unfolded than in studying the fine structure of par­ ticular discoveries. I totally ignored such questions as false starts, the thought processes of individual scientists, and the intellectual climate of the times. The question constantly in my mind was this: How much of what we understand now had they grasped by then? When I began in early August 1977 to concentrate on the job of writing up my talks for publication, I found that I could not say what I wanted to say without making a number of assertions about matters of fact that were not always easy to verify but whose exactitude was at most marginally rele­ vant to the story I was trying to tell. I made some attempt to make only cor­ rect assertions (sometimes by being deliberately vague) but my time and pa­ tience were limited and I am sure I did not always succeed. The length of the finished product is not all due to striving for local his­ torical accuracy (this would require at least fifty books), but rather to my desire to make clear the relationship of a large part of mathematics to my License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use HARMONIC ANALYSIS AS EXPLOITATION OF SYMMETRY 545 main theme. To this end I composed a large number of brief introductory expositions, which I hope the average mathematician will find intelligible. It is these expositions and their connectedness in time and intellectual content which is the real point of the paper.l 1. INTRODUCTION In this article I shall sketch the history, applications, and ramifications of a certain method. For want of a better word I shall call it the method of har­ monic analysis, although I am aware that many people use these words to denote a different class of generalizations of the classical harmonic analysis of Fourier. In crude terms the method may be described as follows: Let S be a "space" or "set" and let G be a group of one-to-one transformations of S onto itself. Let [s]x denote the transform of s in S by x in G. Ordinarily S will have further structure which will be preserved by the transformations of G so that the transformations s —• [s]x are symmetries of S. It will be con­ venient to allow members of G other than the identity e to define the identi­ ty map so that some quotient group G/N is the actual transformation group. Now let 3 be some vector space of complex valued functions on S which is G invariant in the sense that s — f([s]x), the translate of ƒ by JC, is in S whenever ƒ is in 3. Then for each x in G, the mapping ƒ — g where g(s) = AUM is a linear transformation Vx of 3 onto 3 and V^ = VxVy for all* and y in G. The mapping x — Vx is thus an example of what is called a (lin­ ear) representation of the group G. More generally, a (linear) representation of a group G is by definition any homomorphism x — Wx of G into the group of all bijective linear transformations of some vector space *p (W). The method I propose to discuss in this article consists (in its simplest form) in attempting to find subspaces Mx of the space 3 such that (1) VX(MX) = Mx for all x and X. (2) Every element ƒ in 3 is uniquely a finite or infinite sum ƒ = Lfx where each/xeMx. (3) The subspaces Mx are either not susceptible of further decomposition or are somehow much simpler in structure than 3. Of course, one must have a topology in *J in order to make sense of infinite sums. More generally one also considers "continuous direct sums" or direct integrals and vector- valued as well as complex-valued functions. Of course, each Mx is the space of a new representation ï^, which is a so-called subrepresentation, and one speaks of the direct sum or direct integral decomposition of V. It turns out that the decomposition of functions in 3 into sums and integrals of func­ tions associated with the components of F is a decomposition that greatly simplifies many problems. License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 546 G. W. MACKEY 2. THE CHARACTERS OF FINITE COMMUTATIVE GROUPS AND THE CONNECTION WITH FOURIER ANALYSIS Let Wbc a (linear) representation of the group G. If $>(W) is one-dimen­ sional then each Wx is some complex number x(x) times the identity, and x —x(x)I is a representation of G if and only if x(xy) = x(*)xÜ0 for all JC and y in G. When G is a finite commutative group, such functions x are called characters. It is easy to see that the representations x -* x(*) are the only representations of G that are irreducible in the sense that no proper subrep- resentations exist. Let 7i (G) be the vector space of all complex- valued func­ tions on G and let VJXy) = f(yx). Then Kis a representation of G such that £>(K) = S(G) and the one-dimensional subspace generated by each character is clearly an invariant subspace. Indeed every one-dimensional in­ variant subspace is of this form, and one shows easily that Kis a direct sum of one-dimensional representations each associated with a distinct character X. Thus every member ƒ of 3 is uniquely of the form EL cxX(x) X€G where G denotes the set of all characters on G. Evidently the product of two characters is again such, and the set G of all characters is itself a finite com­ mutative group. Since x(x") = x(*)n = 1 when n is the order of x, it follows that | x(x) | = 1 for all x and all x, so x~* = x"for all x« Consider £x(*). This xeG sum is clearly equal to ExOoO = XÖ0 ^>x(x). Thus whenever xOO ^ 1, we xeG xeG have Ex(x) = 0. It follows that £xi(*)x2(*) = 0 whenever xi ^ X2, so that xeG xeG the characters of G are orthogonal with respect to the inner product f*g- £ƒ(*)£(*). xeG Now consider the expansion formula (2.1) fix) = £ CxX(x) X€G Multiplying each side by x '(*) summing over G and using the orthogonality of the characters leads at once to a formula for cx '. (2.2) CX=-JG) E^)XW v ' xeG where o(G) is the number of elements in G.
