Lake : Sustainable Water Management

The transboundary hydrogeological map of the Komadugu-Yobe basin (/)

Report N° 15

Berlin, November 2018

On behalf of:

Author: Michaela Rückl

Commissioned by: Federal Ministry for Economic Cooperation and Development (Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung, BMZ)

Project: Sustainable Water Management of the Lake Chad Basin

BMZ-No.: 2014.2272.4

BGR-No.: 05-2372

Elvis link:

BGR-Archive No.:

Date: November 2018

1

Table of Content

Acknowledgement ...... 6 Summary ...... 7 1. Introduction ...... 8 2. Study area ...... 9 2.1 Geography ...... 9 2.2 Climate ...... 9 2.3 Hydrology ...... 9 2.4 Hydrogeology ...... 12 2.4.1 Chad Formation ...... 12 2.4.2 Continental Terminal / Kerri-Kerri-Formation ...... 13 2.4.3 Continental Hamadien / Gundumi-Formation ...... 13 2.4.4 Magmatic and metamorphic rocks ...... 14 3. Methodology ...... 14 4. Lithological map ...... 16 5. Borehole data ...... 18 5.1 Data sources ...... 18 5.2 Data quality ...... 18 5.3 Proxies for productivity ...... 21 6. Analysis ...... 22 7. Results ...... 24 8. Outlook ...... 27 9. References ...... 28 10. Appendix ...... 30

2

List of Figures

Figure 1: Exemplary climate diagrams for the pilot zone Komadugu-Yobe (after Merkel, n.d.) ...... 9 Figure 2: Topographic map of the pilot zone Komadugu-Yobe and flooding frequency map for the Hadejia-Nguru wetlands ...... 10 Figure 3: Flow regime of KY (Genthon et al., 2015)...... 11 Figure 4: Stratigraphy and lithofacies of Korama Basin (modified after Rach, 1989) ...... 13 Figure 5: Aquifer categorization after (Struckmeier, et al., 1995) modified by (Bäumle, 2011)...... 14 Figure 6: Maps of borehole locations drilled into the fissured aquifers ...... 19 Figure 7: Map of borehole locations in the transboundary pilot zone and their designated aquifers .... 20 Figure 8: Double logarithmic plots of hydrogeological parameter pairs for IU (A-C) and IC (D-F) (T ≜ transmissivity, Sc ≜ specific capacity, Q ≜ yield; R² ≜ correlation coefficient)...... 21 Figure 9: Cumulative relative frequency of Index Y values after Krásný (1993) for the magmatic and metamorphic fissured flow aquifers...... 22 Figure 10: Cumulative relative frequency of Index Y values after Krásný (1993) for the main aquifer categories...... 23 Figure 11: Aquifer productivity map of the unconfined uppermost aquifers of the study zone Komadugu- Yobe...... 25 Figure 12: Aquifer productivity of the confined second, lower aquifer...... 26

3

List of Tables

Table 1 : Classification based on Transmissivity magnitude (modified after Krásný (1993)) ...... 15 Table 2: Classification of transmissivity variation (Krásný, 1993) ...... 16 Table 3: Simplification scheme of geology and lithology for further analysis (original information based on Dessauvagie (1974))...... 17 Table 4: Number of boreholes and counts for relevant hydrogeological parameters of the three main aquifer categories (n ≜ feature count; T ≜ transmissivity; Sc ≜ specific capacity; Q ≜ yield)...... 18 Table 5: Number of boreholes and counts for relevant hydrogeological parameters drilled to fissured flow aquifers (n ≜ feature count; T ≜ transmissivity; Sc ≜ specific capacity; Q ≜ yield) ...... 18 Table 6: Parameters for transmissivity classification and final classification results after Krásný (1993) ...... 23

4

List of Abbreviations

BGR Federal Institute for Geosciences and Natural Resources

CF Chad Formation (fr. formation tchadienne)

CT Continental Terminal

DEM Digital Elevation Model

GIZ Gesellschaft für Internationale Zusammenarbeit GmbH

IHME International Hydrogeological Map of Europe

KY Komadugu-Yobe

LCB Lake Chad Basin

LCBC Lake Chad Basin Commission

SLHyM Standard Legend for Hydrogeological Maps

5

Acknowledgement

This report is based mainly on the results of the master thesis “A Hydrogeological Aquifer Productivity Map for the Transboundary Pilot Zone Komadugu-Yobe in the Lake Chad Basin” by Werner Buchert conducted at the Federal Institute for Geosciences and Natural Resources (BGR) from October 2017 to June 2018 and presented at the Technische Universität Berlin.

6

Summary

The transboundary region of the Komadugu-Yobe basin is located in the west of the Lake Chad Basin and extends over north-eastern Nigeria and south-eastern Niger. It is characterized by a high population density and rising water demand, especially in the Nigerian part. Because further water demand rise and climate change effects will affect the area, it is of major hydrogeological interest.

An aquifer productivity map of the transboundary region was developed based on an available lithological map. The lithologies of the uppermost aquifer as well as cover layers were identified and attributed following the scheme of the International Hydrogeological Map of Europe (IHME) outlined in Duscher et al. (2015). Furthermore, borehole data of over 4000 boreholes were analysed. The classification method after Krásný (1993) was used to determine a transmissivity index Y based on measurements of transmissivity, specific capacity or yield for each borehole with a reported parameter. A productivity description was assigned based on the index Y distribution within one aquifer. This first classification was transformed to the aquifer productivity categories of the Standard Legend for Hydrogeological Maps (SLHyM) by Struckmeier & Margat (1995) and presented in productivity maps for the uppermost aquifer and for the middle and lower aquifers of the Chad Formation. A classification table that includes further quantitative values to determine productivity accompanies the maps.

The four aquifers of the region are categorized as follows: the porous upper and middle/lower aquifers of the Chad Formation as well as the underlying fissured sandstone aquifers (Continental Terminal/ Continental Hamadien) are moderate productive, while the fissured magmatic and metamorphic rocks are low productive. For the Nigerian part of the study area, the results are limited due to the lack of borehole information. Here, the productivity classes were inferred based on lithological information. The whole classification process is a preliminary analysis based only on pumping test data and does not include a comprehensive analysis of the structure and dimensions of the aquifers.

The applied workflow was conceived to be reproducible for other regions and thus produce comparable productivity maps, due to the standardized procedure of assigning lithological descriptions and aquifer productivity categories. For local studies as well as for updated and a more complete borehole database, the process must be repeated to improve the validity and resolution of the result.

Keywords: lithological map, aquifer productivity map, Komadugu-Yobe, Lake Chad Basin, hydrogeology

7

1. Introduction

To strengthen regional groundwater management in the Sahel zone, the Federal Institute for Geosciences and Natural Resources (BGR) supports the regional authority on water resources – the Lake Chad Basin Commission (LCBC) - within the programme “Sustainable Water Management of the Lake Chad Basin”. The programme is financed by the German Federal Ministry for Economic Cooperation and Development (BMZ) and consists, besides the BGR module “Groundwater Management”, of the one more component “Organisational Development” - performed by the German Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ).

The current project phase is scheduled until June 2019 and the BGR module focuses amongst others on the implementation of a groundwater monitoring network for the Lake Chad Basin (LCB) and the elaboration of local hydrogeological maps.

Because the size of the Lake Chad Basin is approx. 2.4 million km², the hydrogeological mapping focused on three transboundary pilot zones located in the southern part of the basin. One of them is the Komadugu-Yobe basin, which extends through north-eastern Nigeria and south-eastern Niger. Due to the high population density and the limited surface water availability, groundwater is heavily exploited in this area.

Aquifer productivity maps are a common tool to determine regions, where reliable wells for water supply can be drilled. At a regional scale, these maps can help to get an overview of potentially vulnerable areas, areas suitable for managed aquifer recharge or regions, where extensive pumping for an increased water demand may be possible. The map of the Komadugu-Yobe (KY) transboundary zone at a scale of 1 : 1 000 000 is an example.

This report summarizes the necessary steps and processes to determine aquifer productivity, which are applicable to other regions as well as to more detailed local studies.

8

2. Study area

2.1 Geography The study area is a transboundary region that covers north-eastern Nigeria and south-eastern Niger. It extends between longitudes 8°-14° E and latitudes 11°-14° N and up to the boundary of the Lake Chad Basin. Parts of the States Zinder and Diffa in Niger; and Borno, Yobe, Jigawa, Kano, and Bauchi in Nigeria are included in the study zone (Figure 2).

Population density increases considerably from north to south and east to west. The state Diffa in Niger is the least populated with only 3 inhabitants per km² followed by Zinder with a population density of about 20 inhabitants per km². In the Nigerian states, population density varies from 50 inhabitants per km² in Yobe to 515 inhabitants per km² in Kano (GIZ & LCBC, 2016).

2.2 Climate The climate of the region varies from Sahelian-Saharan in the north to Sahelian-Sudanese in the south. They can be differentiated by their mean annual rainfall of 100 mm - 400 mm and 400 mm - 600 mm, respectively (GIZ & LCBC, 2016) and the vegetation cover that changes from sparse rangeland in the north to regions suitable for restricted crop growing (millet, sorghum, sesame) in the south.

Zinder, Niger: Sahelian-Saharan climate Maiduguri, Nigeria: Sahelian-Sudanese climate

Figure 1: Exemplary climate diagrams for the pilot zone Komadugu-Yobe (after Merkel, n.d.)

2.3 Hydrology The main effluent of the region is the Komadugu-Yobe, one of two rivers reaching Lake Chad. It contributes only with 3 % of the annual volume of surface water that reaches the lake (95 % Chari- Logone River, 2 % precipitation on lake surface) (Vassolo, 2010).

9

Figure 2: Topographic map of the pilot zone Komadugu-Yobe and flooding frequency map for the Hadejia-Nguru wetlands

10

The affluents of the Yobe River are characterized by the presence of a significant number of damns, which were constructed mainly in the 1970s-1980s to palliate the severe drought that experienced the region at that time. Negative effects on the discharge of the KY by the construction of major dams (e.g. in 1971-74 and 1990-1992) cannot be identified (Figure 3a).

Figure 3: Flow regime of KY (Genthon et al., 2015) a: comparison of the annual discharge of the KY and rainfall over its catchment area b: Comparison of the water level of the KY at the Bagara station during the 1960s, for a dry year (1973–1974) and during recent years Genthon et al. (2015) show that the flow-peak of the KY at the Bagara Station appears between October and December, when the river recharges the underlying aquifer. That the very low flow in the dry season reflects a limited aquifer discharge into the river couldn’t be proved by their model. (Figure 3b).

The largest regularly flooded area within the study area are the Hadejia-Nguru wetlands consisting of floodplains, lakes and marshes during the rainy season in June to October. It is located around the confluence of Hadejia and Jama’are River with its largest extent between the cities of Hadejia and Gashua (Figure 2). According to Goes (1999), the central part of the wetlands between the cities Hadejia and Gashua decreased from ~ 2000 km² in the 1960s to 1028 km² in 1997, due to damn constructions, droughts, and increasing pressure on water resources. As the floodplains cause regular groundwater recharge in this area (Goes, 1999), the wetlands are essential for a sustainable groundwater management. Additionally, the shrinking of the inundation diminishes fish catch, cropland, and rangeland besides habitat loss for a variety of animals.

Because the dimension of the wetlands varies with precipitation, the method of Vassolo et al. (2016) was used to delimitate its extent over the period 2001-2017 (Figure 2). The area between longitude 10.0°-11.1° E and latitude 12.25°-13.0° was considered and the steps followed for the calculation are presented in Appendix 1. Furthermore, the minimum, medium and maximum flooding extent area (equivalent to 95 %, 50 % and 5 % of flooding frequency) was calculated at 152 km², 995 km², and 2770 km², respectively. While the medium extent is similar to the size given by Goes (1999), the size reduces considerably in dry years like in 2002 and 2011 (445 km² in 2011 and 393 km ² in 2002).

