For Identifying Known Snps Or Novel Point Mutations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modulation of Mrna and Lncrna Expression Dynamics by the Set2–Rpd3s Pathway
ARTICLE Received 20 Apr 2016 | Accepted 7 Oct 2016 | Published 28 Nov 2016 DOI: 10.1038/ncomms13534 OPEN Modulation of mRNA and lncRNA expression dynamics by the Set2–Rpd3S pathway Ji Hyun Kim1,2,*, Bo Bae Lee1,2,*, Young Mi Oh1,2, Chenchen Zhu3,4,5, Lars M. Steinmetz3,4,5, Yookyeong Lee1, Wan Kyu Kim1, Sung Bae Lee6, Stephen Buratowski7 & TaeSoo Kim1,2 H3K36 methylation by Set2 targets Rpd3S histone deacetylase to transcribed regions of mRNA genes, repressing internal cryptic promoters and slowing elongation. Here we explore the function of this pathway by analysing transcription in yeast undergoing a series of carbon source shifts. Approximately 80 mRNA genes show increased induction upon SET2 deletion. A majority of these promoters have overlapping lncRNA transcription that targets H3K36me3 and deacetylation by Rpd3S to the mRNA promoter. We previously reported a similar mechanism for H3K4me2-mediated repression via recruitment of the Set3C histone deacetylase. Here we show that the distance between an mRNA and overlapping lncRNA promoter determines whether Set2–Rpd3S or Set3C represses. This analysis also reveals many previously unreported cryptic ncRNAs induced by specific carbon sources, showing that cryptic promoters can be environmentally regulated. Therefore, in addition to repression of cryptic transcription and modulation of elongation, H3K36 methylation maintains optimal expression dynamics of many mRNAs and ncRNAs. 1 Department of Life Science, Ewha Womans University, Seoul 03760, Korea. 2 The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea. 3 Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. 4 Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, California 94305, USA. -
A Computational and Evolutionary Approach to Understanding Cryptic Unstable Transcripts in Yeast
A Computational and Evolutionary Approach to Understanding Cryptic Unstable Transcripts in Yeast By Jessica M. Vera B.S. University of Wisconsin-Madison, 2007 A thesis submitted to the Faculty of the Graduate School in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Molecular, Cellular, and Developmental Biology 2015 This thesis entitled: A Computational and Evolutionary Approach to Understanding Cryptic Unstable Transcripts in Yeast written by Jessica M. Vera has been approved for the Department of Molecular, Cellular, and Developmental Biology Tom Blumenthal Robin Dowell Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline iii Vera, Jessica M. (Ph.D., Molecular, Cellular and Developmental Biology) A Computational and Evolutionary Approach to Understanding Cryptic Unstable Transcripts in Yeast Thesis Directed by Robin Dowell Cryptic unstable transcripts (CUTs) are a largely unexplored class of nuclear exosome degraded, non-coding RNAs in budding yeast. It is highly debated whether CUT transcription has a functional role in the cell or whether CUTs represent noise in the yeast transcriptome. I sought to ascertain the extent of conserved CUT expression across a variety of Saccharomyces yeast strains to further understand and characterize the nature of CUT expression. To this end I designed a Hidden Markov Model (HMM) to analyze strand-specific RNA sequencing data from nuclear exosome rrp6Δ mutants to identify and compare CUTs in four different yeast strains: S288c, Σ1278b, JAY291 (S.cerevisiae) and N17 (S.paradoxus). -
Genechip® Mouse Tiling 2.0R Array Set Is a Seven-Array Set Designed ORDERING INFORMATION for Chromatin Immunoprecipitation (Chip) Experiments