Recommended publications
  • Harmonic Analysis from Fourier to Wavelets
    STUDENT MATHEMATICAL LIBRARY ⍀ IAS/PARK CITY MATHEMATICAL SUBSERIES Volume 63 Harmonic Analysis From Fourier to Wavelets María Cristina Pereyra Lesley A. Ward American Mathematical Society Institute for Advanced Study Harmonic Analysis From Fourier to Wavelets STUDENT MATHEMATICAL LIBRARY IAS/PARK CITY MATHEMATICAL SUBSERIES Volume 63 Harmonic Analysis From Fourier to Wavelets María Cristina Pereyra Lesley A. Ward American Mathematical Society, Providence, Rhode Island Institute for Advanced Study, Princeton, New Jersey Editorial Board of the Student Mathematical Library Gerald B. Folland Brad G. Osgood (Chair) Robin Forman John Stillwell Series Editor for the Park City Mathematics Institute John Polking 2010 Mathematics Subject Classification. Primary 42–01; Secondary 42–02, 42Axx, 42B25, 42C40. The anteater on the dedication page is by Miguel. The dragon at the back of the book is by Alexander. For additional information and updates on this book, visit www.ams.org/bookpages/stml-63 Library of Congress Cataloging-in-Publication Data Pereyra, Mar´ıa Cristina. Harmonic analysis : from Fourier to wavelets / Mar´ıa Cristina Pereyra, Lesley A. Ward. p. cm. — (Student mathematical library ; 63. IAS/Park City mathematical subseries) Includes bibliographical references and indexes. ISBN 978-0-8218-7566-7 (alk. paper) 1. Harmonic analysis—Textbooks. I. Ward, Lesley A., 1963– II. Title. QA403.P44 2012 515.2433—dc23 2012001283 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.
    [Show full text]
  • Lecture Notes: Harmonic Analysis
    Lecture notes: harmonic analysis Russell Brown Department of mathematics University of Kentucky Lexington, KY 40506-0027 August 14, 2009 ii Contents Preface vii 1 The Fourier transform on L1 1 1.1 Definition and symmetry properties . 1 1.2 The Fourier inversion theorem . 9 2 Tempered distributions 11 2.1 Test functions . 11 2.2 Tempered distributions . 15 2.3 Operations on tempered distributions . 17 2.4 The Fourier transform . 20 2.5 More distributions . 22 3 The Fourier transform on L2. 25 3.1 Plancherel's theorem . 25 3.2 Multiplier operators . 27 3.3 Sobolev spaces . 28 4 Interpolation of operators 31 4.1 The Riesz-Thorin theorem . 31 4.2 Interpolation for analytic families of operators . 36 4.3 Real methods . 37 5 The Hardy-Littlewood maximal function 41 5.1 The Lp-inequalities . 41 5.2 Differentiation theorems . 45 iii iv CONTENTS 6 Singular integrals 49 6.1 Calder´on-Zygmund kernels . 49 6.2 Some multiplier operators . 55 7 Littlewood-Paley theory 61 7.1 A square function that characterizes Lp ................... 61 7.2 Variations . 63 8 Fractional integration 65 8.1 The Hardy-Littlewood-Sobolev theorem . 66 8.2 A Sobolev inequality . 72 9 Singular multipliers 77 9.1 Estimates for an operator with a singular symbol . 77 9.2 A trace theorem. 87 10 The Dirichlet problem for elliptic equations. 91 10.1 Domains in Rn ................................ 91 10.2 The weak Dirichlet problem . 99 11 Inverse Problems: Boundary identifiability 103 11.1 The Dirichlet to Neumann map . 103 11.2 Identifiability . 107 12 Inverse problem: Global uniqueness 117 12.1 A Schr¨odingerequation .
