pharmaceutics Article Gellan-Based Composite System as a Potential Tool for the Treatment of Nervous Tissue Injuries: Cross-Linked Electrospun Nanofibers Embedded in a RC-33-Loaded Freeze-Dried Matrix Barbara Vigani, Caterina Valentino, Valeria Cavalloro, Laura Catenacci , Milena Sorrenti , Giuseppina Sandri , Maria Cristina Bonferoni , Chiara Bozzi, Simona Collina , Silvia Rossi * and Franca Ferrari Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy;
[email protected] (B.V.);
[email protected] (C.V.);
[email protected] (V.C.);
[email protected] (L.C.);
[email protected] (M.S.);
[email protected] (G.S.);
[email protected] (M.C.B.);
[email protected] (C.B.);
[email protected] (S.C.);
[email protected] (F.F.) * Correspondence:
[email protected]; Tel.: +39-0382-987357 Abstract: Injuries to the nervous system affect more than one billion people worldwide, and dra- matically impact on the patient’s quality of life. The present work aimed to design and develop a gellan gum (GG)-based composite system for the local delivery of the neuroprotective sigma-1 0 receptor agonist, 1-[3-(1,1 -biphen)-4-yl] butylpiperidine (RC-33), as a potential tool for the treatment of tissue nervous injuries. The system, consisting of cross-linked electrospun nanofibers embedded in Citation: Vigani, B.; Valentino, C.; a RC-33-loaded freeze-dried matrix, was designed to bridge the lesion gap, control drug delivery and Cavalloro, V.; Catenacci, L.; Sorrenti, enhance axonal regrowth. The gradual matrix degradation should ensure the progressive interaction M.; Sandri, G.; Bonferoni, M.C.; Bozzi, between the inner fibrous mat and the surrounding cellular environment.