ARRAYS Critical Specifi cations Feature Size 5 µm Tiling Resolution 35 base pair Hybridization Controls bioB, bioC, bioD, cre Tiling mRNA controls B. subtilis: dap, lys, phe, thr A.thaliana: CAB, RCA, RBCL, LTP4, LTP6, XCP2, RCP1, NAC1, TIM, PRKASE Array Format 49 Fluidics Protocol Fluidics Station 450: FS450_0001 Fluidics Station 400: EukGE-WS2v5, and manually add Array Holding Buffer to the cartridge prior to scan- ning Hybridization Volume 200 µL. The total fi ll volume of the cartridge is 250 µL. Library Files Mm35b_P01R_v01, Mm35b_P02R_v01, ® Mm35b_P03R_v01, Mm35b_P04R_v01, GeneChip Mouse Tiling 2.0R Mm35b_P05R_v01, Mm35b_P06R_v01, Array Set Mm35b_P07R_v01 For studying genome-wide protein/DNA interactions in chromatin ACCESSORY FILES immunoprecipitation experiments. Fluidics The fl uidics scripts can be downloaded from the Affymetrix web site. Addi- tional information, including lists of steps in the fl uidics protocol, can be found in the Affymetrix® Chromatin Immunoprecipitation Assay Protocol. Library Files Library fi les contain information about the probe array design layout and other characteristics, probe use and content, and scanning and analysis pa- rameters. Tiling arrays are accompanied by .bpmap fi les which associate each probe on the array with the genomic location. These fi les are unique for each probe array type. The library fi les can be downloaded from the following URL: www.affymetrix.com/support/technical/libraryfi lesmain.affx. INTENDED USE The GeneChip® Mouse Tiling 2.0R Array Set is a seven-array set designed ORDERING INFORMATION for chromatin immunoprecipitation (ChIP) experiments. Sequences used in the P/N Product Name Description design of the Mouse Tiling 2.0R Array Set were selected from NCBI mouse ARRAYS genome assembly (Build 33). -
Systematic Evaluation of Variability in Chip-Chip Experiments Using Predefined DNA Targets
Downloaded from genome.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Systematic evaluation of variability in ChIP-chip experiments using predefined DNA targets David S. Johnson,1,24 Wei Li,2,24,25 D. Benjamin Gordon,3 Arindam Bhattacharjee,3 Bo Curry,3 Jayati Ghosh,3 Leonardo Brizuela,3 Jason S. Carroll,4 Myles Brown,5 Paul Flicek,6 Christoph M. Koch,7 Ian Dunham,7 Mark Bieda,8 Xiaoqin Xu,8 Peggy J. Farnham,8 Philipp Kapranov,9 David A. Nix,10 Thomas R. Gingeras,9 Xinmin Zhang,11 Heather Holster,11 Nan Jiang,11 Roland D. Green,11 Jun S. Song,2 Scott A. McCuine,12 Elizabeth Anton,1 Loan Nguyen,1 Nathan D. Trinklein,13 Zhen Ye,14 Keith Ching,14 David Hawkins,14 Bing Ren,14 Peter C. Scacheri,15 Joel Rozowsky,16 Alexander Karpikov,16 Ghia Euskirchen,17 Sherman Weissman,18 Mark Gerstein,16 Michael Snyder,16,17 Annie Yang,19 Zarmik Moqtaderi,20 Heather Hirsch,20 Hennady P. Shulha,21 Yutao Fu,22 Zhiping Weng,21,22 Kevin Struhl,20,26 Richard M. Myers,1,26 Jason D. Lieb,23,26 and X. Shirley Liu2,26 1–23[See full list of author affiliations at the end of the paper, just before the Acknowledgments section.] The most widely used method for detecting genome-wide protein–DNA interactions is chromatin immunoprecipitation on tiling microarrays, commonly known as ChIP-chip. Here, we conducted the first objective analysis of tiling array platforms, amplification procedures, and signal detection algorithms in a simulated ChIP-chip experiment. -
Application of CRISPR Genetic Screens to Investigate Neurological Diseases
Application of CRISPR genetic screens to investigate neurological diseases The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation So, Raphaella W.L., et al. "Application of CRISPR genetic screens to investigate neurological diseases." Molecular Neurodegeneration 14 (2019): 41. https://doi.org/10.1186/s13024-019-0343-3 As Published https://doi.org/10.1186/s13024-019-0343-3 Publisher BioMed Central Version Final published version Citable link https://hdl.handle.net/1721.1/126106 Terms of Use Creative Commons Attribution Detailed Terms https://creativecommons.org/licenses/by/4.0/ So et al. Molecular Neurodegeneration (2019) 14:41 https://doi.org/10.1186/s13024-019-0343-3 REVIEW Open Access Application of CRISPR genetic screens to investigate neurological diseases Raphaella W. L. So1,2, Sai Wai Chung1, Heather H. C. Lau1,2, Jeremy J. Watts3, Erin Gaudette1, Zaid A. M. Al-Azzawi1, Jossana Bishay1, Lilian Tsai-Wei Lin1,2, Julia Joung4,5, Xinzhu Wang1,2 and Gerold Schmitt-Ulms1,2* Abstract The adoption of CRISPR-Cas9 technology for functional genetic screens has been a transformative advance. Due to its modular nature, this technology can be customized to address a myriad of questions. To date, pooled, genome- scale studies have uncovered genes responsible for survival, proliferation, drug resistance, viral susceptibility, and many other functions. The technology has even been applied to the functional interrogation of the non-coding genome. However, applications of this technology to neurological diseases remain scarce. This shortfall motivated the assembly of a review that will hopefully help researchers moving in this direction find their footing. -