    [Show full text]
  • Harmonic Analysis
    אוניברסיטת תל אביב University Aviv Tel הפקולטה להנדסה Engineering of Faculty בית הספר להנדסת חשמל Engineering Electrical of School Harmonic Analysis Fall Semester LECTURER Nir Sharon Office: 03-640-7729 Location: Room 14M, Schreiber Bldg E-mail: [email protected] COURSE DESCRIPTION The aim of this course is to introduce the fundamentals of Harmonic analysis. In particular, we focus on three main subjects: the theory of Fourier series, approximation in Hilbert spaces by a general orthogonal system, and the basics of the theory of Fourier transform. Harmonic analysis is the study of objects (functions, measures, etc.), defined on different mathematical spaces. Specifically, we study the question of finding the "elementary components" of functions, and how to analyse a given function based on its elementary components. The trigonometric system of cosine and sine functions plays a major role in our presentation of the theory. The course is intended for undergraduate students of engineering, mathematics and physics, although we deal almost exclusively with aspects of Fourier analysis that are usefull in physics and engeneering rather than those of pure mathematics. We presume knowledge in: linear algebra, calculus, elementary theory of ordinary differential equations, and some acquaintance with the system of complex numbers. COURSE TOPICS Week 1: Fourier Series of piecewise continuous functions on a symmetrical segment. Complex and real representations of the Fourier Series. Week 2: Bessel Inequality, the Riemann-Lebesgue Lemma, partial
    [Show full text]
  • Harmonic Analysis in Euclidean Spaces
    http://dx.doi.org/10.1090/pspum/035.1 HARMONIC ANALYSIS IN EUCLIDEAN SPACES Part 1 PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS Volume XXXV, Part 1 HARMONIC ANALYSIS IN EUCLIDEAN SPACES AMERICAN MATHEMATICAL SOCIETY PROVIDENCE, RHODE ISLAND 1979 PROCEEDINGS OF THE SYMPOSIUM IN PURE MATHEMATICS OF THE AMERICAN MATHEMATICAL SOCIETY HELD AT WILLIAMS COLLEGE WILLIAMSTOWN, MASSACHUSETTS JULY 10-28, 1978 EDITED BY GUIDO WEISS STEPHEN WAINGER Prepared by the American Mathematical Society with partial support from National Science Foundation grant MCS 77-23480 Library of Congress Cataloging in Publication Data Symposium in Pure Mathematics, Williams College, 1978. Harmonic analysis in Euclidean spaces. (Proceedings of symposia in pure mathematics; v. 35) Includes bibliographies. 1. Harmonic analysis—Congresses. 2. Spaces, Generalized—Congresses. I. Wainger, Stephen, 1936- II. Weiss, Guido L., 1928- HI. American Mathematical Society. IV. Title. V. Series. QA403.S9 1978 515'.2433 79-12726 ISBN 0-8218-1436-2 (v.l) AMS (MOS) subject classifications (1970). Primary 22Exx, 26A51, 28A70, 30A78, 30A86, 31Bxx, 31C05, 31C99, 32A30, 32C20, 35-XX, 42-XX, 43-XX, 44-XX, 47A35, 47B35 Copyright © 1979 by the American Mathematical Society Printed in the United States of America All rights reserved except those granted to the United States Government. This book may not be reproduced in any form without the permission of the publishers. CONTENTS OF VOLUME PART 1 Dedication to Nestor Riviere vi Contents of Part 1 xix Photographs xxiii Preface xxv Chapter 1. Real harmonic analysis 3 Chapter 2. Hardy spaces and BMO 189 Chapter 3. Harmonic functions, potential theory and theory of functions of one complex variable 313 PART 2 Contents of Part 2 v Chapter 4.