11

2.4 Hydrogeology A short overview of the main aquifers of the region is given in the following chapters.

2.4.1 Chad Formation

The study zone is covered mainly by the Quaternary to Pliocene sediments of the Chad Formation (CF).

Eastern part of pilot zone

In the Bornu basin, located around Maiduguri in the Bornu State, the CF is subdivided into three aquifers, an upper, middle and lower water-bearing zone (Miller et al., 1968). The Quaternary upper aquifer is known as a phreatic, unconfined aquifer, even though in the region of Maiduguri it is semi-confined. It consists of sand, sandy clay and clay (Barber, 1965) and is widespread in the pilot zone.

The middle aquifer is a confined aquifer of Lower Pliocene age overlain by a more than 100 m thick layer of Pliocene clays (Genthon et al., 2015). It is estimated to be between 0.5 and 65 m thick (Miller et al., 1968) and can be found at depths of 250-350 m (Rach, 1989). The aquifer consists of un- cemented sands even though sandstones can occur and artesian conditions have been encountered in the eastern part of the study zone (Barber, 1965) and are documented for available measurements until the beginning of the 1980ies (more recent measurements area are not available).

The lower aquifer is located at a depth of around 500 m. Superposed by 130 m of clays and clay shales, the aquifer consists of 100 m of alternating sands, sandy clays, and clays (Barber, 1965). Miller et al. (1968) describe this lower aquifer as depositions of a large river delta which were – to the date of their study - only found in the Maiduguri area, directly overlying Cretaceous sediments in the absence of the Tertiary Kerri Kerri Formation (Continental Terminal). However, more recent publications (e.g. IWACO (1985), Hanidu et al. (1989)) assign this lower aquifer to the Kerri Kerri Formation. As there is no common convention on the attribution of this aquifer, it is assigned as lower aquifer of the Chad formation within this report.

Central part of pilot zone

A differentiation of the Chad Formation is not possible in the central part of the study zone, Information on the confining clay layers that separate the upper, middle, and lower aquifers is missing outside the Bornu basin.

Western part of pilot zone

In the western part of the study zone, the separated aquifers and confining clay layers of the Chad Formation do not exist. In this region, the Quaternary to Pliocene sedimentary units are hydraulically connected to build up a phreatic aquifer. According to Rach (1989), in the Korama basin - located south of Zinder and north of the Nigerian border - the distinct litho-statigraphic units of the Chad Formation can be divided as shown in Figure 4.

12

Present humid Erosion (formation of "the Koramas") phase 2nd desert Term A

phase (aeolian sands, partially processed, alluvially recycled) Term B 2nd humid (fluvial and aeolian, mainly fine-grained sands)

Quaternary phase Term C (fluvial silty sands) 1st desert Sands of Malawa phase (clay, sandy clay with gravel layers, sandstone)

1st humid Erosion of the CT-plateau in the west phase Recycling and rearrangement of CT and iron-carapaxes Pleisto-/ Deposition of gravel (e.g. area of Magaria-Bandé) Neogene Pliocene Continental Terminal Neogene / Paleogene (Clay, sandy clay, clayey sandstone compacted fissured sandstone: with overlying iron-carapax) Continental Hamadien Cretaceous Intrusiv young (Clayey sandstone type "Farak") granites (Mesozoic) Precambrian Crystalline

Figure 4: Stratigraphy and lithofacies of Korama Basin (modified after Rach, 1989)

2.4.2 Continental Terminal / Kerri-Kerri-Formation

While the Continental Terminal is mainly covered by the Chad Formation, outcrops are located in the south of the study zone in Yobe and Bauchi States. Dessauvagie (1974) estimates a maximum thickness of 300 m for the formation mainly consisting of ferruginous sandstones, sands and argillites, and bauxites with ferricretes in the uppermost part (GIZ and LCBC, 2016).

Within the Bornu basin, the debatable statement of Akujieze et al. (2003), mentioning the aquifer to be highly exploited and usually located at depths of approximately 400 - 500 m can be explained by the missing convention on the differentiation of the aquifers Continental Terminal and lower aquifer of the Chad Formation.

2.4.3 Continental Hamadien / Gundumi-Formation

The Continental Hamadien (in Nigeria known as Gundumi formation) crops out in the northwest of the pilot zone. Its thickness in the study region is limited to 150-250 m. It is hydraulically connected with the Continental Terminal and the Chad Formation (Rach, 1989) and according to Greigert (1978), groundwater flow is directed to southeast and the formation consists of more or less clayey sandstones containing interbedded clay or thin sandstone layers.

13

2.4.4 Magmatic and metamorphic rocks

In the Nigerian part, the basement complex known as Nigerian shield (Rach, 1989) is an aquifer of limited water supply potential. The water table is located in 13 – 26 m depth (measurements only for the far north). The basement rocks consisting of “migmatites, gneisses and granites are covered by a weathered zone” (IWACO, 1985) are not further specified on the map and classified as undifferentiated metamorphic and magmatic rocks. Rach (1989) describes the Nigerian shield close to the Nigerien border as highly variable in its amount of fissures and the degree of weathering and therefore with variable aquifer productivity. Drilling into the fissured basement may be successful, but only when it is surrounded by water-bearing sediments or when the clay content of the weathered layer is low.

3. Methodology

The Standard Legend for Hydrogeological Maps by Struckmeier & Margat (1995) provides a qualitative classification of productivity based on aquifer and flow type. As productivity highly depends on lithology and dimension of the aquifer, aquifer categories were determined as shown in the following Figure 5.

Figure 5: Aquifer categorization after (Struckmeier, et al., 1995) modified by (Bäumle, 2011)

To add a quantitative component to the qualitative differentiation of Struckmeier & Margat (1995) the classification scheme after Krásný (1993) was related to the categories. Krásný (1993) defined a logarithmic index Y which can be calculated based on transmissivity and specific capacity measurements. Originally, intervals of expected yield were assigned to the calculated Indices, in the case of the pilot zone though, yield measurements were likewise used to calculate the Index Y as data density in this area is low.

The corresponding logarithmic Index Y can be calculated as follows:

3 푌푇 = log⁡(10 ∗ 푇) T in [m²/d] ( 1 )

6 푌푆푐 = log⁡(10 ∗ 푆푐)⁡ Sc in [L/sm] ( 2 ) 5 푌푄 = log⁡(2 ∗ 10 ∗ 푄) Y in [L/s] ( 3 )

14

The corresponding intervals of the three parameters (transmissivity, specific capacity and yield) as well as the assigned supply potential after Krásný (1993) and the related aquifer category of Struckmeier & Margat (1995) are shown in Table 1.

Table 1 : Classification based on Transmissivity magnitude (modified after Krásný (1993))

Index Trans- Specific Classes of Category Y missivity Capacity Yield supply (Struckmeier transmissivity potential and Margat, magnitude [-] [m²/d] [L/sm] [L/s] 1995)

Withdrawals of great regional I: Very high > 7 > 1000 > 10 > 50 importance A/C withdrawals of regional II: High 7 - 6 1000-100 10 - 1 50 - 5 importance

Withdrawals for local water III: Intermediate 6 - 5 100 - 10 1 - 0.1 5 – 0.5 supply (smaller communities, B/D small scale irrigation etc.) Smaller withdrawals for local water supply (supply through IV: Low 5 - 4 10 - 1 0.1 - 0.01 0.5 - 0.05 hand pump, private consumption) E withdrawals for local water V: Very low 4 - 3 1 - 0.1 0.01 - 0.001 0.05 - 0.005 supply with limited consumption sources for local water Imperceptible < 3 < 0.1 < 0.001 < 0.005 F supply are difficult to ensure

According to Krásný (1993), the index is calculated for each borehole of a respective aquifer and for the whole set of boreholes x̅ (mean Index Y), s (standard deviation) and the interval I [x̅ +s, x̅ -s] is calculated.

Based on the proportion of a specific class on the interval I, the following classification is applied:

 Proportion of one class > 70 %: The respective class is listed to describe the aquifer.  Proportion of several classes between 30 – 70 %: Both (all three) classes are listed in order of their magnitude of the proportion.  Proportion of classes between 10 – 30 %: The respective classes are added in parentheses.  Proportion of classes < 10 %: The classes are not listed.

To include the information of the heterogeneity of the dataset, the standard deviation is used to define a class of transmissivity variation (a-f) according to Table 2 which can be added as a description of the aquifer.

Positive and negative anomalies in the dataset are characterized by their values located in the intervals [x̅ +s, x̅ +2s] and [x̅ -s, x̅ -2s]. Areas with appearing positive anomalies, may be considered of areas favorable for higher water abstraction while negative anomalies indicate less suitable areas for water supply.

15

Table 2: Classification of transmissivity variation (Krásný, 1993)

Standard deviation of Class of transmissivity Designation of Hydrogeological environment from the transmissivity index Y variation transmissivity variation point of view of its hydraulic heterogeneity

< 0.2 a Insignificant Homogenous 0.2 - < 0.4 b Small Slightly heterogeneous 0.4 - < 0.6 c Moderate Fairly heterogeneous 0.6 - < 0.8 d Large Considerably heterogeneous 0.8 - < 1.0 e Very large Very heterogeneous ≥ 1.0 f Extremely large Extremely heterogeneous

In the final aquifer productivity map, the aquifer categories of Struckmeier & Margat (1995) will be shown which are assigned based on the class of transmissivity magnitude with the highest proportion on I after Krásný (1993) and the aquifer’s flow type. The detailed classification after Krásný (1993) will be added as additional information.

To apply the classification scheme, two types of information are therefore required: Aquifer lithology as well as measurements of proxies for productivity (transmissivity, specific capacity or yield measurements).

4. Lithological map

The geological map of Nigeria (Dessauvagie, 1974), which displays also the geology of the southern Niger was used to determine the aquifer lithology. Its lithological information was harmonized based on the level 3 of the standard legend of the IHME (Duscher, et al., 2015) according to the approach in (Rückl, 2018). Within the technical meeting in May 2017, the denominations and stratigraphic classifications were discussed and reviewed by the hydrogeologists of the member states of the LCBC.

The resulting simplified lithology and corresponding geological denominations are shown in Table 3. Furthermore a code determining the aquifer type is added as it will be used to group the geological formations in three main aquifer categories:

 FF: Aquifers with fissured flow ( 5 subcategories: undifferentiated metamorphic/magmatic rocks, plutonic rocks, schists, quartzites and sandstones)  IU: Unconfined aquifer with Intergranular flow: (sands of the upper Chad Formation)  IC: Confined aquifer with granular flow (sands of the middle and lower aquifer of the Chad Formation)

16

Table 3: Simplification scheme of geology and lithology for further analysis (original information based on Dessauvagie (1974))

Aquifer Geological Map of Nigeria Strati- type Lithology Geologie (1 : 1 000 000) graphie code**

Alluvium, river deposits clay (cover layer)

Beach ridge deposits sand (cover layer) Chad Formation IU

Chad Formation (upper zone) sand Quaternary

Chad Formation (middle and lower zone) sand Chad Formation IC Biu and Longuda Basalt, flows, plugs, fluvio-volcanic deposits (Jos) volcanic rocks - *** basalts* Continental Terminal Continental terminal Sandstone and sands / Kerri-Kerri Neogene - Kerri-Kerri Formation Formation

Continental FF Continental Hamadien / Formation de Koutous Sandstone and sands hamadien / - Gundumi formation Bima sandstone /

Bima sandstone sandstone Continental Cretaceous Intercalaire

Younger granites: granitic rocks

Younger granites: volcanic rocks plutonic rocks Younger granites FF

Younger granites: basic & intermediate rocks Jurassic

Porphyritic biotite granite, porphyroplastic granite, coarse biotite muscovite granite plutonic rocks -

Granite undifferentiated FF magmatic / metamorphic undifferentiated igneous and metamorphic rocks rocks Basement FF

Quartzite, kyanite quartzite, ferruginous quartzite, Precambrian quartzites schistose quartzite

FF Schist, phyllite, pelitic schist, biotite garnet and schists graphitic schist

*only marginally occurrence in the extreme south of the pilot zone ** I: Intergranular flow; U: unconfined; C: confined; FF: Fissured flow *** no aquifer type assigned as no borehole information is available to perform further analysis

17

5. Borehole data

For the productivity assessment, borehole data were reviewed. Special interest was laid on data containing information on aquifer type as well as suitable measurements for hydrogeological characterization of an aquifer.