Perspectives
Copyright Ó 2010 by the Genetics Society of America DOI: 10.1534/genetics.109.112938 Perspectives Anecdotal, Historical and Critical Commentaries on Genetics The Impact of Whole Genome Sequencing on Model System Genetics: Get Ready for the Ride Oliver Hobert Columbia University Medical Center, Howard Hughes Medical Institute, New York, New York 10032 ABSTRACT Much of our understanding of how organisms develop and function is derived from the extraordinarily powerful, classic approach of screening for mutant organisms in which a specific biological process is disrupted. Reaping the fruits of such forward genetic screens in metazoan model systems like Drosophila, Caenorhabditis elegans, or zebrafish traditionally involves time-consuming positional cloning strategies that result in the identification of the mutant locus. Whole genome sequencing (WGS) has begun to provide an effective alternative to this approach through direct pinpointing of the molecular lesion in a mutated strain isolated from a genetic screen. Apart from significantly altering the pace and costs of genetic analysis, WGS also provides new perspectives on solving genetic problems that are difficult to tackle with conventional approaches, such as identifying the molecular basis of multigenic and complex traits. ENETIC model systems, from bacteria, yeast, regulatory elements) or chemical mutagens, such as G plants, worms, flies, and fish to mice allow the ethyl methane sulfonate (EMS) or N-ethyl N-nitroso dissection of the genetic basis of virtually any biological urea (ENU), that introduce point mutations or dele- process by isolating mutants obtained through random tions. Point mutation-inducing chemical mutagens are mutagenesis, in which the biological process under in many ways a superior mutagenic agent because their investigation is defective. -
A Gene Expression Screen (Cdna Subtraction/Amphibian Metamorphosis/Tail Resorption/Gene Expression/Thyroid Hormone) ZHOU WANG and DONALD D
Proc. Natl. Acad. Sci. USA Vol. 88, pp. 11505-11509, December 1991 Developmental Biology A gene expression screen (cDNA subtraction/amphibian metamorphosis/tail resorption/gene expression/thyroid hormone) ZHOU WANG AND DONALD D. BROWN Department of Embryology, Carnegie Institution of Washington, 115 West University Parkway, Baltimore, MD 21210 Contributed by Donald D. Brown, September 30, 1991 ABSTRACT A gene expression screen identifies mRNAs tions and modifications of subtractive library methodology, that differ in abundance between two mRNA mixtures by a more recently incorporating PCR technology (9-13). subtractive hybridization method. The two mRNA populations This paper describes a subtractive library method that is are converted to double-stranded cDNAs, fragmented, and analogous to a genetic screen in the sense that it can estimate ligated to linkers for polymerase chain reaction (PCR) ampli- the number of, and therefore lead to the isolation of, virtually fication. The multiple cDNA fragments isolated from any given all up- and down-regulated genes. gene can be treated as alleles in a genetic screen. Probability The gene expression screen is applied here to thyroid analysis of the frequency with which multiple alleles are found hormone-induced tadpole tail regression, the final change in provides an estimation of the total number of up- and down- amphibian metamorphosis, which occurs at metamorphic regulated genes. We have applied this method to genes that are "climax" when the endogenous thyroid hormone is at its differentially expressed in amphibian tadpole tail tissue in the highest level (14). Tail resorption is genetically programmed first 24 hr after thyroid hormone treatment, which ultimately and cell-autonomous (15). -
Modeling Dna Methylation Tiling Array Data
