Nature of the Parent Material Will Greatly Influence Time It Takes to Make Soil and the Nature of the Soil That Is Formed Types

Total Page:16

File Type:pdf, Size:1020Kb

Nature of the Parent Material Will Greatly Influence Time It Takes to Make Soil and the Nature of the Soil That Is Formed Types Nature of the parent material Weathered Rocks from the will greatly influence time it lithosphere are the parent takes to make soil and the materials for soils nature of the soil that is formed Colluvial debris: Types of Parent Material Rocks that have fallen down hills • Residual • Colluvial • Water • Ice • Wind • Organic material Residual:Parent material in Arawak series, US Virgin Islands place The Arawak series consists The Castelleia series (CO) of shallow, well drained, consists of well drained soils slowly permeable soils on formed in thick summits and side slopes of noncalcareous, stony limestone hills and medium to moderately fine mountains. They formed in materials weathered locally material weathered from soft from quartz, latite, or limestone bedrock. similar rocks. 1 Water:Alluvial• deposits Sediment that is deposited by rivers • Forkwood soil, Wyoming Water:Alluvial deposits The Forkwood series consists of very deep, well drained soils Sediment that is deposited by rivers formed in slopewash alluvium derived from interbedded shale and argillaceous sandstone. Water:Marine (sediments deposited Pamunkey soil, Virginia by oceans) Soils of the Pamunkey series are very deep and well drained. They formed in Piedmont and Coastal Plain sediments. 2 Glacial till: Water:Lacustrine (materials deposited by lakes) Material transported by glacial ice Pleistocene Epoch 2 million years Glacial till: Material Eolian: Materials transported by wind transported by glacial ice Loess Glaciers - Loess Loess - Illinois • Summer Peoria - – Melt water from glaciers would carry 25,000 - 12,000 fine particles or sediment • Winter – Water would dry out leaving dry Roxanna - sediment 60,000 - 26,000 – Winter winds would transport the sediment 3 Loess - China Loess - Washington Lanzhou - 440,000 sq km 50 - 300 meters deep Paloose hills in From Gobi desert eastern Washington Soil series Wallawalla Paloose Athena Eolian: Materials transported by wind Volcanic ash Organic:Wet areas where accumulation> decomposition Peat bogs (1)Parent materials + 4 other factors of soil formation • Climate • Topography • Time • Biota 4 We talked about rocks, rock For soil formation: weathering and parent materials Soil Science Taxonomy • Soil as a natural body • Each soil as a unique individual How soil is formed – Developed as a result of the 5 factors of Factors of soil soil formation formation Different scenarios Regolith Solum O Soil formation is, A Regolith- simultaneously weathered rock E and soil that • Breakdown of old overlays bedrock • Synthesis of new Solum - portion of X Y B • Losses the regolith that shows the • Additions development of • Translocations C layers called soil horizons Bedrock (1)Parent materials + 4 other Climate factors of soil formation • Moisture • Climate – Quantity • Topography – Intensity – distribution • Time • Temperature • Biota Can be interrelated and interact 5 Rainfall: Intensity and Role of water duration • Essential for chemical weathering • Transport materials through horizons • Determine type of plant cover Effective precipitation Temperature • Water has to go into the soil • Rate of – Infiltration - not biological overland flow activity – Rainfall exceeds Rate of evaporation chemical reactions Soil Development Time Line Effect of Time Topography Same parent material, same climate Organic Matter Accumulation CaCO Structural 3 Development Accumulation Unweathered Loess CaSO4 Accumulation Location, location, location Time 6 Toposequence Biota - plants Well Excessively Poorly Very poorly drained drained drained drained Type of plant : Soil Profile Grass • Dense root system A - mollic horizon • Above ground foliage will die annually • Grows where moisture < trees • Thick A horizon Tree - deciduous Deciduous - • Leaves high in cations (Ca, Mg, Fe..) • Annual leaf fall • Larger A horizon • Well developed A horizon • More cations –Decomposed OM • Less acidic –High nutrients • More clay translocation 7 Coniferous Tree - coniferous Acidic • Leaves low in cations Thin A • Little leaf fall • Thin A horizon E (eluviation) –Oi - slightly decomposed • E horizon –eluviation Animals Animals • Pedoturbation • Earthworms – Animal burrows effectively mix soil from – Soil mixing different horizons – Soil structure – Soil aeration Animals Start with a pile of rocks • Humans • Physical and chemical weathering –Agricultural – Breakdown particles practices – Change mineral structure –Accelerate soil loss –Accelerate soil formation 8 Plant starts growing First stage of soil formation • Organic matter is added to soil • Increased organic surface matter in A horizon • Root exudates further break down minerals Next stage will involve When a plant starts growing development of a B horizon • Organic matter from plants is a • Cations that have been solubilized nutrient source for other organisms by plant exudates, microbial activity,and acidification will start moving lower into the soil • Secondary clays have been formed in A and are also moving down the profile Beginning of a B horizon • Dark A horizon – Organic matter – Clays • Something below the A that looks different from the parent material • Parent material 9.
