Early Foraging Life: Spatial and Temporal Aspects of Landmark Learning in the Ant Cataglyphis Noda
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sociogenetic Organization of the Red Honey Ant (Melophorus Bagoti)
insects Article Sociogenetic Organization of the Red Honey Ant (Melophorus bagoti) Nathan Lecocq de Pletincx * and Serge Aron Evolutionary Biology & Ecology, Université Libre de Bruxelles, B-1050 Brussels, Belgium; [email protected] * Correspondence: [email protected]; Tel.: +32-472015404 Received: 6 October 2020; Accepted: 2 November 2020; Published: 4 November 2020 Simple Summary: Monogamy is thought to be a major factor having favored the evolution of a non- reproductive worker caste in eusocial insects because it optimizes the relatedness among colony members. However, polyandry evolved secondarily in a large number of species. By increasing the genetic diversity within colonies, multiple mating can enhance worker task efficiency and resistance to diseases. Polyandry may also favor social harmony by reducing worker–queen conflict over male parentage. This is because in colonies headed by a single, multiple-mated queen, workers can increase their inclusive fitness by rearing their brothers (queen sons) rather than their nephews (offspring of other workers). Using DNA microsatellites, we showed that nests of the red honey ant, Melophorus bagoti, are headed by a single, multiple-mated queen. Morphometric analyses revealed two distinct worker subcastes: majors and minors; yet, we found no relationship between worker patriline and worker subcaste. Workers can produce males in the presence of the queen under natural conditions, which contrasts with predictions of inclusive fitness theory. Abstract: Kin selection and inclusive fitness are thought to be key factors explaining the reproductive altruism displayed by workers in eusocial insect species. However, when a colony’s queen has mated with <2 males, workers may increase their fitness by producing their own male offspring. -
The Nature of Northern Australia
THE NATURE OF NORTHERN AUSTRALIA Natural values, ecological processes and future prospects 1 (Inside cover) Lotus Flowers, Blue Lagoon, Lakefield National Park, Cape York Peninsula. Photo by Kerry Trapnell 2 Northern Quoll. Photo by Lochman Transparencies 3 Sammy Walker, elder of Tirralintji, Kimberley. Photo by Sarah Legge 2 3 4 Recreational fisherman with 4 barramundi, Gulf Country. Photo by Larissa Cordner 5 Tourists in Zebidee Springs, Kimberley. Photo by Barry Traill 5 6 Dr Tommy George, Laura, 6 7 Cape York Peninsula. Photo by Kerry Trapnell 7 Cattle mustering, Mornington Station, Kimberley. Photo by Alex Dudley ii THE NATURE OF NORTHERN AUSTRALIA Natural values, ecological processes and future prospects AUTHORS John Woinarski, Brendan Mackey, Henry Nix & Barry Traill PROJECT COORDINATED BY Larelle McMillan & Barry Traill iii Published by ANU E Press Design by Oblong + Sons Pty Ltd The Australian National University 07 3254 2586 Canberra ACT 0200, Australia www.oblong.net.au Email: [email protected] Web: http://epress.anu.edu.au Printed by Printpoint using an environmentally Online version available at: http://epress. friendly waterless printing process, anu.edu.au/nature_na_citation.html eliminating greenhouse gas emissions and saving precious water supplies. National Library of Australia Cataloguing-in-Publication entry This book has been printed on ecoStar 300gsm and 9Lives 80 Silk 115gsm The nature of Northern Australia: paper using soy-based inks. it’s natural values, ecological processes and future prospects. EcoStar is an environmentally responsible 100% recycled paper made from 100% ISBN 9781921313301 (pbk.) post-consumer waste that is FSC (Forest ISBN 9781921313318 (online) Stewardship Council) CoC (Chain of Custody) certified and bleached chlorine free (PCF). -
Level 1 Fauna Survey of the Gruyere Gold Project Borefields (Harewood 2016)