5.1 Data sources A basic borehole dataset of the LCBC (boreholes_LCBC.shp) which contains information from various sources was updated with information from literature. Measurements from Rach (1989) and Barber (1965) were added, when the respective boreholes were provided with the national identification numbers.

5.2 Data quality Several data quality issues had been detected and had to be dealt with:

 Duplicates: Duplicates occurred, due to the combination of different sources and had to be removed. Missing or different identification numbers complicated the process  Coordinates: WGS 84 was assumed to be the correct ellipsoid for all given coordinates as it is the standard ellipsoid for GPS measurements (El-Rabbany, 2002). Furthermore, many coordinates are documented with an insufficient number of decimal places, which can result in inaccuracies of several hundred meters.  Dates: For many datasets the respective dates are missing. Furthermore, the data is not only recent but dates back to the early 1960s.  Tapped Aquifer: The tapped aquifers are rarely known and also information on filter depths are often missing. For the purpose of the analysis, the boreholes are therefore assigned to the surface aquifer. Only in case of the confined porous aquifer (middle/lower zone of the Chad Formation) boreholes were assigned to this second, lower aquifer when they are located east of 11.5 ° E and meet one of the following criteria: o Negative static head o Drilling depth > 100 m o Aquifer information: middle zone, lower zone, Lower Pliocene (Pliocène inférieur)  Outliers: Obvious outliers due to typing errors or conversion errors were removed  Spatial distribution: Heterogeneous distribution and a lack of data for wide parts of Nigeria led to a reduced significance of the result for regions with low data density. Table 4 and Table 5 summarize the available data sets used for the analysis, with further details provided in Appendix 2-4. An overview of their spatial distribution is shown in Figure 6 and Figure 7.

Table 4: Number of boreholes and counts for relevant hydrogeological parameters of the three main aquifer categories (n ≜ feature count; T ≜ transmissivity; Sc ≜ specific capacity; Q ≜ yield)

Fissured flow Intergranular flow, Intergranular flow, Total unconfined confined Parameters n = 557 n = 1847 n = 191 n = 2579 T 0 31 4 35 Sc 4 75 99 178 Q 553 1824 189 2566

Table 5: Number of boreholes and counts for relevant hydrogeological parameters drilled to fissured flow aquifers (n ≜ feature count; T ≜ transmissivity; Sc ≜ specific capacity; Q ≜ yield)

Sandstone Schist Plutonic rock Met. / Quartzite Total magm. rock Parameters n = 112 n = 39 n = 329 n = 7 n = 70 n = 557 T 0 0 0 0 0 0 Sc 1 0 0 3 0 4 Q 111 39 329 7 70 556

18

Figure 6: Maps of borehole locations drilled into the fissured aquifers

19

Figure 7: Map of borehole locations in the transboundary pilot zone and their designated aquifers

20

5.3 Proxies for productivity As the availability of transmissivity measurements is small, yield and specific capacity values were used in the analysis. As those parameter are usually determined during well performance tests to describe a pumping well and not an aquifer, their suitability to describe the aquifers was proofed.

The double-logarithmic graphs in Figure 8 show the correlation between the parameters for the intergranular aquifers of the Chad Formation (upper unconfined zone IU; middle and lower confined zone IC) .For fissured aquifers parameter pairs are rare, a respective analysis wasn’t reasonable.

The graphs show a moderate to high correlation (A-C) of the parameters for the unconfined aquifer (R²> 0.6), whereas especially the correlation of specific capacity and yield for measurements of the confined aquifer (D) is low. Correlation between the further parameter combinations (E-F) result in high correlation but with low significance due to the small numbers of total measurements.

The results show that especially for the unconfined porous aquifer, measurements of yield and specific capacity can be used as proxies for transmissivity and therefore productivity. Nevertheless, it is shown, that their suitability for use is limited (D) and that it can only be assumed for fissured flow aquifers.

Figure 8: Double logarithmic plots of hydrogeological parameter pairs for IU (A-C) and IC (D-F) (T ≜ transmissivity, Sc ≜ specific capacity, Q ≜ yield; R² ≜ correlation coefficient)

21

6. Analysis

Following the approach of Krásný (1993), the classes of transmissivity magnitude and its variation was determined for the different aquifer categories as well as for the subcategories for aquifers of fissured flow.

Therefore, the Index Y values of all boreholes were calculated based on available transmissivity, specific capacity or yield measurements. Mean and standard variation of Y were calculated for each individual dataset and the results were plotted in cumulative relative frequency diagrams (Figure 9 and Figure 10).

The results show small differences in between the subcategories of fissured aquifers which consist of magmatic or metamorphic rocks. An exception are the undifferentiated metamorphic and magmatic rocks in western Nigeria. The small dataset of only 7 measurements is characterized by a high standard deviation of 0.83 and values ranging from the classes 4 to 2. A reliable statistical analysis cannot be done with this small population. The Index Y values of schists, plutonic and quartzites ranged from 3.74 to 5.82 and their mean values were similar (4.96, 4.91 and 4.98). They are classified identically as aquifers with a transmissivity magnitude of IV-III (low to intermediate) and are characterized by fairly heterogeneous properties (category “c”). For the further analysis, those datasets as well as the undifferentiated metamorphic and magmatic rocks are combined to one group: fissured flow (magmatic/metamorphic rocks).

Figure 9: Cumulative relative frequency of Index Y values after Krásný (1993) for the magmatic and metamorphic fissured flow aquifers

The sandstones have a slightly higher mean (5.16) then the other fissured flow aquifers and are characterized by an intermediate to low transmissivity (III – IV). Therefore, they were examined separately.

22

Figure 10: Cumulative relative frequency of Index Y values after Krásný (1993) for the main aquifer categories

The porous aquifer of the upper Chad Formation (intergranular flow, unconfined) is characterized by a classification of III (-IV) due to boreholes of mainly intermediate but also low and few high Index Y values (x̅ = 5.32). The confined middle and lower zone shows in general higher Index Y values which results in a higher transmissivity classification of III (-II). The standard deviation of both datasets implements a fairly heterogeneous distribution. A summary of the final classification of the designated aquifers is given in Table 6.

Table 6: Parameters for transmissivity classification and final classification results after Krásný (1993)

Proportion on I [%] of class Category x s I = [x+s, x-s] Classification Description ̅ ̅ ̅ IV III II

Fissured Flow Intermediate to low, 5.16 0.43 4.73-5.59 31.0 69.0 0.0 III – IV c (sandstone) fairly heterogeneous

Fissured Flow Low to intermediate, 4.94 0.44 4.50-5.38 57.1 42.9 0.0 IV – III c (mag./met. rocks) fairly heterogeneous

Intergranular flow, Intermediate (to low), 5.32 0.49 4.84-5.81 16.5 83.5 0.0 III (- IV) c unconfined fairly heterogeneous

Intergranular flow, Intermediate (to high), 5.63 0.53 5.10-6.16 0 84.9 15.1 III (- II) c confined fairly heterogeneous

23

7. Results

The classification after Krásný (1993) was the basis to add the aquifer categories of Struckmeier & Margat (1995) to the designated aquifers of the pilot zone. The category of an aquifer was assigned according to the class of transmissivity magnitude with the highest proportion on the interval I [x̅ +s, x̅ -s] - therefore the first class listed in the description after Krásný (1993) - and the aquifer flow type.

The results are displayed in two maps, one showing the aquifer productivity of the uppermost aquifer (Figure 11) and a second map displaying the middle/lower zone of the Chad Formation, a second, lower aquifer (Figure 12).

The aquifers of the Chad Formation are characterized by a moderate productivity. The upper aquifer (or: water bearing zone) is mainly moderate productive in the eastern part of Niger (92 % of boreholes), while in the west low productivity within a 25 km buffer around the basement outcrops is observed frequently (29 % of boreholes). In the Korama basin, south of Zinder and next to the Nigerian border, productivity differs highly between low and high productivity. For the Nigerian part of the study zone intermediate productivity can only be assumed, as further borehole information is missing. In general, this aquifer is suitable for local water supply and small scale irrigation. The middle and lower aquifer of the Chad Formation (as defined by Miller et al. (1968)) are slightly higher productive. Its productivity is equally suitable for local water supply and small scale irrigation. In 20 % of the boreholes a higher productivity allows even withdrawals of regional importance. Nevertheless, reliable information on the extent of the middle and lower aquifer to the west of the pilot zone is missing, due to the small amount of available borehole information.

The fissured flow aquifers were subdivided into two groups. The sedimentary rocks of the Continental Terminal (Kerri-Kerri-Formation) and the Continental Hamadien (Gundumi-Formation) are classified as moderate productive aquifers. The sandstones allow water supply for local communities and small scale irrigation. The magmatic and metamorphic rocks on the contrary are classified as low productive aquifers and water supply is limited to smaller withdrawals e.g. with a hand pump. Both fissured flow aquifers are characterized by a high variability within their productivity: within the Continental Hamadien 66 % of the boreholes are characterized by moderate and 34 % by low productivity, for the basement rocks 42% and 58% respectively. No zones of higher or lower productivity can be seen on the map, but the high variability may be linked to the presence of fractures and the degree of consolidation (sandstones) or weathering (magmatic /metamorphic rocks). But again, only for the outcrops located in Niger, borehole information was sufficiently available whilst for Nigeria the classification is inferred based on the lithological information.

24

Figure 11: Aquifer productivity map of the unconfined uppermost aquifers of the study zone Komadugu-Yobe

25

Figure 12: Aquifer productivity of the confined second, lower aquifer

26

8. Outlook

The presented maps are a first categorization of aquifer productivity on a medium scale, the approach is as well applicable for further study areas and will lead to comparable results and be able to highlight areas of interest.

Any digitized lithological map as well as the productivity maps of the uppermost aquifer may furthermore be the basis for studies on vulnerability or manual drilling feasibility. Such derivations of the presented maps can be useful tools for water management planning.

The generated map may be updated, especially for the Nigerian part, when borehole information become available. Then, a better characterization of the upper zone of the Chad Formation and the delimitation of the lower/middle zone will be possible.

27

9. References

Akujieze, C. N., Coker, S., & Oteze, G. (2003). Groundwater in Nigeria – a millennium experience –

distribution, practice, problems and solutions. Hydrogeology Journal, 11(2), 259–274.

https://doi.org/10.1007/s10040-002-0227-3

Bäumle, R. (2011). Development of a Groundwater Information Management Program for the Lusaka

Groundwater System. Results of Pumping Test Evaluation and Statistical Analysis of Aquifer

Hydraulic Properties, Technical Note No. 4. Lusaka.