Recommended publications
  • Engineering Behavior and Classification of Lateritic Soils in Relation to Soil Genesis Erdil Riza Tuncer Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1976 Engineering behavior and classification of lateritic soils in relation to soil genesis Erdil Riza Tuncer Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Civil Engineering Commons Recommended Citation Tuncer, Erdil Riza, "Engineering behavior and classification of lateritic soils in relation to soil genesis " (1976). Retrospective Theses and Dissertations. 5712. https://lib.dr.iastate.edu/rtd/5712 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Prairie Wetland Soils: Gleysolic and Organic Angela Bedard-Haughn Department of Soil Science, University of Saskatchewan
    PS&C Prairie Soils & Crops Journal Agricultural Soils of the Prairies Prairie Wetland Soils: Gleysolic and Organic Angela Bedard-Haughn Department of Soil Science, University of Saskatchewan Summary Gleysolic and Organic soils are collectively referred to as “wetland soils”. They are found in wet low-lying or level landscape positions. Gleysolic soils are found throughout the agricultural Prairies, in association with Chernozemic and Luvisolic soils. In semi-arid regions, they are frequently tilled in dry years and can be very productive due to their relatively high levels of soil moisture and nutrients. In the Prairie Provinces, Organic soils tend to be mostly associated with the Boreal transition zones at the northern and eastern perimeter of the Prairies. With proper management, these can also provide productive agricultural land, particularly for forages. Introduction Soils of the Gleysolic and Organic orders are collectively referred to as “wetland soils”. Soil maps of the agricultural region of the Canadian Prairies seldom have areas mapped as dominantly Gleysolic8 or Organic9; however, these soils are found throughout the region wherever climate and/or topography have led to persistent water-saturated conditions. Gleysols are mineral soils with colors that reflect intermittent or prolonged anaerobic (i.e., saturated, low oxygen) conditions (Fig. 1A). Organic soils reflect permanent anaerobic conditions, which lead to soils that are made up of variably decomposed plant residues, mostly from water-tolerant (i.e., hydrophytic) vegetation (Fig. 1B). Figure 1: A) Humic Luvic Gleysol, Saskatchewan and B) Typic Fibrisol (Organic), Manitoba7. Of the some 100,000,000 ha covered by the Canada Land Inventory (CLI) in the Prairie Provinces12, Gleysolic soils occupy less than 15% of the Prairie ecoregions and up to 40% in the Mid-Boreal (boreal = “northern”) Upland (Alberta) and Interlake Plain (Manitoba) ecoregions12.