GOLD ROAD RESOURCES LIMITED GRUYERE PROJECT EPA REFERRAL SUPPORTING DOCUMENT APPENDIX 5: LEVEL 1 FAUNA SURVEY OF THE GRUYERE GOLD PROJECT BOREFIELDS (HAREWOOD 2016) Gruyere EPA Ref Support Doc Final Rev 1.docx Fauna Assessment (Level 1) Gruyere Borefield Project Gold Road Resources Limited January 2016 Version 3 On behalf of: Gold Road Resources Limited C/- Botanica Consulting PO Box 2027 BOULDER WA 6432 T: 08 9093 0024 F: 08 9093 1381 Prepared by: Greg Harewood Zoologist PO Box 755 BUNBURY WA 6231 M: 0402 141 197 T/F: (08) 9725 0982 E: [email protected] GRUYERE BOREFIELD PROJECT –– GOLD ROAD RESOURCES LTD – FAUNA ASSESSMENT (L1) – JAN 2016 – V3 TABLE OF CONTENTS SUMMARY 1. INTRODUCTION .....................................................................................................1 2. SCOPE OF WORKS ...............................................................................................1 3. RELEVANT LEGISTALATION ................................................................................2 4. METHODS...............................................................................................................3 4.1 POTENTIAL VETEBRATE FAUNA INVENTORY - DESKTOP SURVEY ............. 3 4.1.1 Database Searches.......................................................................................3 4.1.2 Previous Fauna Surveys in the Area ............................................................3 4.1.3 Existing Publications .....................................................................................5 4.1.4 Fauna -
The Functions and Evolution of Social Fluid Exchange in Ant Colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C
ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 31: 1-30 doi: 10.25849/myrmecol.news_031:001 13 January 2021 Review Article Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C. LeBoeuf Abstract Trophallaxis is a complex social fluid exchange emblematic of social insects and of ants in particular. Trophallaxis behaviors are present in approximately half of all ant genera, distributed over 11 subfamilies. Across biological life, intra- and inter-species exchanged fluids tend to occur in only the most fitness-relevant behavioral contexts, typically transmitting endogenously produced molecules adapted to exert influence on the receiver’s physiology or behavior. Despite this, many aspects of trophallaxis remain poorly understood, such as the prevalence of the different forms of trophallaxis, the components transmitted, their roles in colony physiology and how these behaviors have evolved. With this review, we define the forms of trophallaxis observed in ants and bring together current knowledge on the mechanics of trophallaxis, the contents of the fluids transmitted, the contexts in which trophallaxis occurs and the roles these behaviors play in colony life. We identify six contexts where trophallaxis occurs: nourishment, short- and long-term decision making, immune defense, social maintenance, aggression, and inoculation and maintenance of the gut microbiota. Though many ideas have been put forth on the evolution of trophallaxis, our analyses support the idea that stomodeal trophallaxis has become a fixed aspect of colony life primarily in species that drink liquid food and, further, that the adoption of this behavior was key for some lineages in establishing ecological dominance. -
Formicidae, Ponerinae), a Predominantly Nocturnal, Canopy-Dwelling
Behavioural Processes 109 (2014) 48–57 Contents lists available at ScienceDirect Behavioural Processes jo urnal homepage: www.elsevier.com/locate/behavproc Visual navigation in the Neotropical ant Odontomachus hastatus (Formicidae, Ponerinae), a predominantly nocturnal, canopy-dwelling predator of the Atlantic rainforest a,1 b,∗ Pedro A.P. Rodrigues , Paulo S. Oliveira a Graduate Program in Ecology, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil b Departamento de Biologia Animal, C.P. 6109, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil a r t a b i s c l e i n f o t r a c t Article history: The arboreal ant Odontomachus hastatus nests among roots of epiphytic bromeliads in the sandy forest Available online 24 June 2014 at Cardoso Island (Brazil). Crepuscular and nocturnal foragers travel up to 8 m to search for arthropod prey in the canopy, where silhouettes of leaves and branches potentially provide directional information. Keywords: We investigated the relevance of visual cues (canopy, horizon patterns) during navigation in O. hastatus. Arboreal ants Laboratory experiments using a captive ant colony and a round foraging arena revealed that an artificial Atlantic forest canopy pattern above the ants and horizon visual marks are effective orientation cues for homing O. has- Canopy orientation tatus. On the other hand, foragers that were only given a tridimensional landmark (cylinder) or chemical Ponerinae marks were unable to home correctly. Navigation by visual cues in O. hastatus is in accordance with other Trap-jaw ants diurnal arboreal ants. Nocturnal luminosity (moon, stars) is apparently sufficient to produce contrasting Visual cues silhouettes from the canopy and surrounding vegetation, thus providing orientation cues. -