Barber, W. (1965). Pressure water in the Chad Formation of Bornu and Dikwa emirates, north-eastern

Nigeria. Geological Survey of Nigeria, 35.

Dessauvagie, T. (1974). Geological map of Nigeria. Ibadan: The Nigerian Mining, Geologial and

Matallurgical Society.

Duscher, K., Günther, A., Clos, P., Phillip, U., & Struckmeier, W. (2015). The GIS layers of the

"International Hydrogeological Map of Europe 1 : 1,500,00. Hydrogeology Journal, Volume

23(Issue 8).

El-Rabbany, A. (2002). Introduction to GPS: The Global Positioning System. Boston, MA: Artech House.

Genthon, P., Hector, B., Luxereau, A., Descloitres, M., Abdou, H., Hinderer, J., & Bakalowicz, M. (2015).

Groundwater recharge by Sahelian rivers—consequences for agricultural development:

example from the lower Komadugu Yobe River (Eastern Niger, Lake Chad Basin).

Environmental Earth Sciences, 74(2), 1291–1302. https://doi.org/10.1007/s12665-015-4119-y

GIZ, & LCBC. (2016). Report on the State of the Lake Chad Basin Ecosystem (p. 234). Bonn: Deutsche

Gesellschaft für Internationale Zusammenarbeit GmbH, Lake Chad Basin Commission.

Goes, B. J. M. (1999). Estimate of shallow groundwater recharge in the Hadejia–Nguru Wetlands, semi-

arid northeastern Nigeria. Hydrogeology Journal, 7(3), 294–304.

Hanidu, J. A., Oteze, G. E., & Maduabuchi, C. M. (1989). Geohydrology of Drought-Prone Areas In

Africa: The Chad Basin in Nigeria (Preliminary Report Submitted to the Commonwealth Science

Council). London.

IWACO. (1985). General Report (Technical Report) (p. 63). Nigeria-Niger Joint Commission For

Cooperation Niamey, Niger Republic; Adviesbureau Voor Watervoorzienning IWACO B.V.

Krásný, J. (1993). Classification of Transmissivity Magnitude and Variation. Ground Water, 31, 230–

236. https://doi.org/10.1111/j.1745-6584.1993.tb01815.x

28

Merkel, A. (N.d.). Climate Data. Climate Data for Cities Worldwide. https://en.climate-data.org, accessed

July 11, 2018.

Miller, R. E., Johnston, R. H., Olowu, J. A. I., & Uzoma, J. U. (1968). Ground-water hydrology of the

Chad Basin in Bornu and Dikwa Emirates, northeastern Nigeria, with special emphasis on the

flow life of the artesian system (USGS Numbered Series). U.S. Govt. Print. Off. Retrieved from

http://pubs.er.usgs.gov/publication/wsp1757I

Rach, A. (1989). Geologie und Hydrogeologie des südlichen Korama-Beckens, südöstlicher Niger. Univ.

d. Saarlandes.

Rückl, M. (2018) The transboundary hydrogeological map of Salamat and Vakaga (Chad/Central African

Republic) (Lake Chad Basin: Sustainable Water Management) (p. 70). Berlin: Bundesanstlt für

Geowissenschaften und Rohstoffe.

Struckmeier, W. F., & Margat, J. (1995). Hydrogeological maps: a guide and a standard legend.

Hannover: Heise.

Vassolo, S. (2010). Lake Chad Sustainable Water Management - Project Activities (No. Report N° 3).

BGR.

Vassolo, S., Wilczok, C., Daira, D., & Bala, A. (2016). Groundwater-Surface Water Interaction in the

Lower Logone Floodplain (Technical report No. 10). Hannover: BGR.

29

10. Appendix

Appendix 1: Processing manual (modified after (Vassolo et al., 2016))

Step 1: Download of MOD13Q1 band 7 (MIR/SWIR) imageries from WEB: https://lpdaacsvc.cr.usgs.gov/appeears/task/area

Extent: Shapefile with polygon of study area Reprojection: Geographic, WGS 84

MOD13Q1 Download Download: images taken between Julian´s day 225 and-321 for the time period 2001-2017 (119 imageries)

Working environment: QGIS 2.18, process chain is conducted stepwise for each year

Step 2: threshold of < 0.08 reflectance units; tool: “raster calculator” (operator: <), caution: reflectance is multiplied by scale factor 0.0001, value range 0 – 10 000 -> threshold < 800; output: value=0=False (not

flooded), value=1=True (flooded)

xtent Step 3: summing up all three thresholded consecutive MIR/SWIR reflectance images; tool: “raster calculator” (operator: +)

Step 4: threshold of > 0 to select all pixels classified as flooded in at least one of the three thresholded images (operator: >); output: value=0=False (not flooded), value=1=True (flooded)

Step 5: tool: “raster to vector”

Step 6: “select by attributes”: syntax: “DN” = 0; “delete selected” (edit session has to be activated); eliminate all

yearly flooding e pixels classified as not flooded

Step 7: tool: “field calculator” (create new field “area” with expression $area to calculate geometry)

of the Step 8: “select by attributes”: syntax: “area” < 53785 (pixel area); “delete selected” (edit session has to be activated)

Step 9: tool: “select by location”: selection method: “select features from“ (target layer = result from step 9; intersection layer: polygon layer which represents a buffer of 5 km around the rivers Hadejia and Jama’are); geometric predicate: “intersect”

Step 10: “invert selection” and “delete selected” (edit session has to be activated); eliminate all isolated pixels located outside buffer

Compilation Step 11: tool: “vector to raster” (attribute: DN, extent and cell size: copy and paste from e.g. raw MODIS data in properties); output values: data/no-data: value=1 (flooded), NoData=not flooded

Step 12: properties: remove “no data value” = 0 (in transparency tab)

Working environment: QGIS 2.18, process chain is conducted to summarize previous yearly results

Step 13: : tool: “raster calculator” (add all 17 raster, value 0: not flooded at all, value17: flooded every year)

Step 14: tool: “raster calculator”; syntax: 100*”raster from step 13”)/17; output value range: 0 -100 indicating the percentage (0-100%) of occurrence of flooding in a pixel within in the period 2000-2017

processing

- Step 15: tool: “raster calculator”: syntax: „raster from step 14”<=5 (maximum extent), syntax: „raster from step 14” >=50 (medium extent), syntax:“ raster from step 14” >= 95 (minimum extent)

Post Step 16 tool: “raster to vector”

Step 17 “select by attributes”: syntax: “DN” = 0; “delete selected”

30

Appendix 2: Borehole data of fissured flow aquifers (magmatic/metamorphic rocks)

Debit Spec. capacity Transmissivity ID X_coord Y_coord Y-Index Anomaly [ls-1] [ls-1m-1] [m²d-1] A002339 9.07222 13.8 0.028 3.745 --A A002898 9.07222 13.8 0.028 3.745 --A A002338 9.1 13.79444 0.028 3.745 --A A005048 9.25083 13.8925 0.028 3.745 --A A005557 9.215 13.97222 0.028 3.745 --A A001979 9.355 13.55278 0.028 3.745 --A A000033 10.15833 13.75278 0.056 4.046 --A A000315 9.06667 13.87583 0.056 4.046 --A A002983 9.50333 13.66944 0.056 4.046 --A A000395 9.21778 13.8975 0.056 4.046 --A A000169 9.00972 13.90972 0.056 4.046 --A A003878 9.10172 13.93694 0.056 4.046 --A A000378 9.24611 13.99 0.056 4.046 --A A000379 9.25422 13.99135 0.056 4.046 --A A004464 9.21667 13.87639 0.056 4.046 --A A003838 9.305 13.9 0.056 4.046 --A A000318 9.25083 13.8925 0.083 4.222 -A A004859 9.33681 13.67222 0.083 4.222 -A A002370 8.62083 13.01806 0.083 4.222 -A A002183 10.16389 13.74722 0.111 4.347 -A A005391 10.20139 13.91583 0.111 4.347 -A A005236 8.95417 13.75 0.111 4.347 -A A002839 10.14639 13.51944 0.111 4.347 -A A005121 10.08889 13.70139 0.111 4.347 -A A003242 9.32083 13.88611 0.111 4.347 -A A004947 10.24722 13.92778 0.111 4.347 -A A005120 10.24028 13.77778 0.111 4.347 -A A004078 9.01667 13.80556 0.111 4.347 -A A003755 10.16389 13.74722 0.139 4.444 -A A003764 10.16389 13.74722 0.139 4.444 -A A003246 9.08472 13.84167 0.139 4.444 -A A004493 9.0875 13.80694 0.139 4.444 -A A003820 8.84167 13.75 0.139 4.444 -A A005192 9.29722 13.83611 0.139 4.444 -A A000321 9.20556 13.97083 0.139 4.444 -A A004733 9.13806 13.97861 0.139 4.444 -A A000193 9.105 13.84722 0.139 4.444 -A A002669 10.11806 13.45833 0.139 4.444 -A A002141 9.34444 13.85694 0.139 4.444 -A A003243 10.21667 13.77778 0.139 4.444 -A A004492 10.21667 13.77778 0.139 4.444 -A A005161 9.05194 13.89083 0.139 4.444 -A A000316 9.08528 13.89083 0.139 4.444 -A A004341 9.24444 13.70278 0.139 4.444 -A A004453 9.30333 13.94028 0.139 4.444 -A A002840 9.33519 13.67 0.139 4.444 -A A004261 9.34167 13.44444 0.139 4.444 -A A003552 9.23472 13.8875 0.139 4.444 -A A004223 9.05417 13.74861 0.139 4.444 -A A002899 9.28472 13.83472 0.139 4.444 -A A003970 10.09583 13.69028 0.139 4.444 -A A000367 9.3 13.39722 0.139 4.444 -A A003695 9.36111 13.72778 0.139 4.444 -A A005078 8.83889 13.8 0.139 4.444 -A A005134 10.24028 13.77778 0.139 4.444 -A

31

Debit Spec. capacity Transmissivity ID X_coord Y_coord Y-Index Anomaly [ls-1] [ls-1m-1] [m²d-1] A003245 9.38889 13.8125 0.139 4.444 -A A003244 9.29722 13.775 0.139 4.444 -A A005264 8.97778 13.82222 0.139 4.444 -A A003733 8.59444 13.04028 0.222 0.031 4.485 -A A003852 10.20139 13.91583 0.167 4.523 A004281 9.2125 13.78333 0.167 4.523 A004890 10.28333 13.59722 0.167 4.523 A004342 9.25167 13.68056 0.167 4.523 A004949 9.24722 13.73333 0.167 4.523 A003579 9.21333 13.83889 0.167 4.523 A003367 9.41833 13.88333 0.167 4.523 A004571 9.10514 13.76944 0.194 4.590 A000264 9.21778 13.8975 0.194 4.590 A003896 9.29083 13.80083 0.194 4.590 A003860 9.27917 13.79583 0.194 4.590 A002893 9.24861 13.76806 0.194 4.590 A000209 10.21389 13.7875 0.194 4.590 A001872 10.35 13.3375 0.194 4.590 A004276 9.08611 13.94167 0.194 4.590 A001833 9.10972 13.83472 0.222 4.648 A005028 10.27222 13.76667 0.222 4.648 A004151 9.32083 13.88611 0.222 4.648 A003250 9.08333 13.81306 0.222 4.648 A003979 9.25194 13.90389 0.222 4.648 A000159 9.10856 13.8875 0.222 4.648 A005390 8.79722 13.77222 0.222 4.648 A003957 9.43502 13.94526 0.222 4.648 A005135 9.105 13.95583 0.222 4.648 A004862 10.16389 13.74722 0.250 4.699 A004930 9.40222 13.86917 0.250 4.699 A004178 9.10514 13.76944 0.250 4.699 A003714 10.22778 13.66667 0.250 4.699 A004465 9.225 13.77917 0.250 4.699 A004861 9.3875 13.53056 0.250 4.699 A004497 9.43333 13.82222 0.250 4.699 A004179 9.2575 13.83472 0.250 4.699 A003898 10.20056 13.99056 0.250 4.699 A000293 10.24583 13.75 0.278 4.745 A000074 10.1 13.66944 0.278 4.745 A004184 9.23333 13.975 0.278 4.745 A004185 9.23333 13.975 0.278 4.745 A000323 9.20556 13.99167 0.278 4.745 A002344 9.12361 13.91583 0.278 4.745 A003916 9.2125 13.78389 0.278 4.745 A005137 9.375 13.76389 0.278 4.745 A004957 9.31389 13.84444 0.278 4.745 A003917 9.29028 13.80833 0.278 4.745 A003256 9.07222 13.8 0.278 4.745 A005213 9.29861 13.86361 0.278 4.745 A005435 9.29861 13.845 0.278 4.745 A003915 9.39444 13.88333 0.278 4.745 A000174 9.13806 13.97861 0.278 4.745 A005432 9.13806 13.97861 0.278 4.745 A002082 10.09583 13.69028 0.278 4.745 A000070 10.08889 13.70139 0.278 4.745 A002366 9.31667 13.87917 0.278 4.745 A002924 9.31667 13.87917 0.278 4.745