    [Show full text]
  • World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
    ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • Correlation Between the Polish Soil Classification (2011) and International Soil Classification System World Reference Base for Soil Resources (2015)
    DE DE GRUYTER 88 OPEN CEZARY KABA£A, MARCIN ŒWITONIAK, PRZEMYS£AW CHARZYÑSKI SOIL SCIENCE ANNUAL DOI: 10.1515/ssa-2016-0012 Vol. 67 No. 2/2016: 88–100 CEZARY KABA£A1*, MARCIN ŒWITONIAK2, PRZEMYS£AW CHARZYÑSKI2 1 Wroc³aw University of Environmental and Life Sciences, Institute of Soil Science and Environmental Protection Grunwaldzka 53, 50-357 Wroc³aw, Poland 2 Nicolaus Copernicus University, Department of Soil Science and Landscape Management Lwowska 1, 87-100 Toruñ, Poland Correlation between the Polish Soil Classification (2011) and international soil classification system World Reference Base for Soil Resources (2015) Abstract: The recent editions of the Polish Soil Classification (PSC) have supplied the correlation table with the World Reference Base for Soil Resources (WRB), which is the international soil classification most commonly used by Polish pedologists. However, the latest WRB edition (IUSS Working Group WRB 2015) has introduced significant changes and many of the former correlations became outdated. The current paper presents the closest equivalents of the soil orders, types and subtypes of the recent edition of the PSC (2011) and WRB (IUSS Working Group WRB 2015). The proposals can be used for general correlation of soil units on maps and in databases, and may support Polish soil scientists to establish the most appropriate equivalents for soils under study, as well as make PSC more available for an international society. Keywords: Polish Soils Classification, WRB, equivalents, reference soil groups, soil types INTRODUCTION quantitative concept. Presently, the Soil Taxonomy is used in over 40 countries (Krasilnikov 2002) as a Pedology appeared in the second half of the 19th primary system for naming the soils.
    [Show full text]
  • Sustaining the Pedosphere: Establishing a Framework for Management, Utilzation and Restoration of Soils in Cultured Systems
    Sustaining the Pedosphere: Establishing A Framework for Management, Utilzation and Restoration of Soils in Cultured Systems Eugene F. Kelly Colorado State University Outline •Introduction - Its our Problems – Life in the Fastlane - Ecological Nexus of Food-Water-Energy - Defining the Pedosphere •Framework for Management, Utilization & Restoration - Pedology and Critical Zone Science - Pedology Research Establishing the Range & Variability in Soils - Models for assessing human dimensions in ecosystems •Studies of Regional Importance Systems Approach - System Models for Agricultural Research - Soil Water - The Master Variable - Water Quality, Soil Management and Conservation Strategies •Concluding Remarks and Questions Living in a Sustainable Age or Life in the Fast Lane What do we know ? • There are key drivers across the planet that are forcing us to think and live differently. • The drivers are influencing our supplies of food, energy and water. • Science has helped us identify these drivers and our challenge is to come up with solutions Change has been most rapid over the last 50 years ! • In last 50 years we doubled population • World economy saw 7x increase • Food consumption increased 3x • Water consumption increased 3x • Fuel utilization increased 4x • More change over this period then all human history combined – we are at the inflection point in human history. • Planetary scale resources going away What are the major changes that we might be able to adjust ? • Land Use Change - the world is smaller • Food footprint is larger (40% of land used for Agriculture) • Water Use – 70% for food • Running out of atmosphere – used as as disposal for fossil fuels and other contaminants The Perfect Storm Increased Demand 50% by 2030 Energy Climate Change Demand up Demand up 50% by 2030 30% by 2030 Food Water 2D View of Pedosphere Hierarchal scales involving soil solid-phase components that combine to form horizons, profiles, local and regional landscapes, and the global pedosphere.