    [Show full text]
  • Harmonic Analysis Is a Broad field Involving a Great Deal of Subjects Concerning the Art of Decomposing Functions Into Constituent Parts
    Lecture Notes in Harmonic Analysis Lectures by Dr. Charles Moore Throughout this document, signifies end proof, and N signifies end of example. Table of Contents Table of Contents i Lecture 1 Introduction to Fourier Analysis 1 1.1 Fourier Analysis . 1 1.2 In more general settings. 3 Lecture 2 More Fourier Analysis 4 2.1 Elementary Facts from Fourier Analysis . 4 Lecture 3 Convolving Functions 7 3.1 Properties of Convolution . 7 Lecture 4 An Application 9 4.1 Photographing a Star . 9 4.2 Results in L2 ............................. 10 Lecture 5 Hilbert Spaces 12 5.1 Fourier Series on L2 ......................... 12 Lecture 6 More on Hilbert Spaces 15 6.1 Haar Functions . 15 6.2 Fourier Transform on L2 ....................... 16 Lecture 7 Inverse Fourier Transform 17 7.1 Undoing Fourier Transforms . 17 Lecture 8 Fejer Kernels 19 8.1 Fejer Kernels and Approximate Identities . 19 Lecture 9 Convergence of Cesar´oMeans 22 9.1 Convergence of Fourier Sums . 22 Notes by Jakob Streipel. Last updated December 1, 2017. i TABLE OF CONTENTS ii Lecture 10 Toward Convergance of Partial Sums 24 10.1 Dirichlet Kernels . 24 10.2 Convergence for Continuous Functions . 25 Lecture 11 Convergence in Lp 26 11.1 Convergence in Lp .......................... 26 11.2 Almost Everywhere Convergence . 28 Lecture 12 Maximal Functions 29 12.1 Hardy-Littlewood Maximal Functions . 29 Lecture 13 More on Maximal Functions 33 13.1 Proof of Hardy-Littlewood's Theorem . 33 Lecture 14 Marcinkiewicz Interpolation 36 14.1 Proof of Marcinkiewicz Interpolation Theorem . 36 Lecture 15 Lebesgue Differentiation Theorem 38 15.1 A Note About Maximal Functions .
    [Show full text]
  • Group Representations and Harmonic Analysis from Euler to Langlands, Part I Anthony W
    Group Representations and Harmonic Analysis from Euler to Langlands, Part I Anthony W. Knapp roup representations and harmonic for s>1. In fact, if each factor (1 p s ) 1 on − − − analysis play a critical role in subjects the right side of (1) is expanded in geometric se- as diverse as number theory, proba- ries as 1+p s +p 2s + , then the product of − − ··· bility, and mathematical physics. A the factors for p N is the sum of those terms ≤ representation-theoretic theorem of 1/ns for which n is divisible only by primes GLanglands is a vital ingredient in the work of N; hence a passage to the limit yields (1). Wiles on Fermat's Last Theorem, and represen- ≤ Euler well knew that the sum for (s) exceeds tation theory provided the framework for the the integral prediction that quarks exist. What are group representations, why are they so pervasive in ∞ dx 1 s = mathematics, and where is their theory headed? 1 x s 1. Z − Euler and His Product Expansions This expression is unbounded as s decreases to Like much of modern mathematics, the field of 1, but the product (1) cannot be unbounded un- group representations and harmonic analysis less there are infinitely many factors. Hence (1) has some of its roots in the work of Euler. In 1737 yielded for Euler a new proof of Euclid's theo- Euler made what Weil [4] calls a “momentous dis- rem that there are infinitely many primes. In covery”, namely, to start with the function that fact, (1) implies, as Euler observed, the better the- we now know as the Riemann function 1 orem that 1/p diverges.
    [Show full text]
  • A TECHNICAL SURVEY of HARMONIC ANALYSIS 1. General
    A TECHNICAL SURVEY OF HARMONIC ANALYSIS TERENCE TAO Abstract. A rather technical description of some of the active areas of re- search in modern real-variable harmonic analysis, and some of the techniques being developed. Note: references are completely missing; I may update this later. 1. General overview Very broadly speaking, harmonic analysis is centered around the analysis (in par- ticular, quantitative estimates) of functions (and transforms of those functions) on such domains as Euclidean spaces Rd, integer lattices Zd, periodic tori Td = Rd/Zd, or other groups G (which could be anything from Lie groups, to finite groups, to infinite dimensional groups), or manifolds M, or subdomains Ω of these spaces, or perhaps more exotic sets such as fractals. These functions typically take values in the real numbers R or complex numbers C, or in other finite-dimensional spaces (e.g. one may consider k-forms on a manifold M, although strictly speaking these are sections of a bundle rather than functions); they may even take values in infinite-dimensional Hilbert or Banach spaces. The range space is usually a Banach space1; this allows one to take finite or infinite linear combinations of these func- tions, and be able to take limits of sequences of functions. Rather than focusing on very special examples of functions (e.g. explicit algebraic functions), harmonic analysis is often more concerned with generic functions in a certain regularity class (e.g. in Ck(M), the space of k times continuously differentiable functions on a manifold M) or a certain integrability class (e.g. Lp(M), the class of pth-power integrable functions on M).