Kansas State University Libraries New Prairie Press Conference on Applied Statistics in Agriculture 2010 - 22nd Annual Conference Proceedings MODELING DNA METHYLATION TILING ARRAY DATA Gayla Olbricht [email protected] Bruce A. Craig R. W. Doerge Follow this and additional works at: https://newprairiepress.org/agstatconference Part of the Agriculture Commons, and the Applied Statistics Commons This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Recommended Citation Olbricht, Gayla; Craig, Bruce A.; and Doerge, R. W. (2010). "MODELING DNA METHYLATION TILING ARRAY DATA," Conference on Applied Statistics in Agriculture. https://doi.org/10.4148/2475-7772.1061 This is brought to you for free and open access by the Conferences at New Prairie Press. It has been accepted for inclusion in Conference on Applied Statistics in Agriculture by an authorized administrator of New Prairie Press. For more information, please contact [email protected]. Conference on Applied Statistics in Agriculture Kansas State University MODELING DNA METHYLATION TILING ARRAY DATA Gayla R. Olbricht1, Bruce A. Craig1, and R. W. Doerge1;2 1Department of Statistics, Purdue University, West Lafayette, IN 47907, U.S.A. 2Department of Agronomy, Purdue University, West Lafayette, IN 47907, U.S.A. Abstract: Epigenetics is the study of heritable changes in gene function that occur without a change in DNA sequence. It has quickly emerged as an essential area for understanding inheri- tance and variation that cannot be explained by the DNA sequence alone. Epigenetic modifications have the potential to regulate gene expression and may play a role in diseases such as cancer. -
A Genetic Screen Identifies Cellular Factors Involved in Retroviral -1 Frameshifting (Translation/CUP1/IFSI/Paromomycin)
Proc. Natl. Acad. Sci. USA Vol. 92, pp. 6587-6591, July 1995 Biochemistry A genetic screen identifies cellular factors involved in retroviral -1 frameshifting (translation/CUP1/IFSI/paromomycin) SUSANNA I. LEE*, JAMES G. UMENt, AND HAROLD E. VARMUS*t# Departments of *Microbiology and Immunology and tBiochemistry and Biophysics, University of California, San Francisco, CA 94143 Contributed by Harold E. Varmus, February 17, 1995 ABSTRACT To identify cellular factors that function in gene causes increased frameshifting and a decrease in trans- -1 ribosomal frameshifting, we have developed assays in the lational fidelity in response to antibiotics that target the 40S yeast Saccharomyces cerevisiae to screen for host mutants in ribosomal subunit. which frameshifting is specifically affected. Expression vec- tors have been constructed in which the mouse mammary tumor virus gag-pro frameshift region is placed upstream of MATERIALS AND METHODS the lacZ gene or the CUPI gene so that the reporters are in the Yeast Strains and Genetic Methods. Saccharomyces cerevi- -1 frame relative to the initiation codon. These vectors have siae strains used in this study are listed in Table 1. been used to demonstrate that -1 frameshifting is recapitu- The numbering of the MMTV sequence is reported here lated in yeast in response to retroviral mRNA signals. Using with the first A residue of the heptanucleotide shifty site these reporters, we have isolated spontaneous host mutants in designated + 1. The CUP1 reporter plasmid contained nt -17 two complementation groups, ifsl and ifs2, in which frame- to +68 of MMTV inserted into the Kpn I site of pGM14 shifting is increased 2-fold. -
DISCERN-Genetics: Quality Criteria for Information on Genetic Testing
European Journal of Human Genetics (2006) 14, 1179–1188 & 2006 Nature Publishing Group All rights reserved 1018-4813/06 $30.00 www.nature.com/ejhg ARTICLE DISCERN-Genetics: quality criteria for information on genetic testing Sasha Shepperd*,1, Peter Farndon2, Vivian Grainge3, Sandy Oliver4, Michael Parker5, Rafael Perera3, Helen Bedford6, David Elliman7, Alastair Kent8 and Peter Rose3 1Department of Public Health, University of Oxford, Headington, Oxford, UK; 2NHS National Genetics Education and Development Centre, Norton Court, Birmingham Women’s Hospital, Edgbaston, Birmingham, UK; 3Department of Primary Care, University of Oxford, Headington, Oxford, UK; 4Institute of Education, University of London, London, UK; 5Department of Public Health, The Ethox Centre, University of Oxford, Oxford, UK; 6Centre for Epidemiology and Biostatistics, Institute of Child Health, London, UK; 7Great Ormond Street Hospital, London, UK; 8Genetic Interest Group, Unit 4D, London, UK Information currently available to the public is inadequate to support those deciding to consent to a genetic test. As genetic knowledge continues to evolve, more people will be forced to consider the complex issues raised by genetic testing. We developed and tested criteria to guide the production and appraisal of information resources produced for the public on genetic testing. Lay people with and without experience of a genetic condition, and providers and producers of health information appraised and listed the criteria they used to rate the quality of a sample of information on cystic fibrosis, Down’s syndrome, familial breast cancer, familial colon cancer, haemochromatosis, Huntington’s disease, sickle cell disease, and thalassaemia. These genetic conditions represent different populations, disease pathways, and treatment decisions. -