    [Show full text]
  • The Effect of Parent Material and Land-Use on Soil Erosion: a Case Study of the Taleghan Drainage Basin, Iran
    300 Water Quality and Sediment Behaviour of the Future: Predictions for the 21st Century (Proceedings of Symposium HS2005 at IUGG2007, Perugia, July 2007). IAHS Publ. 314, 2007. The effect of parent material and land-use on soil erosion: a case study of the Taleghan drainage basin, Iran SADAT FEIZNIA1 & KAZEM NOSRATI2 1 Faculty of Natural Resources, University of Tehran, PO Box 31585/4314, Karaj, Iran [email protected] 2 Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran Abstract The objective of this study was to investigate the effect of parent rock and different land-uses on soil erosion in the Taleghan drainage basin. For this purpose, a geological map of the area was prepared by photogeo- logical studies and field control. Soil profiles were investigated and soil samples were taken on uniform morphological units of each lithological unit. Samples were then analysed for physical and chemical characteristics. Based on physical and chemical characteristics, they were classified and analysed using factor analysis. Three parent materials, including gypsum, alluvial deposits, and basalt, and three land-uses, including rangeland, agriculture and dry- farming cultivation were examined, and soil erodibility factors were derived for each and analysed by variance analysis. The results show that erodibility increases as lithology changes from basalt to alluvial deposits and to gypsum. Erodibility was also highest in areas of dry farming and least for rangelands. Key words erodibility; factor analysis; Iran; land-use; parent material INTRODUCTION Almost all kinds of soils in Iran are eroding, and damage due to soil erosion is significant. Therefore, combating erosion in areas of different land-use is essential and the determination of the principal factors causing erosion is urgently needed.
    [Show full text]
  • Assessment of Soil Degradation by Erosion Based on Analysis of Soil Properties Using Aerial Hyperspectral Images and Ancillary Data, Czech Republic
    Article Assessment of Soil Degradation by Erosion Based on Analysis of Soil Properties Using Aerial Hyperspectral Images and Ancillary Data, Czech Republic Daniel Žížala 1,2,*, Tereza Zádorová 2 and Jiří Kapička 1 1 Research Institute for Soil and Water Conservation, Žabovřeská 250, Prague CZ 156 27, Czech Republic; [email protected] 2 Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 29, Prague CZ 165 00, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +42-02-5702-7232 Academic Editors: José A.M. Demattê, Clement Atzberger and Prasad S. Thenkabail Received: 28 October 2016; Accepted: 28 December 2016; Published: 1 January 2017 Abstract: The assessment of the soil redistribution and real long-term soil degradation due to erosion on agriculture land is still insufficient in spite of being essential for soil conservation policy. Imaging spectroscopy has been recognized as a suitable tool for soil erosion assessment in recent years. In our study, we bring an approach for assessment of soil degradation by erosion by means of determining soil erosion classes representing soils differently influenced by erosion impact. The adopted methods include extensive field sampling, laboratory analysis, predictive modelling of selected soil surface properties using aerial hyperspectral data and the digital elevation model and fuzzy classification. Different multivariate regression techniques (Partial Least Square, Support Vector Machine, Random forest and Artificial neural network) were applied in the predictive modelling of soil properties. The properties with satisfying performance (R2 > 0.5) were used as input data in erosion classes determination by fuzzy C-means classification method.
    [Show full text]
  • Classification of Organic Soils – FHWA/IN/JTRP-2008/2
    FHWA/IN/JTRP-2008/2 Final Report CLASSIFICATION OF ORGANIC SOILS Pao-Tsung Huang Mital Patel Maria Caterina Santagata Antonio Bobet September 2009 Final Report FHWA/IN/JTRP-2008/2 CLASSIFICATION OF ORGANIC SOILS by Pao-Tsung Huang Graduate Research Assistant Mital Patel Graduate Research Assistant Maria Caterina Santagata Assistant Professor and Antonio Bobet Associate Professor School of Civil Engineering Purdue University Joint Transportation Research Program Project No. C-36-36TT File No. 6-14-45 SPR-3005 Conducted in Cooperation with the Indiana Department of Transportation and the U.S. Department of Transportation Federal Highway Administration The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Indiana Department of Transportation or the Federal Highway Administration at the time of publication. This report does not constitute a standard, specification, or regulation. School of Civil Engineering Purdue University September 2009 TECHNICAL REPORT STANDARD TITLE PAGE 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA/IN/JTRP-2008/2 4. Title and Subtitle 5. Report Date Classification of Organic Soils September 2009 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Pao-Tsung Huang, Mital Patel, Maria Caterina Santagata, and Antonio Bobet FHWA/IN/JTRP-2008/2 9. Performing Organization Name and Address 10. Work Unit No. Joint Transportation Research Program 1284 Civil Engineering Building Purdue University West Lafayette, IN 47907-1284 11. Contract or Grant No.
