Low Maintenance Houseplants for Low Light
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Araceae) in Bogor Botanic Gardens, Indonesia: Collection, Conservation and Utilization
BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 1, January 2018 E-ISSN: 2085-4722 Pages: 140-152 DOI: 10.13057/biodiv/d190121 The diversity of aroids (Araceae) in Bogor Botanic Gardens, Indonesia: Collection, conservation and utilization YUZAMMI Center for Plant Conservation Botanic Gardens (Bogor Botanic Gardens), Indonesian Institute of Sciences. Jl. Ir. H. Juanda No. 13, Bogor 16122, West Java, Indonesia. Tel.: +62-251-8352518, Fax. +62-251-8322187, ♥email: [email protected] Manuscript received: 4 October 2017. Revision accepted: 18 December 2017. Abstract. Yuzammi. 2018. The diversity of aroids (Araceae) in Bogor Botanic Gardens, Indonesia: Collection, conservation and utilization. Biodiversitas 19: 140-152. Bogor Botanic Gardens is an ex-situ conservation centre, covering an area of 87 ha, with 12,376 plant specimens, collected from Indonesia and other tropical countries throughout the world. One of the richest collections in the Gardens comprises members of the aroid family (Araceae). The aroids are planted in several garden beds as well as in the nursery. They have been collected from the time of the Dutch era until now. These collections were obtained from botanical explorations throughout the forests of Indonesia and through seed exchange with botanic gardens around the world. Several of the Bogor aroid collections represent ‘living types’, such as Scindapsus splendidus Alderw., Scindapsus mamilliferus Alderw. and Epipremnum falcifolium Engl. These have survived in the garden from the time of their collection up until the present day. There are many aroid collections in the Gardens that have potentialities not widely recognised. The aim of this study is to reveal the diversity of aroids species in the Bogor Botanic Gardens, their scientific value, their conservation status, and their potential as ornamental plants, medicinal plants and food. -
Sabah, Malaysia Borneo
Journal of Tropical Biology and Conservation 16: 119–123, 2019 ISSN 1823-3902 E-ISSN 2550-1909 Short Notes A preliminary survey of Araceae of Batu Timbang, Imbak Canyon Conservation Area (ICCA), Sabah, Malaysia Borneo. Kartini Saibeh*, Saafie Salleh Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Locked Bag No 3, 90509, Sandakan, Sabah, Malaysia *Corresponding Author: [email protected] Abstract During a scientific expedition to Batu Timbang, Imbak Canyon Conservation Area (ICCA), Sandakan, Sabah between 17 and 20 August 2017, 14 species in seven genera of Araceae were collected. The genera are Pothos (Pothos [Allopothos] sp.); Rhaphidophora (R. korthalsii, R. sylvestris, R. latevaginata); Scindapusus (S. pictus, S. longistipitatus, S. kinabaluensis, and Scindapsus sp. nov.); Schismatoglottis (S. wongii); Aglaonema sp.; Ooia sp. and Alocasia (A. robusta, A. sarawakensis, and A. wongii). Keywords: Aroids, Imbak Canyon Conservation Area ICCA, Malaysian Borneo. Introduction The Araceae, comprising seven subfamilies, 144 genera and about 4,000 described species, is a subcosmopolitan family in distribution but most abundant and diverse in the ever wet or humid tropics (Boyce & Croat, 2011; Cusimano et al., 2011). The family is defined by having minute sessile flowers on spadix and covered by a spathe. The spadix may bear either unisexual or bisexual flowers. Most of the climbers have bisexual type flowers while others have unisexual flowers. Ecologically, aroids can be found in streams, ponds and canals, terrestrial habitats, tidal mud, swamps and wasteland, forest floor, climbers, epiphytes and rheophytes (Mashhor et al., 2012). The aroids of Borneo currently stand at 575 species, of which 433 are formally described (Wong, 2016). -
ORNAMENTAL GARDEN PLANTS of the GUIANAS: an Historical Perspective of Selected Garden Plants from Guyana, Surinam and French Guiana