32

Debit Spec. capacity Transmissivity ID X_coord Y_coord Y-Index Anomaly [ls-1] [ls-1m-1] [m²d-1] A002330 9.14806 13.78722 0.278 4.745 A004965 9.38472 13.90972 0.278 4.745 A002083 9.16667 13.79444 0.278 4.745 A004514 9.27083 13.94167 0.278 4.745 A004966 9.27083 13.94167 0.278 4.745 A000162 9.10833 13.89722 0.278 4.745 A004954 9.18056 13.89722 0.278 4.745 A004171 9.08333 13.99444 0.278 4.745 A005051 9.08333 13.99444 0.278 4.745 A003260 9.33333 13.85833 0.278 4.745 A004416 9.33333 13.85833 0.278 4.745 A004960 9.17222 13.89306 0.278 4.745 A004515 9.34722 13.83889 0.278 4.745 A004647 9.09167 13.85139 0.278 4.745 A004758 9.09167 13.85139 0.278 4.745 A003609 9.10889 13.81528 0.278 4.745 A004461 9.16389 13.94167 0.278 4.745 A005416 9.16389 13.94167 0.278 4.745 A004700 10.26944 13.77778 0.278 4.745 A004126 9.32778 13.83056 0.278 4.745 A004370 9.32778 13.83056 0.278 4.745 A001869 9.10972 13.83472 0.278 4.745 A005195 9.10172 13.93694 0.278 4.745 A002892 9.27222 13.84167 0.278 4.745 A005214 9.225 13.77917 0.278 4.745 A003252 9.32917 13.85 0.278 4.745 A005138 9.24167 13.90833 0.278 4.745 A005543 9.24167 13.90833 0.278 4.745 A004968 9.41944 13.85278 0.278 4.745 A005165 9.25514 13.70833 0.278 4.745 A004183 9.05139 13.80972 0.278 4.745 A004771 9.30278 13.85417 0.278 4.745 A003259 9.25694 13.79167 0.278 4.745 A004500 9.35056 13.82389 0.278 4.745 A004513 9.36389 13.97361 0.278 4.745 A005424 9.23194 13.91528 0.278 4.745 A003596 9.07639 13.82222 0.278 4.745 A004715 9.35833 13.95694 0.278 4.745 A004716 9.35833 13.95694 0.278 4.745 A004466 9.24444 13.70278 0.278 4.745 A003114 9.39583 13.94028 0.278 4.745 A002440 9.2575 13.83472 0.278 4.745 A004110 9.25639 13.83472 0.278 4.745 A003531 9.44722 13.60278 0.278 4.745 A004969 9.37917 13.61806 0.278 4.745 A004351 9.37917 13.61806 0.278 4.745 A002600 9.35278 13.89722 0.278 4.745 A003261 9.25833 13.86944 0.278 4.745 A004951 9.07139 13.75 0.278 4.745 A002815 10.09722 13.78056 0.278 4.745 A004499 10.09722 13.78056 0.278 4.745 A004956 9.05833 13.78056 0.278 4.745 A003348 9.07222 13.84444 0.278 4.745 A004774 9.55 14 0.278 4.745 A004864 9.41528 13.74861 0.278 4.745 A003910 9.15683 13.98889 0.278 4.745 A004186 9.16842 13.99083 0.278 4.745

33

Debit Spec. capacity Transmissivity ID X_coord Y_coord Y-Index Anomaly [ls-1] [ls-1m-1] [m²d-1] A004187 9.16842 13.99083 0.278 4.745 A004967 9.3625 13.86944 0.278 4.745 A002561 9.30167 13.68333 0.278 4.745 A000030 9.26111 13.92222 0.278 4.745 A000175 9.26111 13.92222 0.278 4.745 A002348 9.26111 13.92222 0.278 4.745 A003907 9.25861 13.91972 0.278 4.745 A004761 9.26111 13.92222 0.278 4.745 A005201 9.38889 13.69444 0.278 4.745 A003980 10.27222 13.72083 0.278 4.745 A002902 9.37222 13.73333 0.278 4.745 A003613 9.37222 13.73333 0.278 4.745 A002496 9.45278 13.95556 0.278 4.745 A002847 9.45278 13.95556 0.278 4.745 A005198 9.29444 13.9 0.278 4.745 A004516 9.29167 13.90833 0.278 4.745 A003614 9.23692 13.90944 0.278 4.745 A003557 9.27222 13.78889 0.278 4.745 A004292 9.41111 13.83333 0.278 4.745 A005310 10.125 13.85 0.278 4.745 A004714 9.4 13.81667 0.278 4.745 A004083 10.15556 13.89167 0.278 4.745 A002901 9.10847 13.85833 0.278 4.745 A004510 9.26667 13.71667 0.278 4.745 A002143 9.39583 13.51944 0.278 4.745 A002142 9.58611 13.54444 0.278 4.745 A005398 9.34722 13.70833 0.278 4.745 A001928 9.43889 13.98611 0.278 4.745 A002026 9.30181 13.98556 0.278 4.745 A002188 9.43889 13.98611 0.278 4.745 A004759 9.43889 13.98611 0.278 4.745 A004082 10.03472 13.80139 0.278 4.745 A000956 9.40139 13.96667 0.278 4.745 A005425 9.17778 13.9 0.278 4.745 A004125 9.36944 13.85417 0.278 4.745 A003556 9.36528 13.82222 0.278 4.745 A003914 9.43056 13.89389 0.278 4.745 A002828 9.36667 13.475 0.278 4.745 A002719 8.91944 13.81944 0.278 4.745 A002604 9.12361 13.89306 0.278 4.745 A005139 9.27778 13.96167 0.278 4.745 A004955 9.2 13.99444 0.278 4.745 A000073 9.32222 13.47778 0.278 4.745 A004415 9.43472 13.95694 0.278 4.745 A005421 9.175 13.95583 0.278 4.745 A005420 9.175 13.95583 0.278 4.745 A005495 10.19722 13.87083 0.278 4.745 A004612 10.09861 13.78056 0.278 4.745 A002247 10.23333 13.575 0.278 4.745 A000176 9.33611 13.74167 0.278 4.745 A002903 9.29167 13.82222 0.278 4.745 A003558 9.29167 13.82222 0.278 4.745 A003555 9.35 13.95417 0.278 4.745 A003883 9.4 13.97222 0.278 4.745 A004962 9.22778 13.75972 0.278 4.745 A005126 8.775 13.8 0.278 4.745 A003850 8.85278 13.75 0.278 4.745

34

Debit Spec. capacity Transmissivity ID X_coord Y_coord Y-Index Anomaly [ls-1] [ls-1m-1] [m²d-1] A003038 9.38889 13.8125 0.278 4.745 A004504 9.28889 13.80722 0.278 4.745 A001213 9.31806 13.86944 0.278 4.745 A003086 9.31806 13.86944 0.278 4.745 A003597 9.01889 13.79667 0.278 4.745 A004371 9.30847 13.98 0.278 4.745 A004127 9.32083 13.83333 0.278 4.745 A003384 9.28686 13.9325 0.306 4.786 A004667 9.305 13.9 0.306 4.786 A004927 9.25847 13.90694 0.306 4.786 A000088 9.14167 13.83333 0.333 4.824 A004971 9.35278 13.89722 0.333 4.824 A005166 9.31333 13.96111 0.333 4.824 A000061 9.23278 13.97361 0.361 4.859 A002883 9.38472 13.90972 0.361 4.859 A005184 9.10172 13.93694 0.361 4.859 A003271 10.22778 13.66667 0.389 4.891 A002607 9.25056 13.77917 0.389 4.891 A003668 8.71389 12.925 0.278 0.078 4.891 A004153 9.355 13.95556 0.417 4.921 A003314 9.31389 13.84444 0.417 4.921 A000054 9.35 13.76389 0.417 4.921 A002351 9.22861 13.82083 0.417 4.921 A004129 9.34722 13.83889 0.417 4.921 A002608 9.34444 13.85694 0.417 4.921 A003272 9.225 13.88472 0.417 4.921 A005026 10.07083 13.65833 0.417 4.921 A001617 9.40417 13.91944 0.417 4.921 A004521 9.25833 13.81944 0.417 4.921 A005167 9.31333 13.99167 0.417 4.921 A002352 9.27917 13.79583 0.444 4.949 A003273 10.05 13.75556 0.444 4.949 A002609 9.34444 13.85694 0.500 5.000 A003920 10.05 13.75556 0.528 5.023 A005539 9.14 13.90833 0.528 5.023 A004980 9.14806 13.985 0.556 5.046 A000083 9.23333 13.975 0.556 5.046 A002611 9.18889 13.84306 0.556 5.046 A002353 9.23833 13.93333 0.556 5.046 A005092 10.14444 13.68056 0.556 5.046 A004973 9.22056 13.9025 0.556 5.046 A004523 9.04667 13.86917 0.556 5.046 A003564 9.29639 13.84028 0.556 5.046 A003117 9.11333 13.90556 0.556 5.046 A004154 9.355 13.95556 0.556 5.046 A002355 9.30139 13.825 0.556 5.046 A005216 9.29861 13.845 0.556 5.046 A002298 9.14806 13.78722 0.556 5.046 A002891 9.11833 13.78889 0.556 5.046 A003849 9.16583 13.79 0.556 5.046 A003848 9.1 13.79444 0.556 5.046 A002907 9.15683 13.82083 0.556 5.046 A004688 9.215 13.97222 0.556 5.046 A003563 9.15 13.87222 0.556 5.046 A004605 10.13889 13.68889 0.556 5.046 A003927 9.32778 13.83056 0.556 5.046 A000224 8.90556 13.81111 0.556 5.046