A Genetic Screen Implicates a CWC16/Yju2/CCDC130 Protein and SMU1 in Alternative Splicing in Arabidopsis Thaliana
Downloaded from rnajournal.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press 1 A genetic screen implicates a CWC16/Yju2/CCDC130 protein and SMU1 in alternative splicing in Arabidopsis thaliana Tatsuo Kanno, Wen-Dar Lin, Jason L. Fu, Antonius J.M. Matzke and Marjori Matzke Institute of Plant and Microbial Biology, Academia Sinica, 128, Sec. 2, Academia Road, Nangang District, Taipei 115, Taiwan Running head: CWC16 and SMU1 in alternative splicing in plants Key words: alternative splicing, CWC16, SmF, SMU1, Yju2 Corresponding authors: Marjori Matzke Antonius Matzke Institute of Plant and Microbial Biology, Academia Sinica, 128, Sec. 2, Academia Road, Nangang District, Taipei 115, Taiwan Tel: +886-2787-1135 Email: [email protected] [email protected] Downloaded from rnajournal.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press 2 Abstract (248 words) To identify regulators of pre-mRNA splicing in plants, we developed a forward genetic screen based on an alternatively-spliced GFP reporter gene in Arabidopsis thaliana. In wild-type plants, three major splice variants issue from the GFP gene but only one represents a translatable GFP mRNA. Compared to wild-type seedlings, which exhibit an intermediate level of GFP expression, mutants identified in the screen feature either a ‘GFP-weak’ or ‘Hyper-GFP’ phenotype depending on the ratio of the three splice variants. GFP-weak mutants, including previously identified prp8 and rtf2, contain a higher proportion of unspliced transcript or canonically-spliced transcript, neither of which is translatable into GFP protein. By contrast, the coilin-deficient hyper-gfp1 (hgf1) mutant displays a higher proportion of translatable GFP mRNA, which arises from enhanced splicing a U2-type intron with non-canonical AT-AC splice sites. -
Genechip Arabidopsis Tiling 1.0R Array
ARRAYS Critical Specifi cations Feature Size 5 µm Tiling Resolution 35 base pair Hybridization Controls bioB, bioC, bioD, cre Tiling mRNA controls B. subtilis: dap, lys, phe, thr A. thaliana: CAB, RCA, RBCL, LTP4, LTP6, XCP2, RCP1, NAC1, TIM, PRKASE Array Format 49 Fluidics Protocol Fluidics Station 450: FS450_0001 Fluidics Station 400: EukGE-WS2v5, and manually add Array Holding Buffer to the cartridge prior to scanning Hybridization Volume 200 µL. The total fi ll volume of the cartridge is 250 µL. Library Files At35b_MR_v04 At35b_MR_v04-2_TIGRv5.bpmap GeneChip® Arabidopsis Tiling 1.0R Array RECOMMENDED ANALYSIS SOFTWARE 1. Affymetrix® Tiling Array Software (TAS) For studying protein/DNA interactions or identifying novel tran- 2. Integrated Genome Browser scripts in Arabidopsis thaliana. TAS and the Integrated Genome Browser are available for download from www.affymetrix.com ACCESSORY FILES Fluidics The fl uidics scripts can be downloaded from the Affymetrix web site. Addi- tional information, including lists of steps in the fl uidics protocol, can be found in the Affymetrix® Chromatin Immunoprecipitation Assay Protocol oror thethe GeneChip® WT Double-Stranded Target Assay Manual. Library Files Library fi les contain information about the probe array design layout and other characteristics, probe use and content, and scanning and analysis pa- INTENDED USE rameters. Tiling arrays are accompanied by .bpmap fi les which associate each The GeneChip® Arabidopsis Tiling 1.0R Array is designed for identifying probe on the array with the genomic location. These fi les are unique for each novel transcripts or mapping sites of protein/DNA interaction in chromatin probe array type. The library fi les can be downloaded from the following immunoprecipitation (ChIP) experiments.