f ORNAMENTAL GARDEN PLANTS OF THE GUIANAS: An Historical Perspective of Selected Garden Plants from Guyana, Surinam and French Guiana Vf•-L - - •• -> 3H. .. h’ - — - ' - - V ' " " - 1« 7-. .. -JZ = IS^ X : TST~ .isf *“**2-rt * * , ' . / * 1 f f r m f l r l. Robert A. DeFilipps D e p a r t m e n t o f B o t a n y Smithsonian Institution, Washington, D.C. \ 1 9 9 2 ORNAMENTAL GARDEN PLANTS OF THE GUIANAS Table of Contents I. Map of the Guianas II. Introduction 1 III. Basic Bibliography 14 IV. Acknowledgements 17 V. Maps of Guyana, Surinam and French Guiana VI. Ornamental Garden Plants of the Guianas Gymnosperms 19 Dicotyledons 24 Monocotyledons 205 VII. Title Page, Maps and Plates Credits 319 VIII. Illustration Credits 321 IX. Common Names Index 345 X. Scientific Names Index 353 XI. Endpiece ORNAMENTAL GARDEN PLANTS OF THE GUIANAS Introduction I. Historical Setting of the Guianan Plant Heritage The Guianas are embedded high in the green shoulder of northern South America, an area once known as the "Wild Coast". They are the only non-Latin American countries in South America, and are situated just north of the Equator in a configuration with the Amazon River of Brazil to the south and the Orinoco River of Venezuela to the west. The three Guianas comprise, from west to east, the countries of Guyana (area: 83,000 square miles; capital: Georgetown), Surinam (area: 63, 037 square miles; capital: Paramaribo) and French Guiana (area: 34, 740 square miles; capital: Cayenne). Perhaps the earliest physical contact between Europeans and the present-day Guianas occurred in 1500 when the Spanish navigator Vincente Yanez Pinzon, after discovering the Amazon River, sailed northwest and entered the Oyapock River, which is now the eastern boundary of French Guiana. -
A Taxonomic Revision of Araceae Tribe Potheae (Pothos, Pothoidium and Pedicellarum) for Malesia, Australia and the Tropical Western Pacific
449 A taxonomic revision of Araceae tribe Potheae (Pothos, Pothoidium and Pedicellarum) for Malesia, Australia and the tropical Western Pacific P.C. Boyce and A. Hay Abstract Boyce, P.C. 1 and Hay, A. 2 (1Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, U.K. and Department of Agricultural Botany, School of Plant Sciences, The University of Reading, Whiteknights, P.O. Box 221, Reading, RS6 6AS, U.K.; 2Royal Botanic Gardens, Mrs Macquarie’s Road, Sydney, NSW 2000, Australia) 2001. A taxonomic revision of Araceae tribe Potheae (Pothos, Pothoidium and Pedicellarum) for Malesia, Australia and the tropical Western Pacific. Telopea 9(3): 449–571. A regional revision of the three genera comprising tribe Potheae (Araceae: Pothoideae) is presented, largely as a precursor to the account for Flora Malesiana; 46 species are recognized (Pothos 44, Pothoidium 1, Pedicellarum 1) of which three Pothos (P. laurifolius, P. oliganthus and P. volans) are newly described, one (P. longus) is treated as insufficiently known and two (P. sanderianus, P. nitens) are treated as doubtful. Pothos latifolius L. is excluded from Araceae [= Piper sp.]. The following new synonymies are proposed: Pothos longipedunculatus Ridl. non Engl. = P. brevivaginatus; P. acuminatissimus = P. dolichophyllus; P. borneensis = P. insignis; P. scandens var. javanicus, P. macrophyllus and P. vrieseanus = P. junghuhnii; P. rumphii = P. tener; P. lorispathus = P. leptostachyus; P. kinabaluensis = P. longivaginatus; P. merrillii and P. ovatifolius var. simalurensis = P. ovatifolius; P. sumatranus, P. korthalsianus, P. inaequalis and P. jacobsonii = P. oxyphyllus. Relationships within Pothos and the taxonomic robustness of the satellite genera are discussed. Keys to the genera and species of Potheae and the subgenera and supergroups of Pothos for the region are provided. -
Acanthaceae), a New Chinese Endemic Genus Segregated from Justicia (Acanthaceae)
Plant Diversity xxx (2016) 1e10 Contents lists available at ScienceDirect Plant Diversity journal homepage: http://www.keaipublishing.com/en/journals/plant-diversity/ http://journal.kib.ac.cn Wuacanthus (Acanthaceae), a new Chinese endemic genus segregated from Justicia (Acanthaceae) * Yunfei Deng a, , Chunming Gao b, Nianhe Xia a, Hua Peng c a Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China b Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, Facultyof Life Science, Binzhou University, Binzhou, 256603, Shandong, People's Republic of China c Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China article info abstract Article history: A new genus, Wuacanthus Y.F. Deng, N.H. Xia & H. Peng (Acanthaceae), is described from the Hengduan Received 30 September 2016 Mountains, China. Wuacanthus is based on Wuacanthus microdontus (W.W.Sm.) Y.F. Deng, N.H. Xia & H. Received in revised form Peng, originally published in Justicia and then moved to Mananthes. The new genus is characterized by its 25 November 2016 shrub habit, strongly 2-lipped corolla, the 2-lobed upper lip, 3-lobed lower lip, 2 stamens, bithecous Accepted 25 November 2016 anthers, parallel thecae with two spurs at the base, 2 ovules in each locule, and the 4-seeded capsule. Available online xxx Phylogenetic analyses show that the new genus belongs to the Pseuderanthemum lineage in tribe Justi- cieae. -