    [Show full text]
  • Geotechnical Engineering Report Myra Road Development Myra Road and Avery Street Walla Walla, Washington
    Geotechnical Engineering Report Myra Road Development Myra Road and Avery Street Walla Walla, Washington Prepared for: Konen Rock Products 81890 Couse Creek Road Milton-Freewater, Oregon 97862 February 26, 2020 PBS Project 66091.000 4412 SW CORBETT AVENUE PORTLAND, OR 97239 503.248.1939 MAIN 866.727.0140 FAX PBSUSA.COM Geotechnical Engineering Report Myra Road Development Myra Road and Avery Street Walla Walla, Washington Prepared for: Konen Rock Products 81890 Couse Creek Road Milton-Freewater, Oregon 97862 February 26, 2020 PBS Project 66091.000 Prepared by: Reviewed by: Saiid Behboodi 2020.02.27 10:15:48 -08'00' Saiid Behboodi, PE, GE (OR) Principal Geotechnical Engineer PBS Engineering and Environmental Inc. 2/26/2020 Maan Sabbagh, PE RyanRyann WWhitehite, PE, GE ((OR)OR) Sr. Geotechnical Engineer Principal/GeotechnicalPrinncipal/Geotechnical EEngineeringnginee Group Manager PBS Engineering and Environmental Inc. PBS Engineering and Environmental Inc. © 2020 PBS Engineering and Environmental Inc. 4412 SW CORBETT AVENUE, PORTLAND, OR 97239 503.248.1939 MAIN 866.727.0140 FAX PBSUSA.COM Geotechnical Engineering Report Myra Road Development Konen Rock Products Walla Walla, Washington Table of Contents 1 INTRODUCTION ................................................................................................................................................. 1 1.1 General ..........................................................................................................................................................................................
    [Show full text]
  • Unit 2.1, Soils and Soil Physical Properties
    2.1 Soils and Soil Physical Properties Introduction 5 Lecture 1: Soils—An Introduction 7 Lecture 2: Soil Physical Properties 11 Demonstration 1: Soil Texture Determination Instructor’s Demonstration Outline 23 Demonstration 2: Soil Pit Examination Instructor’s Demonstration Outline 28 Supplemental Demonstrations and Examples 29 Assessment Questions and Key 33 Resources 37 Glossary 40 Part 2 – 4 | Unit 2.1 Soils & Soil Physical Properties Introduction: Soils & Soil Physical Properties UNIT OVERVIEW MODES OF INSTRUCTION This unit introduces students to the > LECTURES (2 LECTURES, 1.5 HOURS EACH ) components of soil and soil physical Lecture 1 introduces students to the formation, classifica- properties, and how each affects soil tion, and components of soil. Lecture 2 addresses different concepts of soil and soil use and management in farms and physical properties, with special attention to those proper- gardens. ties that affect farming and gardening. > DEMONSTRATION 1: SOIL TEXTURE DETERMINATION In two lectures. students will learn about (1 HOUR) soil-forming factors, the components of soil, and the way that soils are classified. Demonstration 1 teaches students how to determine soil Soil physical properties are then addressed, texture by feel. Samples of many different soil textures are including texture, structure, organic mat- used to help them practice. ter, and permeability, with special attention > DEMONSTRATION 2: SOIL PIT EXAMINATION (1 HOUR) to those properties that affect farming and In Demonstration 2, students examine soil properties such gardening. as soil horizons, texture, structure, color, depth, and pH in Through a series of demonstrations and a large soil pit. Students and the instructor discuss how the hands-on exercises, students are taught how soil properties observed affect the use of the soil for farm- to determine soil texture by feel and are ing, gardening, and other purposes.