35

Debit Spec. capacity Transmissivity ID X_coord Y_coord Y-Index Anomaly [ls-1] [ls-1m-1] [m²d-1] A000327 9.21389 13.96111 0.556 5.046 A004003 9.27222 13.81111 0.556 5.046 A004566 9.43889 13.55833 0.556 5.046 A004765 9.13833 13.88611 0.556 5.046 A000213 10.23333 13.525 0.556 5.046 A002087 9.28889 13.92639 0.556 5.046 A002674 9.43694 13.6175 0.556 5.046 A004301 9.39306 13.61806 0.556 5.046 A004374 9.39306 13.61806 0.556 5.046 A004105 9.25833 13.86944 0.556 5.046 A005187 9.33833 13.96389 0.556 5.046 A004133 9.37778 13.75 0.556 5.046 A003921 9.26111 13.92222 0.556 5.046 A004134 9.27417 13.79833 0.556 5.046 A002659 10.12917 13.65 0.556 5.046 A004975 9.07778 13.89083 0.556 5.046 A002145 9.39583 13.51944 0.556 5.046 A005169 9.44167 13.95278 0.556 5.046 A004190 9.38472 13.70278 0.556 5.046 A002905 9.4 13.88833 0.556 5.046 A000071 8.9875 13.75972 0.556 5.046 A004639 9.53472 13.53056 0.556 5.046 A004192 9.35 13.57083 0.556 5.046 A004719 9.39167 13.80694 0.556 5.046 A005168 9.31333 13.99167 0.556 5.046 A003923 9.05222 13.79944 0.556 5.046 A004193 9.21667 13.79861 0.611 5.087 A004046 9.30678 13.94417 0.611 5.087 A002590 9.28689 13.93278 0.611 5.087 A003929 9.34444 13.85694 0.694 5.143 A003930 9.23667 13.80556 0.694 5.143 A005545 10.24583 13.75 0.833 5.222 A005266 9.39833 13.60417 0.833 5.222 A005143 9.0875 13.80694 0.833 5.222 A003281 9.14167 13.81111 0.833 5.222 A003936 9.44167 13.9375 0.833 5.222 A002856 9.30139 13.825 0.833 5.222 A002089 10.14639 13.51944 0.833 5.222 A004934 9.30694 13.76111 0.833 5.222 A003278 9.25833 13.89167 0.833 5.222 A003932 9.25833 13.89167 0.833 5.222 A003277 9.09167 13.85139 0.833 5.222 A003931 9.10889 13.81528 0.833 5.222 A004007 10.25833 13.69167 0.833 5.222 A002427 9.40278 13.44167 0.833 5.222 A004354 9.29861 13.4 0.833 5.222 A003525 10.24444 13.65417 0.833 5.222 A003165 10.28194 13.98056 0.833 5.222 A005058 10.24167 13.64583 0.833 5.222 A005260 9.38611 13.625 0.833 5.222 A002088 10.08333 13.75278 0.833 5.222 A003619 9.25833 13.86944 0.833 5.222 A004532 9.33833 13.96389 0.833 5.222 A002223 9.30167 13.68333 0.833 5.222 A003933 9.26111 13.92222 0.833 5.222 A004087 10.03611 13.74167 0.833 5.222 A002817 10.13611 13.60278 0.833 5.222

36

Debit Spec. capacity Transmissivity ID X_coord Y_coord Y-Index Anomaly [ls-1] [ls-1m-1] [m²d-1] A004615 9.20556 13.70556 0.833 5.222 A000031 9.17889 13.89583 0.833 5.222 A004006 9.42222 13.61806 0.833 5.222 A002616 9.20556 13.80417 0.833 5.222 A003482 8.86111 13.79444 0.833 5.222 A004983 9.305 13.96389 0.833 5.222 A004852 9.23689 13.69944 0.833 5.222 A000215 9.15169 13.85722 1.000 5.301 A004535 9.3 13.94056 1.111 5.347 A004767 9.3075 13.92667 1.111 5.347 A001932 9.22333 13.25833 1.111 5.347 A005546 9.375 13.76389 1.111 5.347 A002448 10.21667 13.55556 1.111 5.347 A003177 10.14639 13.51944 1.111 5.347 A005033 8.925 13.87222 1.111 5.347 A002471 9.28847 13.85139 1.111 5.347 A001993 9.55694 13.54028 1.111 5.347 A003176 10.28194 13.98056 1.111 5.347 A004809 9.01806 13.85556 1.111 5.347 A004009 8.96472 13.8575 1.111 5.347 A002393 9.30167 13.68333 1.111 5.347 A003636 9.18361 13.95417 1.111 5.347 A002090 9.11667 13.86111 1.111 5.347 A002358 9.11667 13.86111 1.111 5.347 A000371 8.83611 13.77361 1.111 5.347 A005010 9.43472 13.95583 1.111 5.347 A004196 9.35 13.57083 1.111 5.347 A003864 9.25556 13.83333 1.111 5.347 A004720 9.23333 13.76389 1.111 5.347 A003065 9.39181 13.87361 1.194 5.378 +A A002449 9.29167 13.39306 1.194 5.378 +A A004694 9.43333 13.88889 1.389 5.444 +A A002232 10.14639 13.51944 1.389 5.444 +A A003077 9.46806 13.64583 1.389 5.444 +A A004156 9.45167 13.93056 1.389 5.444 +A A000181 9.24167 13.99444 1.389 5.444 +A A002285 9.29861 13.4 1.389 5.444 +A A004748 9.16389 13.9 1.389 5.444 +A A004408 10.20222 13.58472 1.389 5.444 +A A000482 10.26944 13.97917 1.389 5.444 +A A003166 10.28194 13.98056 1.389 5.444 +A A000222 10.24167 13.64583 1.389 5.444 +A A000392 9.01667 13.90556 1.389 5.444 +A A004197 9.25833 13.86944 1.389 5.444 +A A002359 9.29722 13.885 1.389 5.444 +A A005145 9.20167 13.91667 1.389 5.444 +A A002450 10.27222 13.43056 1.389 5.444 +A A002299 9.31806 13.86944 1.389 5.444 +A A004935 9.3 13.94056 1.667 5.523 +A A004616 10.27222 13.43056 1.667 5.523 +A A004869 8.90833 13.86667 1.667 5.523 +A A003741 9.46806 13.64583 1.667 5.523 +A A003287 9.25833 13.89167 1.667 5.523 +A A002725 9.45639 13.65278 1.667 5.523 +A A002360 9.05139 13.80972 1.667 5.523 +A A003289 9.29861 13.8125 1.667 5.523 +A A004846 9.23639 13.67778 1.667 5.523 +A

37

Debit Spec. capacity Transmissivity ID X_coord Y_coord Y-Index Anomaly [ls-1] [ls-1m-1] [m²d-1] A005235 9.41528 13.74861 1.667 5.523 +A A004657 8.81944 13.74722 1.667 5.523 +A A004198 9.38611 13.70278 1.667 5.523 +A A005131 9.24167 13.88889 1.667 5.523 +A A004849 9.53472 13.53056 1.667 5.523 +A A004260 9.25178 13.94722 1.722 5.537 +A A003570 9.15 13.87222 1.944 5.590 +A A004136 9.24189 13.70056 1.944 5.590 +A A004138 9.28333 13.80417 1.944 5.590 +A A003292 9.05139 13.80972 1.944 5.590 +A A002798 9.5 13.66667 1.944 5.590 +A A004200 9.05833 13.78056 1.944 5.590 +A A002362 9.29722 13.885 1.944 5.590 +A A003295 9.18194 13.85833 1.944 5.590 +A A003078 9.58611 13.54444 1.944 5.590 +A A003141 9.13528 13.84778 1.972 5.596 +A A005056 8.90833 13.86667 2.222 5.648 +A A002309 10.08611 13.63611 2.222 5.648 +A A003431 10.09167 13.59722 2.222 5.648 +A A004201 8.93333 13.82778 2.222 5.648 +A A004150 9.30833 13.9 2.250 5.653 +A A005163 9.13833 13.88611 2.389 5.679 +A A002070 9.25972 13.77361 2.500 5.699 +A A004429 9.44722 13.64167 2.500 5.699 +A A003341 9.18361 13.95417 2.500 5.699 +A A002095 9.11667 13.86111 2.500 5.699 +A A004142 10.29028 13.3 2.778 5.745 +A A004878 9.30417 13.45278 2.778 5.745 +A A000329 9.28333 13.80417 2.778 5.745 +A A000483 10.27222 13.98611 2.778 5.745 +A A003361 9.26667 13.71667 2.778 5.745 +A A002191 9.33306 13.86944 2.778 5.745 +A A003580 9.30333 13.90972 2.944 5.770 +A A004989 9.36944 13.75417 3.056 5.786 +A A003189 10.28194 13.98056 3.333 5.824 ++A A004812 8.98056 13.84444 3.333 5.824 ++A A004015 9.41278 13.63889 3.333 5.824 ++A A005476 8.88333 13.8 3.611 5.859 ++A A004430 10.02222 13.33333 3.889 5.891 ++A A003362 9.31833 13.66111 4.000 5.903 ++A A002254 9.22181 13.26111 4.167 5.921 ++A A005498 9.15178 13.84722 4.806 5.983 ++A A003805 8.51333 12.88333 5.000 6.000 ++A A003089 9.44722 13.60278 5.833 6.067 ++A A002927 8.60333 13.04583 6.111 6.087 ++A A002966 9.355 13.81667 6.389 6.106 ++A A002929 8.60181 12.90833 8.056 6.207 ++A A003783 8.54167 12.90139 4.806 2.306 6.363 ++A

38

Appendix 3: Borehole data of fissured flow aquifers (sandstones)

Debit Spec. capacity Transmissivity ID X_coord Y_coord Y-Index Anomaly [ls-1] [ls-1m-1] [m²d-1] A005503 8.25833 13.51667 0.111 4.347 -A A003631 8.64167 13.73194 0.111 4.347 -A A003962 8.50833 13.71667 0.111 4.347 -A A003111 8.50333 13.66389 0.111 4.347 -A A004365 8.25833 13.55 0.139 4.444 -A A005063 8.505 13.69722 0.139 4.444 -A A002713 8.41847 13.01806 0.028 4.444 -A A000220 8.54 13.70833 0.222 4.648 -A A005477 8.63722 13.67778 0.278 4.745 A003352 8.255 13.58611 0.278 4.745 A005040 8.25833 13.51667 0.278 4.745 A004891 8.59722 13.70556 0.278 4.745 A005311 8.40333 13.62222 0.278 4.745 A003913 8.36889 13.57306 0.278 4.745 A005039 8.63681 13.69583 0.278 4.745 A004802 8.36111 13.61944 0.278 4.745 A004841 8.40278 13.63194 0.278 4.745 A000383 8.42181 13.62639 0.278 4.745 A005301 8.62639 13.62639 0.278 4.745 A004850 8.31944 13.69583 0.278 4.745 A004413 8.38611 13.675 0.278 4.745 A000294 8.48611 13.59722 0.278 4.745 A004964 8.25833 13.55 0.278 4.745 A000400 8.44189 13.72222 0.278 4.745 A000380 8.49861 13.69444 0.278 4.745 A005417 8.9825 13.89167 0.278 4.745 A004478 8.93056 13.83333 0.278 4.745 A005388 8.99056 13.90806 0.278 4.745 A002689 8.275 13.57639 0.278 4.745 A003880 8.27514 13.57222 0.278 4.745 A003634 8.41806 13.58889 0.278 4.745 A003262 9.03611 13.97083 0.278 4.745 A000238 8.49722 13.75972 0.278 4.745 A004696 8.84722 13.86111 0.278 4.745 A004085 8.55333 13.57639 0.278 4.745 A003143 8.55333 13.72222 0.306 4.786 A004518 8.62514 13.69583 0.333 4.824 A000391 8.78611 13.86111 0.556 5.046 A004867 8.40278 13.63194 0.556 5.046 A000163 8.41111 13.63611 0.556 5.046 A004805 8.31944 13.69583 0.556 5.046 A005401 8.57222 13.58889 0.556 5.046 A005293 8.38611 13.675 0.556 5.046 A004583 8.64167 13.73194 0.556 5.046 A003922 8.64172 13.83667 0.556 5.046 A003062 8.325 13.53889 0.556 5.046 A003749 8.325 13.53889 0.556 5.046 A004845 8.62514 13.87917 0.556 5.046 A005505 8.44583 13.66528 0.556 5.046 A004695 8.43056 13.59444 0.556 5.046 A003098 8.7375 13.75833 0.556 5.046 A005291 8.86944 13.83333 0.556 5.046 A003379 8.98889 13.91611 0.556 5.046 A004866 8.89444 13.84583 0.556 5.046 A000355 8.65167 13.80583 0.556 5.046