(Araceae) of Peninsular Malaysia III: Scindapsus Lucens, a New Record for Malaysia, and a Key to Peninsular Malaysian Scindapsus
Gardens’ Bulletin Singapore 62 (1): 9-15. 2010 Studies on Monstereae (Araceae) of Peninsular Malaysia III: Scindapsus lucens, a New Record for Malaysia, and a Key to Peninsular Malaysian Scindapsus AHMAD SOFIMAN BIN OTHMAN, PETER C. BOYCE* AND CHAN LAI KENG Pusat Pengajian Sains Kajihayat [School of Biological Sciences] Universiti Sains Malaysia 11800 USM, Pulau Pinang, Malaysia *Corresponding author: [email protected] Abstract Scindapsus lucens Bogner & P.C.Boyce is a species of considerable horti- cultural potential, arguably rivalling the commercially important S. pictus, originally described from cultivated material of unknown provenance and only later found wild in Sumatera. It has recently been discovered and collected from several localities in southern Peninsular Malaysia, representing both a new record for Malaysia, and through clonal propagation via various tissue culture techniques would supply a sustainable potential source of a local commercial ornamental horticultural product. An enlarged description of S. lucens, and a key to the Peninsular Malaysian Scindapsus are offered. A plate illustrating the diagnostic characters of S. lucens is given. Introduction Scindapsus has not been revised in its entirety since 1908 (Engler & Krause, 1908), and not treated for Malaysia since Ridley’s accounts for the flora (Ridley, 1907, 1925), when he recognized 5 species: Scindapsus beccarii Engl., S. hederaceus Miq., S. perakensis Hook.f., S. pictus Hassk., and S. scortechinii Hook.f. Since Ridley, fieldwork has revealed two further species: S. treubii Engl., a widespread species from Sumatera to Borneo, and S. lucens reported here. Scindapsus lucens Bogner & P.C.Boyce (1994) was described based on material of unknown origin cultivated in the Botanischer Garten München, Germany, with a note added late in proof that it had subsequently been located in KabupatenTapanuli, western Sumatera Utara. -
ACANTHACEAE 爵床科 Jue Chuang Ke Hu Jiaqi (胡嘉琪 Hu Chia-Chi)1, Deng Yunfei (邓云飞)2; John R
ACANTHACEAE 爵床科 jue chuang ke Hu Jiaqi (胡嘉琪 Hu Chia-chi)1, Deng Yunfei (邓云飞)2; John R. I. Wood3, Thomas F. Daniel4 Prostrate, erect, or rarely climbing herbs (annual or perennial), subshrubs, shrubs, or rarely small trees, usually with cystoliths (except in following Chinese genera: Acanthus, Blepharis, Nelsonia, Ophiorrhiziphyllon, Staurogyne, and Thunbergia), isophyllous (leaf pairs of equal size at each node) or anisophyllous (leaf pairs of unequal size at each node). Branches decussate, terete to angular in cross-section, nodes often swollen, sometimes spinose with spines derived from reduced leaves, bracts, and/or bracteoles. Stipules absent. Leaves opposite [rarely alternate or whorled]; leaf blade margin entire, sinuate, crenate, dentate, or rarely pinnatifid. Inflo- rescences terminal or axillary spikes, racemes, panicles, or dense clusters, rarely of solitary flowers; bracts 1 per flower or dichasial cluster, large and brightly colored or minute and green, sometimes becoming spinose; bracteoles present or rarely absent, usually 2 per flower. Flowers sessile or pedicellate, bisexual, zygomorphic to subactinomorphic. Calyx synsepalous (at least basally), usually 4- or 5-lobed, rarely (Thunbergia) reduced to an entire cupular ring or 10–20-lobed. Corolla sympetalous, sometimes resupinate 180º by twisting of corolla tube; tube cylindric or funnelform; limb subactinomorphic (i.e., subequally 5-lobed) or zygomorphic (either 2- lipped with upper lip subentire to 2-lobed and lower lip 3-lobed, or rarely 1-lipped with 3 lobes); lobes ascending or descending cochlear, quincuncial, contorted, or open in bud. Stamens epipetalous, included in or exserted from corolla tube, 2 or 4 and didyna- mous; filaments distinct, connate in pairs, or monadelphous basally via a sheath (Strobilanthes); anthers with 1 or 2 thecae; thecae parallel to perpendicular, equally inserted to superposed, spherical to linear, base muticous or spurred, usually longitudinally dehis- cent; staminodes 0–3, consisting of minute projections or sterile filaments. -