Vertical Lobes of the Mushroom Bodies Are Essential for View
Please cite this article in press as: Kamhi et al., Vertical Lobes of the Mushroom Bodies Are Essential for View-Based Navigation in Australian Myrmecia Ants, Current Biology (2020), https://doi.org/10.1016/j.cub.2020.06.030 ll Report Vertical Lobes of the Mushroom Bodies Are Essential for View-Based Navigation in Australian Myrmecia Ants J. Frances Kamhi,1,2 Andrew B. Barron,1 and Ajay Narendra1,3,* 1Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia 2Neuroscience Department, Oberlin College, Oberlin, OH 44074, USA 3Lead Contact *Correspondence: [email protected] https://doi.org/10.1016/j.cub.2020.06.030 SUMMARY Prior to leaving home, insects acquire visual landmark information through a series of well-choreographed walks or flights of learning [1–4]. This information allows them to pinpoint goals both when in their vicinity [5–7] and from locations they have not previously visited [8–10]. It is presumed that animals returning home match memorized views to their current view for successful view-based navigation [11]. While view- based navigation strategies have been incorporated into several navigation models [8, 12, 13], we still know little about how this behavior is performed by the insect brain. Mushroom bodies are essential for visual learning and memory [14–16], and therefore we investigated their role in view-based navigation in a visually oriented ant, Myrmecia midas. We injected the local anesthetic procaine [15, 17, 18] into the mushroom body vertical lobes (VLs) to selectively inhibit neural activity in this region. We compared the behavior of VL-pro- caine-treated ants with three groups: untreated control, VL-saline, and off-target (antennal lobe) procaine. -
Group Recruitment in a Thermophilic Desert Ant, Ocymyrmex Robustior
Eawag_07834 J Comp Physiol A (2013) 199:711–722 DOI 10.1007/s00359-013-0830-x ORIGINAL PAPER Group recruitment in a thermophilic desert ant, Ocymyrmex robustior Stefan Sommer • Denise Weibel • Nicole Blaser • Anna Furrer • Nadine E. Wenzler • Wolfgang Ro¨ssler • Ru¨diger Wehner Received: 19 March 2013 / Revised: 30 April 2013 / Accepted: 17 May 2013 / Published online: 8 June 2013 Ó Springer-Verlag Berlin Heidelberg 2013 Abstract Thermophilic desert ants—Cataglyphis, Ocy- nest. As video recordings show the leader, while continually myrmex, and Melophorus species inhabiting the arid zones keeping her gaster in a downward position, intermittently of the Palaearctic region, southern Africa and central Aus- touches the surface of the ground with the tip of the gaster tralia, respectively—are solitary foragers, which have been most likely depositing a volatile pheromone signal. These considered to lack any kind of chemical recruitment. Here recruitment events occur during the entire diurnal activity we show that besides mainly employing the solitary mode period of the Ocymyrmex foragers, that is, even at surface of food retrieval Ocymyrmex robustior regularly exhibits temperatures of more than 60 °C. They may provide group recruitment to food patches that cannot be exploited promising experimental paradigms for studying the inter- individually. Running at high speed to recruitment sites that play of orientation by chemical signals and path integration may be more than 60 m apart from the nest a leading ant, as well as other visual guidance routines. the recruiter, is followed by a loose and often quite dis- persed group of usually 2–7 recruits, which often overtake Keywords Desert ants Á Recruitment Á Ocymyrmex Á the leader, or may lose contact, fall back and return to the Path integration Á Solitary foraging S. -
Nest Defense and Conspecific Enemy Recognition in the Desert