    [Show full text]
  • Advances in Harmonic Analysis and Partial Differential Equations
    748 Advances in Harmonic Analysis and Partial Differential Equations AMS Special Session Harmonic Analysis and Partial Differential Equations April 21–22, 2018 Northeastern University, Boston, MA Donatella Danielli Irina Mitrea Editors Advances in Harmonic Analysis and Partial Differential Equations AMS Special Session Harmonic Analysis and Partial Differential Equations April 21–22, 2018 Northeastern University, Boston, MA Donatella Danielli Irina Mitrea Editors 748 Advances in Harmonic Analysis and Partial Differential Equations AMS Special Session Harmonic Analysis and Partial Differential Equations April 21–22, 2018 Northeastern University, Boston, MA Donatella Danielli Irina Mitrea Editors EDITORIAL COMMITTEE Dennis DeTurck, Managing Editor Michael Loss Kailash Misra Catherine Yan 2010 Mathematics Subject Classification. Primary 31A10, 33C10, 35G20, 35P20, 35S05, 39B72, 42B35, 46E30, 76D03, 78A05. Library of Congress Cataloging-in-Publication Data Names: AMS Special Session on Harmonic Analysis and Partial Differential Equations (2018 : Northeastern University). | Danielli, Donatella, 1966- editor. | Mitrea, Irina, editor. Title: Advances in harmonic analysis and partial differential equations : AMS special session on Harmonic Analysis and Partial Differential Equations, April 21-22, 2018, Northeastern University, Boston, MA / Donatella Danielli, Irina Mitrea, editors. Description: Providence, Rhode Island : American Mathematical Society, [2020] | Series: Con- temporary mathematics, 0271-4132 ; volume 748 | Includes bibliographical references.
    [Show full text]
  • Harmonic Analysis Associated with a Discrete Laplacian
    HARMONIC ANALYSIS ASSOCIATED WITH A DISCRETE LAPLACIAN OSCAR´ CIAURRI, T. ALASTAIR GILLESPIE, LUZ RONCAL, JOSE´ L. TORREA, AND JUAN LUIS VARONA Abstract. It is well-known that the fundamental solution of ut(n; t) = u(n + 1; t) − 2u(n; t) + u(n − 1; t); n 2 Z; −2t with u(n; 0) = δnm for every fixed m 2 Z, is given by u(n; t) = e In−m(2t), where Ik(t) is the Bessel function of imaginary argument. In other words, the heat semigroup of the discrete Laplacian is described by the formal series X −2t Wtf(n) = e In−m(2t)f(m): m2Z By using semigroup theory, this formula allows us to analyze some op- erators associated with the discrete Laplacian. In particular, we obtain the maximum principle for the discrete fractional Laplacian, weighted p ` (Z)-boundedness of conjugate harmonic functions, Riesz transforms and square functions of Littlewood-Paley. Interestingly, it is shown that the Riesz transforms coincide essen- tially with the so called discrete Hilbert transform defined by D. Hilbert at the beginning of the XX century. We also see that these Riesz trans- forms are limits of the conjugate harmonic functions. The results rely on a careful use of several properties of Bessel func- tions. 1. Introduction The purpose of this paper is the analysis of several operators associated with the discrete Laplacian ∆df(n) = f(n + 1) − 2f(n) + f(n − 1); n 2 Z; in a similar way to the analysis of classical operators associated with the @2 Euclidean Laplacian ∆ = @x2 . Among the operators that we study are the (discrete) fractional Laplacian, maximal heat and Poisson semigroups, This paper has been published in: J.