39

Debit Spec. capacity Transmissivity ID X_coord Y_coord Y-Index Anomaly [ls-1] [ls-1m-1] [m²d-1] A002810 8.64 13.82222 0.556 5.046 A003225 8.65167 13.82222 0.556 5.046 A004691 8.65844 13.80833 0.556 5.046 A004409 8.425 13.03889 0.667 5.125 A005532 8.30417 13.67083 0.833 5.222 A003535 9.04944 13.99833 0.833 5.222 A005125 8.54167 13.59444 0.833 5.222 A003934 8.74167 13.75833 0.833 5.222 A003138 8.325 13.53889 0.833 5.222 A005127 8.58389 13.57083 0.833 5.222 A000242 8.83611 13.85694 1.111 5.347 A000210 8.93889 13.87917 1.111 5.347 A000276 8.65 13.7625 1.111 5.347 A005064 8.9 13.9 1.111 5.347 A004749 8.93056 13.83333 1.111 5.347 A003163 8.325 13.53889 1.111 5.347 A002758 8.99056 13.90806 1.111 5.347 A004703 8.36389 13.67361 1.111 5.347 A003744 8.98167 13.93889 1.111 5.347 A002915 9.03611 13.97083 1.111 5.347 A004817 8.27278 13.57278 1.297 5.414 A000085 8.5 13.61111 1.389 5.444 A005314 8.90333 13.93472 1.389 5.444 A002880 8.25681 13.51667 1.667 5.523 A000283 8.78611 13.86111 1.667 5.523 A005540 8.34444 13.61389 1.667 5.523 A003127 8.55514 13.56944 1.667 5.523 A005315 8.88056 13.86944 1.667 5.523 A005536 8.49444 13.68472 1.667 5.523 A004894 8.98194 13.98167 1.667 5.523 A004425 8.36389 13.67361 1.667 5.523 A000388 8.77222 13.89167 1.667 5.523 A004426 8.425 13.03889 1.667 5.523 A002433 8.64 13.82222 1.667 5.523 A004540 8.425 13.03889 1.889 5.577 A005475 8.49028 13.62778 1.944 5.590 A003469 8.255 13.58611 1.944 5.590 A000239 8.80833 13.84944 1.944 5.590 A004402 8.74167 13.75833 1.944 5.590 A005541 8.34639 13.60167 1.944 5.590 A005548 8.88139 13.86389 1.944 5.590 A005292 8.59 13.75278 2.222 5.648 +A A003887 8.9625 13.86667 2.222 5.648 +A A004854 8.9625 13.86667 2.222 5.648 +A A004870 8.97361 13.94167 2.222 5.648 +A A004378 8.53333 13.68889 2.222 5.648 +A A004847 8.53333 13.68889 2.222 5.648 +A A000403 8.65167 13.80583 2.222 5.648 +A A000402 8.81528 13.81444 2.500 5.699 +A A005208 8.99056 13.90806 2.500 5.699 +A A004173 8.65675 13.81889 3.056 5.786 +A A004872 8.9625 13.86667 3.611 5.859 +A A000262 8.655 13.8125 4.167 5.921 +A A000084 8.30333 13.68889 5.833 6.067 +A A000212 8.50333 13.7125 6.111 6.087 +A A000405 8.69583 13.7 8.056 6.207 ++A

40

Debit Spec. capacity Transmissivity ID X_coord Y_coord Y-Index Anomaly [ls-1] [ls-1m-1] [m²d-1] A000485 8.55167 13.72222 8.333 6.222 ++A

Appendix 4: Borehole data for porous aquifer (confined)

Debit Spec. capacity Transmissivity ID X_coord Y_coord Y-Index Anomaly [ls-1] [ls-1m-1] [m²d-1] B000044 13.32589 11.91414 0.005 3.004 --A B000217 13.479 11.78186 0.063 4.101 --A A018024 13.2 11.85 0.082 4.216 --A B000059 12.37992 12.73391 0.114 4.357 --A B000215 12.64067 11.66696 0.152 4.482 --A A018005 12.91667 11.38333 0.189 4.577 --A B000022 12.95702 12.01302 0.189 4.578 --A A018047 12.03333 13.21667 0.194 4.590 -A B000021 13.09485 11.92683 0.202 4.606 -A B000109 13.42011 11.72297 0.051 0.058 4.763 -A A018081 13.38333 12.27083 0.317 4.802 -A B000198 13.44548 11.95038 0.081 0.074 4.870 -A A018150 12.23333 11.76667 0.380 4.881 -A B000216 13.2149 13.46252 0.253 0.079 4.896 -A B000202 12.10032 12.56935 0.455 4.959 -A A000430 12.2525 13.30167 0.500 5.000 -A A018037 13.21667 11.95833 0.506 5.005 -A A000416 12.28917 13.6525 0.556 5.046 -A B000192 12.40389 12.52589 0.568 5.056 -A A018386 13.2 11.7875 0.569 5.056 -A A018105 13.48056 12.925 2.278 0.119 5.077 -A B000205 12.1556 12.01366 0.631 5.101 B000212 12.6068 12.137 0.631 5.101 A000420 12.16167 13.75778 0.639 5.106 A018075 12.92778 13.00278 1.456 0.128 5.106 A018054 13.24167 12.03333 1.394 0.136 5.134 A018065 13.275 12.14167 1.647 0.136 5.134 A018039 12.15278 13.525 3.253 0.139 5.143 B000164 13.03687 12.65617 0.227 0.139 5.143 A018032 13.36667 11.88333 0.708 5.151 A018162 13.46667 12.4 0.719 5.158 A000439 12.45222 13.29361 0.750 5.176 B000025 12.81514 12.2399 0.758 5.181 B000052 12.54097 12.60737 0.758 5.181 B000058 12.4662 12.67511 0.758 5.181 B000015 13.37934 11.90055 0.152 0.162 5.210 B000026 12.69275 11.84622 0.631 0.162 5.210 A018049 12.31111 13.93889 2.500 0.167 5.222 A018066 12.7375 13.09028 1.139 0.169 5.229 A018031 12.02778 13.21111 0.500 0.083 1.73E+01 5.240 A018009 11.81667 12.03333 0.905 5.258 B000055 12.66192 12.92436 0.126 0.185 5.268 B000024 12.93337 12.05392 0.947 5.277 A000425 12.48889 13.87 1.000 5.301 A018098 13.0825 12.92639 2.533 0.203 5.307 A018119 13.0825 12.92639 0.203 5.307 A018220 13.0825 12.92639 0.203 5.307 A018071 13.31667 12.15 1.031 5.314 A018003 11.95 11.71389 1.089 5.338 B000020 13.23891 11.98391 0.417 0.220 5.343

41

Debit Spec. capacity Transmissivity ID X_coord Y_coord Y-Index Anomaly [ls-1] [ls-1m-1] [m²d-1] A018046 12.26667 13.39167 1.136 5.356 B000210 12.64834 12.26866 1.137 5.357 A000431 12.25833 13.39444 1.139 5.358 A018058 12.76667 12.6 1.139 5.358 B000035 13.47085 12.35265 0.568 0.232 5.365 B000060 12.62549 13.14229 0.164 0.232 5.365 A018164 13.3 13.66667 1.184 5.374 A018083 12.90556 13.565 3.789 0.250 5.398 B000006 12.23645 11.76218 1.263 5.402 B000023 13.00878 11.8625 1.263 5.402 B000051 12.64322 12.562 1.263 5.402 A000417 12.27833 13.61139 1.278 5.407 A018154 13.06667 11.61667 1.340 5.428 A000444 12.40139 13.72056 1.389 5.444 B000030 13.09848 12.03827 0.139 0.278 5.444 B000062 12.45789 12.8678 0.076 0.278 5.444 B000186 12.70394 12.60673 0.227 0.278 5.444 B000218 13.0337 13.18709 0.695 0.278 5.444 A018061 13.2 12.45 1.394 5.445 A018021 13.26667 11.75833 1.456 5.464 B000053 12.76209 12.64572 0.316 0.301 5.479 B000170 13.12747 12.63624 0.568 0.301 5.479 B000203 12.31793 12.19196 1.515 5.482 B000204 12.20034 12.18877 1.515 5.482 B000214 12.58826 12.01558 1.515 5.482 A018020 12.525 12.00833 1.519 5.483 A018052 11.51667 12.46667 1.530 5.486 A000433 12.37389 13.44444 1.611 5.508 A000437 12.75556 13.89444 1.611 5.508 A018055 12.76667 13.89167 1.617 5.510 B000190 12.55152 12.39743 1.642 5.516 B000208 12.55439 11.82577 1.642 5.516 A018063 12.49167 12.39167 1.647 5.518 B000063 12.91244 13.04259 1.705 5.533 A000427 12.94722 13.80917 1.750 5.544 B000001 13.10663 11.86069 1.768 5.548 A000451 12.61667 13.31111 1.806 5.558 A018074 12.61667 13.31667 1.819 5.561 B000196 11.87984 12.57318 1.894 5.578 A018060 13.42917 12.2 4.347 0.386 5.587 B000159 13.02872 12.62989 0.631 0.394 5.595 A018152 12.48333 11.8 2.000 5.602 A018027 13.21667 11.78333 2.016 5.606 A018059 13.41667 12.30833 2.028 5.608 B000160 12.86323 12.90071 0.758 0.440 5.644 A000429 12.42333 13.18472 2.222 5.648 A000422 12.05556 13.21667 2.278 5.659 A000442 12.61667 13.31667 2.278 5.659 A018093 12.85833 12.60833 3.800 0.461 5.664 A018159 12.81667 12.1 2.500 5.699 B000152 12.86818 12.12806 2.526 5.703 B000188 12.67422 12.46837 2.526 5.703 A000435 12.3 13.91667 2.528 5.704 A018076 12.61667 12.63333 2.533 5.705 A018062 12.61472 13.335 2.272 0.556 5.745 A000414 12.18472 13.9375 2.833 5.753