P1: JRX Journal of Insect Behavior [joib] pp1033-joir-474318 November 6, 2003 13:37 Style file version Feb 08, 2000 Journal of Insect Behavior, Vol. 16, No. 5, September 2003 (C 2003) Nest Defense and Conspecific Enemy Recognition in the Desert Ant Cataglyphis fortis Markus Knaden1 and Rudiger¨ Wehner1,2 Accepted July 16, 2003; revised August 12, 2003 This study focuses on different factors affecting the level of aggression in the desert ant Cataglyphis fortis. We found that the readiness to fight against conspecific ants was high in ants captured close to the nest entrance (0- and 1-m distances). At a 5-m distance from the nest entrance the level of aggression was significantly lower. As the mean foraging range in desert ants by far exceeds this distance, the present account clearly shows that in C. fortis aggressive behavior is displayed in the context of nest, rather than food-territory defense. In addition, ants were more aggressive against members of a colony with which they had recently exchanged aggressive encounters than against members of a yet unknown colony. This finding is discussed in terms of a learned, enemy- specific label-template recognition process. KEY WORDS: aggression; Cataglyphis; “dear-enemy” phenomenon; enemy recognition; territoriality. INTRODUCTION The desert ant Cataglyphis fortis (Wehner, 1983) is the only species of ants inhabiting the vast plains of the North African salt pans. The colonies of this medium-sized monomorphic Cataglyphis species (body length, 5.5– 9.6 mm; head width, 1.1–2.4 mm; [Wehner, 1983; Dillier, 1998]) comprise only about 50 foragers, which search individually for dead arthropods (Wehner, 1983, 1987). -
How to Navigate in Different Environments and Situations: Lessons from Ants
fpsyg-09-00841 May 25, 2018 Time: 17:50 # 1 MINI REVIEW published: 29 May 2018 doi: 10.3389/fpsyg.2018.00841 How to Navigate in Different Environments and Situations: Lessons From Ants Cody A. Freas1,2 and Patrick Schultheiss3* 1 Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia, 2 Department of Psychology, University of Alberta, Edmonton, AB, Canada, 3 Research Center on Animal Cognition, Center for Integrative Biology, French National Center for Scientific Research, Toulouse University, Toulouse, France Ants are a globally distributed insect family whose members have adapted to live in a wide range of different environments and ecological niches. Foraging ants everywhere face the recurring challenge of navigating to find food and to bring it back to the nest. More than a century of research has led to the identification of some key navigational strategies, such as compass navigation, path integration, and route following. Ants have been shown to rely on visual, olfactory, and idiothetic cues for navigational guidance. Here, we summarize recent behavioral work, focusing on how these cues are learned and stored as well as how different navigational cues are integrated, often between strategies and even across sensory modalities. Information can also be communicated between different navigational routines. In this way, a shared toolkit of fundamental navigational strategies can lead to substantial flexibility in behavioral outcomes. This Edited by: allows individual ants to tune their behavioral repertoire to different tasks (e.g., foraging Jeffrey A. Riffell, and homing), lifestyles (e.g., diurnal and nocturnal), or environments, depending on the University of Washington, United States availability and reliability of different guidance cues. -
Path Integration Controls Nest-Plume Following in Desert Ants
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology 22, 645–649, April 10, 2012 ª2012 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2012.02.029 Report Path Integration Controls Nest-Plume Following in Desert Ants Cornelia Buehlmann,1 Bill S. Hansson,1,2,* to leave and enter their nests via a central opening (Figure 2A; and Markus Knaden1,2,* for details, see Experimental Procedures). To exclude any 1Max Planck Institute for Chemical Ecology, Hans-Knoell nest-defining cues other than nest odor, we installed circular Strasse 8, 07745 Jena, Germany barriers (height, 0.1 m; Ø: 3.4 m) surrounding the arenas. A U-shaped aluminum channel (length, 2 m) pointing away from the arena was dug into the ground and led the ants under Summary the barrier toward the feeder. After about 30 min, the ants learned to enter the channel and pinpoint the feeder. Homing The desert ant Cataglyphis fortis is equipped with sophisti- ants had to pass along the channel, climb onto the arena via cated navigational skills for returning to its nest after a sand ramp, and locate the nest entrance in the center of foraging [1, 2]. The ant’s primary means for long-distance the arena. The visually identical arena setups allowed us to navigation is path integration, which provides a continuous transfer ants from the feeder of their own setup to a setup readout of the ant’s approximate distance [3] and direction connected either with a foreign nest or with no nest (no-nest [4] from the nest [5]. -