Biodiversity As a Resource: Plant Use and Land Use Among the Shuar, Saraguros, and Mestizos in Tropical Rainforest Areas of Southern Ecuador
Biodiversity as a resource: Plant use and land use among the Shuar, Saraguros, and Mestizos in tropical rainforest areas of southern Ecuador Die Biodiversität als Ressource: Pflanzennutzung und Landnutzung der Shuar, Saraguros und Mestizos in tropischen Regenwaldgebieten Südecuadors Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Andrés Gerique Zipfel aus Valencia Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der Friedrich-Alexander Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 9.12.2010 Vorsitzender der Promotionskommission: Prof. Dr. Rainer Fink Erstberichterstatterin: Prof. Dr. Perdita Pohle Zweitberichterstatter: Prof. Dr. Willibald Haffner To my father “He who seeks finds” (Matthew 7:8) ACKNOWLEDGEMENTS Firstly, I wish to express my gratitude to my supervisor, Prof. Dr. Perdita Pohle, for her trust and support. Without her guidance this study would not have been possible. I am especially indebted to Prof. Dr. Willibald Haffner as well, who recently passed away. His scientific knowledge and enthusiasm set a great example for me. I gratefully acknowledge Prof. Dr. Beck (Universität Bayreuth) and Prof. Dr. Knoke (Technische Universität München), and my colleagues and friends of the Institute of Geography (Friedrich-Alexander Universität Erlangen-Nürnberg) for sharing invaluable comments and motivation. Furthermore, I would like to express my sincere gratitude to those experts who unselfishly shared their knowledge with me, in particular to Dr. David Neill and Dr. Rainer Bussmann (Missouri Botanical Garden), Dr. Roman Krettek (Deutsche Gesellschaft für Mykologie), Dr. Jonathan Armbruster, (Auburn University, Alabama), Dr. Nathan K. Lujan (Texas A&M University), Dr. Jean Guffroy (Institut de Recherche pour le Développement, Orleans), Dr. -
See Details on the Hanburyana: Volume 2: 35-37; 2007
HANBURYANA 2: 35–37 (2007) 35 A valid name for Fittonia albivenis ‘Nana’ (Acanthaceae) C.M. WHITEHOUSE Botany Department, RHS Garden Wisley Fittonia albivenis ‘Nana’ is a dwarf form of the popular houseplant commonly known as the nerve plant because of its decorative white- veined leaves. It is much smaller than the typical form, which has broadly ovate leaves (30–75 × 20–60mm) with cordate bases, and is reputed to be less vulnerable to fluctuations of temperature and humidity and so better suited to growing in houses (Hessayon, 1980). In Brummitt’s (1980) careful examination of the genus Fittonia in cultivation he noted that the name “F. argyroneura nana [had been] seen in commercial exhibits in Britain in recent years”. However, he also suggests that the epithet has never been validly published as a botanical epithet. Its first mention in traditional literature appears to be when it was exhibited by Thomas Rochford and Sons Ltd on 19 May 1975 at the RHS London Show, where it received an Award of Merit. Unfortunately, it is very unlikely that the cultivar epithet was in use much before then. Rochford does not mention it in his book of 1973 (Rochford & Gorer, 1973) but does refer to it three years later (Davidson & Rochford, 1976). It is therefore almost certainly contrary to Article 19.13 of the International Code of Nomenclature for Cultivated Plants (Brickell et al., 2004) and a new name is required for this cultivar, which is still commonly grown (Brickell, 2003). To complicate matters, there is also a cultivar under the name of ‘Minima’, which appears to have arisen in the USA at about the same time, as by 1980 it is already being used as a reference plant in the issuing of US Plant Patents (Anonymous, 1980a & 1980b). -
The Acanthaceae, Derived from Acanthus Are
Vol. 7(36), pp. 2707-2713, 25 September, 2013 DOI: 10.5897/JMPR2013.5194 ISSN 1996-0875 ©2013 Academic Journals Journal of Medicinal Plants Research http://www.academicjournals.org/JMPR Full Length Research Paper Ethnobotany of Acanthaceae in the Mount Cameroon region Fongod A.G.N*, Modjenpa N.B. and Veranso M.C Department of Botany Plant Physiology, University of Buea, P.O Box 63, Buea. Cameroon. Accepted 2 September, 2013 An ethnobotanical survey was carried out in the Mount Cameroon area, southwest region of Cameroon to determine the uses of different species of the Acanthaceae. An inventory of identified Acanthaceaes used by different individuals and traditional medical practitioners (TMPs) was established from information gathered through the