    [Show full text]
  • Geography and Structure of the World Soil Cover (Pedosphere) - Stroganova M.N
    ENVIRONMENT STRUCTURE AND FUNCTION: EARTH SYSTEM - Geography and Structure of the World Soil Cover (Pedosphere) - Stroganova M.N. and Urusevskaya I.S. GEOGRAPHY AND STRUCTURE OF THE WORLD SOIL COVER (PEDOSPHERE) Stroganova M.N. and Urusevskaya I.S. Lomonosov Moscow State University, Faculty of Soil Science, Moscow, Russia Keywords: soil cover, soil-geographic zoning, geography of soils, structure of soil cover, land resources Contents 1. Introduction 2. Principles and taxonomic system of soil-geographic zoning 3. Soil-geographic belts and bioclimatic areas of the World 3.1. Soil Cover of the Polar Belt 3.2. Soil Cover of the Boreal Belt 3.3. Soil Cover of Subboreal Belt 3.4. Soil Cover of Subtropical Belt 3.5. Soil Cover of Tropical Belt 4. Detailed Soil-Geographic Zoning (by the example of the zone of soddy-podzolic soils of Russia) 5. Conclusion Glossary Bibliography Biographical Sketch Summary Regularities of geographical spreading (occurrence) of the world soils are considered. The basis is a scheme of soil-geographic zoning. According to a notion on the soil cover as about complicatedly organized natural system, having a structural-subordinated type of structure, the multistep (multiphase) taxonomy has been adopted: 1) a soil- geographic belt; 2) a soil-bioclimatic area, and further on, for lowland (plain) territories: 3) a soil zone (subzone); 4) a soil province; 5) a soil county; 6) a soil region, and for mountain territories: a mountain soil province. Isolation of highest taxonomic units (includingUNESCO the province) is performed on– the EOLSSbasis of features of a soil cover, mainly determined by influence of bioclimatic conditions of soil formation (pedogenesis).
    [Show full text]
  • Formation of Soil
    IN THE hegtnning there is parent rock, inert and dead. What kÍ7ids of rock are there? How are they turned into the parent material oj soil and this into soil itself? hi soil formation what part is played by climate, by living organ- isms, by the slope or relief of the land, by rains and rivers and wind and ice, and by time itself? This a rticle discusses these questions. A somewhat inore technical section at the end deals with the differences that characterize the various groups of soils. Formation of Soil By H. G. BYERS, CHARLES E. KELLOGG, M. S. ANDERSON, and JAMES THORI» ^ SOILS are natural media for the growtb of plants. They are mix- tures of fragmented and partly or Avholly weathered rocks and minerals, organic matter, water, and air, in greatl}^ vaiying pro- portions, and liave more or less distinct la.yei's or horizons developed under the influence of climate and living oj-gan.isms. Tlie cross section of horizons from the surface to the parent mateiial is ]aiown as the soil profde. The degree of profile development is dependent on. the hitensity of the activity of the diflereut soil-forming factors, on the length of time they have been active, and on the nature of the ma- terials from whicli the soils ha,ve develo])ed. Soils are dynamic in character—they are constantly imdergoing change—but thc}^ nor- mally reach a state of near equilibrium with, their environment, after a long period of exposure to a given set of conditions, and they may change but little (lurhig periods of lumdreds or even thousands of years uidess tliere is a change in the environment, THE FACTORS OF SOIL GENESIS True soil is the product of the action of climate and living oi^ganisms upon the parent material, as conditioned by the local relief.
    [Show full text]