42

Debit Spec. capacity Transmissivity ID X_coord Y_coord Y-Index Anomaly [ls-1] [ls-1m-1] [m²d-1] B000050 12.7442 12.53324 0.379 0.579 5.763 A018015 12.25 11.76667 2.917 5.766 A018158 12.6 12.13333 3.000 5.778 B000049 12.87617 12.51566 0.631 0.602 5.780 B000028 12.84454 12.34279 0.303 0.626 5.796 B000161 13.08308 12.78482 1.137 0.649 5.812 B000034 13.15103 12.27836 1.073 0.672 5.827 B000073 13.48082 12.94247 2.273 0.672 5.827 B000224 13.19089 12.02468 0.663 0.672 5.827 B000095 13.29599 12.33453 1.768 0.695 5.842 B000122 13.35533 13.46343 2.526 0.695 5.842 A018018 11.76667 12.61667 3.500 5.845 A018111 13.23333 11.86667 3.547 5.851 B000043 13.2371 12.50033 1.389 0.718 5.856 B000061 12.78015 13.09052 1.137 0.718 5.856 B000064 13.03415 12.99864 1.452 0.718 5.856 B000228 13.25975 12.25118 1.200 0.741 5.870 A000453 12.9 13.56389 3.778 5.878 B000017 13.28965 12.03827 1.389 0.765 5.883 B000018 13.29418 12.12887 1.642 0.765 5.883 B000048 12.82952 12.5048 0.505 0.765 5.883 B000045 13.18093 12.5556 1.818 0.811 5.909 B000174 13.01105 13.33568 1.642 0.811 5.909 A000434 12.50556 13.62778 4.111 5.915 B000219 13.16734 13.00498 1.389 0.834 5.921 A000445 12.72778 13.53056 4.194 5.924 B000226 13.2226 12.16783 1.301 0.857 5.933 B000046 13.08036 12.5411 1.515 0.880 5.945 B000156 12.95398 12.76203 1.263 0.880 5.945 B000207 13.23257 12.0881 1.389 0.880 5.945 A000457 13.06111 13.8925 4.417 5.946 A000458 13.18889 13.66778 4.417 5.946 A018095 13.18333 13.66389 4.417 5.946 B000033 13.08761 12.17054 0.884 0.904 5.956 B000016 13.08036 11.67586 1.263 0.927 5.967 B000123 13.34537 13.39729 3.157 0.973 5.988 A000466 12.61667 13.84444 5.000 6.000 A000467 12.53333 13.86667 5.000 6.000 A018084 13.43333 13.23333 5.011 6.001 B000047 12.96564 12.53036 1.515 1.019 6.008 B000225 12.70921 12.97229 1.137 1.019 6.008 B000037 13.19814 12.40248 1.515 1.043 6.018 B000112 13.22804 12.81381 3.788 1.043 6.018 B000178 12.91324 12.4492 0.947 1.089 6.037 B000107 13.24435 12.59909 2.526 1.112 6.046 A018057 12.61667 13.31667 5.681 6.055 B000168 12.89454 13.12311 2.273 1.182 6.072 A018013 11.51667 12.81667 6.000 6.079 B000114 13.24752 13.06478 3.788 1.205 6.081 B000184 13.32045 12.86908 3.788 1.205 6.081 B000181 13.09531 13.12911 3.157 1.228 6.089 B000127 13.373 13.28494 4.546 1.251 6.097 B000119 13.30369 13.24508 4.546 1.274 6.105 B000158 12.95206 12.82849 2.273 1.344 6.128 B000108 13.30596 11.77643 1.452 1.390 6.143 B000149 12.86754 12.58628 1.137 1.390 6.143

43

Debit Spec. capacity Transmissivity ID X_coord Y_coord Y-Index Anomaly [ls-1] [ls-1m-1] [m²d-1] B000187 13.48263 12.74677 4.546 1.413 6.150 B000072 13.35397 12.96693 4.546 1.437 6.157 B000091 13.37844 12.44235 4.546 1.483 6.171 +A B000105 13.28784 12.46953 3.536 1.506 6.178 +A B000183 13.08398 12.87633 4.546 1.599 6.204 +A B000185 13.36847 12.69694 4.546 1.622 6.210 +A A018051 12.95 12.16667 8.156 6.212 +A B000054 12.69243 12.78887 1.073 1.645 6.216 +A B000162 12.87665 12.98507 3.157 1.645 6.216 +A B000171 12.84022 13.36724 2.526 1.645 6.216 +A B000169 12.86387 13.23623 3.283 1.668 6.222 +A B000090 13.4926 12.43238 5.051 1.738 6.240 +A B000180 13.12792 13.24145 3.157 1.761 6.246 +A B000176 13.06677 12.45141 2.526 1.784 6.251 +A B000229 13.00516 12.21947 1.326 1.946 6.289 +A B000223 12.77056 12.85214 2.841 2.085 6.319 +A B000227 12.78846 13.18894 3.536 2.108 6.324 +A A018088 12.61111 13.31111 0.917 2.139 6.330 +A B000222 12.80891 12.77353 1.894 2.317 6.365 +A B000153 12.82824 12.50544 2.526 2.572 6.410 +A B000157 12.94359 12.64635 3.788 2.572 6.410 +A A018089 13.03333 12.38333 14.303 6.456 +A A018092 13.05833 13.89722 4.417 0.333 3.03E+02 6.480 +A A018044 12.425 13.185 2.222 3.46E+02 6.540 +A A000436 12.60417 13.75972 4.000 3.472 6.541 +A A018050 12.60417 13.75972 4.547 3.472 6.541 +A A000449 12.60694 13.42361 3.194 4.278 6.631 +A A018085 13.46667 12.48333 22.661 6.656 +A A018048 12.50139 13.62222 4.111 0.389 8.82E+02 6.950 ++A

Appendix 5: Extract of the borehole data for porous aquifers (unconfined) (109 out of 1848 boreholes)

Debit Spec. capacity Transmissivity ID X_coord Y_coord Y-Index Anomaly [ls-1] [ls-1m-1] [m²d-1] A004103 9.9175 13.62111 0.028 3.745 --A A004941 9.19722 12.99167 0.153 0.008 3.921 --A A004486 9.24444 12.99444 0.111 0.019 8.64E-01 3.937 --A A002538 10.025 13.78889 0.056 4.046 --A A002655 10.22778 13.47778 0.056 4.046 --A A003085 10.31111 13.88333 0.056 4.046 --A A003233 10.35833 13.30278 0.056 4.046 --A A000292 10.31111 13.88333 0.056 4.046 --A A003670 8.39417 13.42833 0.056 4.046 --A A003819 8.71667 13.02222 0.056 4.046 --A A005397 9.51806 13.74861 0.056 4.046 --A A002387 9.5 13.48889 0.083 4.222 --A A004028 9.38472 13.52222 0.083 4.222 --A A002717 9.34167 13.06389 0.083 4.222 --A A002943 8.7375 13.05278 0.083 4.222 --A A004928 9.73333 13.88472 0.083 4.222 --A A004491 9.11389 13.64806 0.083 4.222 --A A004580 9.20522 13.57833 0.083 4.222 --A

44

Debit Spec. capacity Transmissivity ID X_coord Y_coord Y-Index Anomaly [ls-1] [ls-1m-1] [m²d-1] A000365 9.51667 13.91861 0.083 4.222 --A A000320 10.35194 13.97861 0.083 4.222 --A A000161 9.16667 13.025 1.111 0.056 1.73E+00 4.238 --A A002340 9.13917 13.42417 0.111 4.347 --A A002365 9.17333 13.57528 0.111 4.347 --A A004835 9.34583 13.5125 0.111 4.347 --A A005182 9.135 13.77222 0.111 4.347 --A A004693 9.35556 13.46389 0.111 4.347 --A A004642 9.12639 12.93056 0.250 0.022 4.347 --A A005030 8.74722 12.98194 0.278 0.022 4.347 --A A005394 10.58333 13.94167 0.111 4.347 --A A000090 9.06389 13.71667 0.111 4.347 --A A005132 9.09861 13.59167 0.111 4.347 --A A005259 9.05417 13.7375 0.111 4.347 --A A005414 9.56917 13.87417 0.111 4.347 --A A000154 8.65833 13.06667 0.111 0.024 4.378 -A A005035 9.26111 13.03056 0.389 0.056 2.59E+00 4.414 -A A001567 9.15861 13.55 0.139 4.444 -A A003961 9.12778 13.43083 0.139 4.444 -A A002081 9.125 13.74167 0.139 4.444 -A A002241 9.58611 13.4 0.139 4.444 -A A002539 9.47083 13.50417 0.139 4.444 -A A002985 9.46611 13.48889 0.139 4.444 -A A003095 10.48611 13.88611 0.139 4.444 -A A003327 9.39167 13.35 0.139 4.444 -A A003112 9.545 13.59583 0.139 4.444 -A A003172 10.44444 13.53611 0.139 4.444 -A A003522 9.19722 13.62222 0.139 4.444 -A A003859 9.66083 12.925 0.139 4.444 -A A003632 8.5125 13.16944 0.139 4.444 -A A003722 9.19583 13.03472 0.139 4.444 -A A003731 9.34583 13.5125 0.139 4.444 -A A003732 9.23611 13.6 0.139 4.444 -A A003978 10.17222 13.50694 0.139 4.444 -A A000082 9.26389 12.97778 0.139 4.444 -A A004121 9.21028 13.68583 0.139 4.444 -A A004280 9.23611 12.93611 0.139 4.444 -A A004356 9.71667 13.93333 0.139 4.444 -A A004357 10.12222 13.225 0.139 4.444 -A A004929 9.73333 13.88472 0.139 4.444 -A A004366 8.66111 13.10278 0.139 4.444 -A A004570 9.68528 13.75 0.139 4.444 -A A005027 9.09444 13.62222 0.139 4.444 -A A004709 9.2625 13.37778 0.139 4.444 -A A005036 9.9 13.62222 0.139 4.444 -A A005037 9.19306 13.61389 0.139 4.444 -A

45

Debit Spec. capacity Transmissivity ID X_coord Y_coord Y-Index Anomaly [ls-1] [ls-1m-1] [m²d-1] A005133 9.09444 13.62222 0.139 4.444 -A A005233 8.39667 13.52889 0.139 4.444 -A A004247 8.38056 13.57778 0.139 4.444 -A A002805 9.60139 13.49861 0.167 4.523 -A A002999 9.31333 13.69167 0.167 4.523 -A A003034 8.63833 13.37778 0.167 4.523 -A A003247 9.18472 13.72083 0.167 4.523 -A A003248 9.16667 13.75 0.167 4.523 -A A003459 9.64 13.16667 0.167 4.523 -A A004106 9.36111 13.52222 0.167 4.523 -A A003879 9.51528 12.94167 0.167 4.523 -A A004336 9.38 13.52333 0.167 4.523 -A A000032 9.51667 13.91861 0.167 4.523 -A A004581 9.20342 13.52167 0.167 4.523 -A A004674 9.34583 13.5125 0.167 4.523 -A A004710 9.09861 13.59167 0.167 4.523 -A A004800 9.08472 13.71944 0.167 4.523 -A A005164 9.51667 13.91861 0.167 4.523 -A A005537 8.34889 13.51944 0.167 4.523 -A A000039 10.53417 13.97778 0.167 4.523 -A A000221 9.30833 12.98889 0.167 4.523 -A A005228 9.27778 13.05 0.583 0.033 3.46E+00 4.539 -A A002492 9.85278 13.07222 0.194 4.590 -A A002597 9.15833 13.5 0.194 4.590 -A A002832 9.44167 13.40833 0.194 4.590 -A A003000 9.34167 13.06389 0.194 4.590 -A A003228 9.12778 13.43083 0.194 4.590 -A A003113 9.08472 13.60278 0.194 4.590 -A A003249 10.38333 13.81111 0.194 4.590 -A A003347 9.50556 13.51944 0.194 4.590 -A A003472 8.58889 13.12083 0.194 4.590 -A A004169 9.15347 13.76944 0.194 4.590 -A A003897 9.33972 13.34083 0.194 4.590 -A A004254 9.24028 12.96944 0.194 4.590 -A A005392 9.175 13.75972 0.194 4.590 -A A004592 9.11389 13.64806 0.194 4.590 -A A005254 10.58333 13.94167 0.194 4.590 -A A005194 10.4175 13.985 0.194 4.590 -A A000044 9.28333 13.00556 0.278 0.039 4.32E+00 4.636 -A A001920 9.46667 13.46111 0.222 4.648 -A A002244 9.45 13.49444 0.222 4.648 -A A002598 10.51806 13.78611 0.222 4.648 -A A002656 10.49722 13.99306 0.222 4.648 -A A002766 9.83889 13.09444 0.222 4.648 -A A002767 10.49722 13.99306 0.222 4.648 -A

46