Vector Navigation in Desert Ants, Cataglyphis Fortis: Celestial Compass Cues Are Essential for the Proper Use of Distance Information
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Naturwissenschaften (2005) 92: 468–471 DOI 10.1007/s00114-005-0020-y SHORT COMMUNICATION Stefan Sommer · Rudiger¨ Wehner Vector navigation in desert ants, Cataglyphis fortis: celestial compass cues are essential for the proper use of distance information Received: 12 May 2005 / Accepted: 3 July 2005 / Published online: 15 September 2005 C Springer-Verlag 2005 Abstract Foraging desert ants navigate primarily by path absence of any optic flow-field cues (Ronacher and Wehner integration. They continually update homing direction and 1995; Ronacher et al. 2000). Instead, they seem to acquire distance by employing a celestial compass and an odome- the distance information primarily by proprioceptive ter. Here we address the question of whether information means (Wohlgemuth et al. 2001, 2002; Thielin-Bescond´ about travel distance is correctly used in the absence of and Beugnon 2005). However, how this information is directional information. By using linear channels that were acquired and finally used in path integration remains to be partly covered to exclude celestial compass cues, we were elucidated. In the present account we address the question able to test the distance component of the path-integration of whether desert ants, Cataglyphis fortis, are able to assess process while suppressing the directional information. Our the homing distance correctly if they are partly deprived results suggest that the path integrator cannot process the of directional information during their outbound run. distance information accumulated by the odometer while ants are deprived of celestial compass information. -
Differential Investment in Brain Regions for a Diurnal and Nocturnal Lifestyle in Australian Myrmecia Ants
Received: 12 July 2018 Revised: 7 December 2018 Accepted: 22 December 2018 DOI: 10.1002/cne.24617 RESEARCH ARTICLE Differential investment in brain regions for a diurnal and nocturnal lifestyle in Australian Myrmecia ants Zachary B. V. Sheehan1 | J. Frances Kamhi1 | Marc A. Seid1,2 | Ajay Narendra1 1Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Abstract Australia Animals are active at different times of the day. Each temporal niche offers a unique light envi- 2Biology Department, Neuroscience Program, ronment, which affects the quality of the available visual information. To access reliable visual The University of Scranton, Scranton, signals in dim-light environments, insects have evolved several visual adaptations to enhance Pennsylvania their optical sensitivity. The extent to which these adaptations reflect on the sensory processing Correspondence Department of Biological Sciences, Macquarie and integration capabilities within the brain of a nocturnal insect is unknown. To address this, University, 205 Culloden Road, Sydney, NSW we analyzed brain organization in congeneric species of the Australian bull ant, Myrmecia, that 2109, Australia. rely predominantly on visual information and range from being strictly diurnal to strictly noctur- Email: [email protected] nal. Weighing brains and optic lobes of seven Myrmecia species, showed that after controlling Funding information for body mass, the brain mass was not significantly different between diurnal and nocturnal Australian Research Council, Grant/Award Numbers: DP150101172, FT140100221 ants. However, the optic lobe mass, after controlling for central brain mass, differed between day- and night-active ants. Detailed volumetric analyses showed that the nocturnal ants invested relatively less in the primary visual processing regions but relatively more in both the primary olfactory processing regions and in the integration centers of visual and olfactory sen- sory information.