show-and-tell/semi-structured method and interviews during field expeditions. Sixteen villages were selected for this research: Munyenge, Mundongo, Ekona, Lelu, Bokoso, Bafia. Bakingili, Ekonjo, Mapanja, Batoke, Wututu, Idenau, Njongi, Likoko, Bokwango and Upper farms. The study yielded 18 plant species used for treating twenty five different diseases and 16 species with ornamental potentials out of the Acanthaceaes identified. Results revealed that 76% of species are used medicinally, while 34% are employed or used for food, rituals, forage and hunting. The leaves of these species are the most commonly used plant parts. The species with the highest frequency of use was Eremomastax speciosa (Hotsch.) with 29 respondents followed by Acanthus montanus (Nes.) T. Anders. The study reveals the medicinal and socio-cultural uses of the Acanthaceaes in the Mount Cameroon Region and a need for proper investigation of the medicinal potentials of these plants. -
Gardening News the Newsletter of the Men’S Garden Club of Englewood October 2011 Issue No
The Gardening News The Newsletter of the Men’s Garden Club of Englewood October 2011 Issue No. 12.01 Editor’s Notes Caring For Your Palm Trees The Coming Year With this issue of the newsletter we start If we had fewer palm trees in Florida our landscape would be more similar to the several new projects which I hope you will Carolinas. We have many palms, yet there seems to be confusion as to how to care for find interesting and useful. Last year we them. This article is in two parts. It will try to give some direction regarding the use of focused on flowering plants. This year our fertilizer for your palms while the second part will be about how and when to prune focus will be on plants that have interest- those palms. ing and colorful leaf structure as well as A simple fertilizer plan would be to apply a slow release fertilizer with microelements more on taking care of what is in your three or four times a year, following the directions on the bag. The following list of garden. The article to the right onCaring “DOs” and “DON’Ts” should help you make some decisions. For Your Palm Trees, is a good example. DOs A second focus in the newsletter will • Read the directions on the bag. be a Gardening Glossary. The last one • Fertilize only when the soil is moist, especially when using a quick release material. was printed about eight to ten years ago • Water quite thoroughly after fertilizing. and some of our long time members will • Try to under-fertilize rather than over-fertilize your palm trees. -
New Records and Rediscoveries of Vascular Plants in Bukit Timah Nature Reserve, Singapore
Gardens' Bulletin Singapore 70 (1): 33–55. 2018 33 doi: 10.26492/gbs70(1).2018-06 New records and rediscoveries of vascular plants in Bukit Timah Nature Reserve, Singapore B.C. Ho1, H.K. Lua2, P.K.F. Leong1, S. Lindsay3, W.W. Seah1, Bazilah Ibrahim1, A.H.B. Loo4, S.L. Koh1, Ali Ibrahim1 & P. Athen1 1Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, 259569, Singapore [email protected] 2National Biodiversity Centre, National Parks Board, 1 Cluny Road, 259569, Singapore 3Native Plant Centre, Horticulture and Community Gardening, National Parks Board, Pasir Panjang Nursery, 100K Pasir Panjang Road, 118526, Singapore 4Conservation, National Parks Board, 1 Cluny Road, 259569, Singapore ABSTRACT. Several new records of plant species previously unknown in Singapore are reported, along with records of species presumed to be nationally extinct which have been rediscovered. These reports are based on specimens collected during our recent surveys of the Bukit Timah Nature Reserve and previously unreported older specimens, all deposited in SING. Three species are reported as new records for Singapore: Scindapsus lucens Bogner & P.C.Boyce, Passiflora quadriglandulosa Rodschied and Tectaria nayarii Mazumdar. Scindapsus lucens is likely to be native and previously overlooked, whereas Passiflora quadriglandulosa and Tectaria nayarii are exotic species which have escaped from cultivation and become naturalised. Another 10 species are rediscoveries of taxa previously considered to be nationally extinct: Aglaia palembanica Miq., Bolbitis sinuata (C.Presl) Hennipman, Calamus ornatus Blume, Claoxylon longifolium (Blume) Endl. ex Hassk., Dapania racemosa Korth., Dioscorea kingii R.Knuth, Ficus rosulata C.C.Berg, Lasianthus reticulatus Blume, Ryparosa hullettii King and Senegalia kekapur (I.C.Nielsen) Maslin, Seigler & Ebinger.