    [Show full text]
  • Harmonic Analysis
    Harmonic analysis A. Eremenko January 26, 2021 In this course we study boundary value problems for PDE. The main method is called Harmonic analysis a. k. a. Fourier Analysis. The main idea is that one can analyze a function by breaking it into simple parts. Example. A function f defined on the real line is called even if f(x) = f(−x) for all x. It is called odd if f(x) = −f(−x) for all x. The only function which is simultaneously even and odd is the zero function. For every function f, the function fe(x) = (f(x) + f(−x))=2 is even, and the function fo(x) = (f(x) − f(−x))=2 is odd. Since we have f = f0 + fe; every function can be represented as a sum of an even function and an odd function. Moreover, this representation is unique. A function defined on the real line is called periodic with period T 6= 0 if f(x + T ) = f(x) for all x: If f has period T then it also has periods nT , for every integer n. For a constant function, all numbers are periods. If f is not constant, continuous and periodic, then there exists the smallest positive period T and all other periods are nT , where n is any integer. The simplest real periodic functions are cos and sin, but if we allow complex-valued functions, then there is even a simpler one eix = cos x + i sin x; whose smallest positive period is 2π. To obtain a similar function with period 2L we take eix=L = cos(πx=L) + i sin(πx=L): 1 What do we mean by \simplest" here? This has a precise answer: these functions behave in a very simple way when we differentiate them, especially the exponential: (d=dx)eλx = λex, in other words the exponential is an eigenfunction of the differentiation operator.
    [Show full text]
  • Topics in Harmonic Analysis and Partial Differential Equations: Extension Theorems and Geometric Maximum Principles
    TOPICS IN HARMONIC ANALYSIS AND PARTIAL DIFFERENTIAL EQUATIONS: EXTENSION THEOREMS AND GEOMETRIC MAXIMUM PRINCIPLES A Thesis presented to the Faculty of the Graduate School University of Missouri In Partial Fulfillment of the Requirements for the Degree Master of Arts by RYAN ALVARADO Dr. Marius Mitrea, Thesis Supervisor MAY 2011 The undersigned, appointed by the Dean of the Graduate School, have examined the thesis entitled TOPICS IN HARMONIC ANALYSIS AND PARTIAL DIFFERENTIAL EQUATIONS: EXTENSION THEOREMS AND GEOMETRIC MAXIMUM PRINCIPLES presented by Ryan Alvarado, a candidate for the degree of Master of Arts and hereby certify that in their opinion it is worthy of acceptance. Professor Marius Mitrea Professor Steve Hofmann Professor Dorina Kosztin ACKNOWLEDGEMENTS I would first like to thank my friends and family members for their continuous support over the years. Specifically, I would like to thank my mother and father for their guidance and encouragement; without them I certainly would not be where I am today. I must also give credit to Mayumi Sakata- Derendinger for cultivating my mathematical sense during my undergraduate career. On a final note, with up most sincerity, I would like to thank my advisor Marius Mitrea for his work ethic and advice throughout this entire process. ii Contents ACKNOWLEDGEMENTS ii LIST OF ILLUSTRATIONS iv ABSTRACT v CHAPTERS 1 1 Introduction 1 2 Structure of Quasi-Metric Spaces 22 3 Extensions of H¨olderFunctions on General Quasi-Metric Spaces 27 4 Separation Properties of H¨older Functions 34 5 Whitney-like
    [Show full text]
  • Fourier Integral Operators and Harmonic Analysis on Compact Manifolds
    Fourier Integral Operators and Harmonic Analysis On Compact Manifolds Michael Taylor Harmonic analysis was invented by Daniel Bernoulli for his solution of the sim- plest hyperbolic equation, the equation of vibrating strings, though his achievement was not understood and followed through at the time and the subject had to be re-invented by Fourier as a tool to treat the heat equation. Meanwhile, the theory of spherical harmonics was invented by Laplace for use in his study of the Laplace equation. Thus the use of various types of harmonic analysis in the study of the three main types of classical partial di®erential equations, in particular the use of orthogonal expansions, goes back to the beginning of the subject. For more infor- mation on this, see the beautiful book by Kline [22] on the history of mathematics. More recent tools include singular integral operators (pseudodi®erential opera- tors) to treat elliptic equations, and also parametrices to study the heat equation, and most recently Fourier integral operators, which apply to the study of hyperbolic equations, amongst other things. These tools in turn have found application to the study of eigenfunction expan- sions. The use of parametrices for elliptic and parabolic equations in eigenvalue asymptotics is well known; see Agmon [2] or McKean and Singer [26]. Stein in [38] made nice use of the heat equation to develop a Littlewood-Paley theory on com- pact Lie groups, and HÄormander[16] used pseudodi®erential operators to study the behavior of Riesz means of eigenfunction expansions. The theory of Fourier integral operators was used as a tool in the study of eigenvalue asymptotics by HÄormander in [17] in order to get a sharp estimate on the remainder term.
    [Show full text]