Gravitropism: Lateral Thinking in Auxin Transport Dispatch

Total Page:16

File Type:pdf, Size:1020Kb

Gravitropism: Lateral Thinking in Auxin Transport Dispatch CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Current Biology, Vol. 12, R452–R454, July 9, 2002, ©2002 Elsevier Science Ltd. All rights reserved. PII S0960-9822(02)00943-0 Gravitropism: Lateral Thinking in Dispatch Auxin Transport Ian Moore and so on. In this way, polarised efflux could account for net polar transport of auxin through the tissue. In 1998, analysis of an Arabidopsis mutant with Plant stems and roots orient themselves with respect agravitropic roots identified the PIN proteins as strong to directional illumination and gravity by differential candidates for the efflux carrier. The eight Arabidop- growth on either side of the organ. A model formu- sis PIN proteins are membrane proteins that show lated in the 1930s proposed that tropic growth cur- sequence similarity with bacterial transporters and vature arose from growth hormone redistribution. detoxification carriers [4–7]. Crucially, the distribution Studies with Arabidopsis are beginning to reveal the of PIN1 and PIN2 in the plasma membrane of auxin mechanism. transporting cells of the stem and root was found to be asymmetric, as predicted by the chemiosmotic hypothesis (Figure 1). Another mutant defective in root Research on tropic curvatures in plants has focused gravitropism, aux1, defined a second family of puta- on the relatively simple responses of germinating tive transporters with characteristics of the auxin seedlings, the roots and shoots of which orient them- uptake carrier [8]. Although the mutant roots are selves to grow either directly along or against the pre- agravitropic, indicating a role for active auxin uptake vailing light and gravity vectors. Early experimental in tropic root curvatures, cells can accumulate auxin work pioneered by Charles and Frances Darwin [1,2] passively and the lack of AUX1 activity in the root tip suggested the involvement of a transported signalling can be complemented by external (and presumably molecule, which was later identified as the plant non-directional) auxin application. This suggests that growth hormone auxin. Auxin can promote elongation the role of the uptake carrier in gravitropism is not to growth in stems, but inhibit elongation in roots. Fur- provide directional auxin transport, but it may simply thermore, it is unusual among plant growth hormones be required to provide sufficient endogenous auxin to in having a specific transport mechanism that facili- the cells that carry out polar auxin transport. tates its polar movement along the root and shoot These studies have borne out the predictions of the axes (Figure 1). Importantly, in stems and roots under- chemiosmotic hypothesis for auxin transport, but they going tropic curvatures, auxin was found to accumu- have not addressed the central Cholodny–Went idea late differentially on either side of the organ such that that tropic stimuli evoke a transverse cellular polarisa- the resulting differential growth rates would evoke cur- tion with respect to auxin transport. Indeed, it is not vature in the appropriate direction. clear that PIN proteins are part of the proposed lateral These observations led to the formulation of the auxin transport mechanism, nor that their activity or Cholodney–Went hypothesis, which was summarised distribution is altered to achieve lateral auxin transport. by Went and Thimann [1] in 1937 as follows: “...growth A new study [9] has now provided some clues to the curves, whether induced by internal or external link between gravity perception and auxin transport in factors, are due to an unequal distribution of auxin stems and roots. between the two sides of the curving organ. In the A wealth of genetic and physiological evidence tropisms brought about by light and gravity, the indicates that gravity perception in plants depends on unequal distribution is brought about by a transverse the sedimentation of dense starch-rich plastids known polarisation of the cells which results in lateral as amyloplasts in the root cap columella cells and the transport of auxin”. endodermal cell layer of the stem and hypocotyl Polar auxin transport moves auxin from cell-to-cell (Figure 1B). Friml et al. [9] now report that a third across the intervening cell wall by sequential uptake member of the PIN family, PIN3, is expressed in a few and subsequent efflux via an active carrier. Polar auxin specialised cell types including the gravity-sensing transport inhibitors, such as 1-N-naphtylphthalamic cells of the stem, hypocotyl and root cap. Within the acid (NPA), inhibit auxin efflux and tropic growth curva- root cap columella, PIN3 is found in the central cells of ture but not auxin uptake, placing active auxin efflux at the first two cell tiers, precisely the cells that are most centre stage in polar transport and tropic responses. In important to the root’s gravitropic response and exhibit 1975, the chemiosmotic hypothesis predicted that polar the most rapid amyloplast sedimentation rates in auxin transport could be explained if the efflux carrier response to gravity [10]. Importantly, when the PIN3 was located asymmetrically at the basal end of auxin locus was inactivated by insertional mutagenesis, the transporting cells [3]. Some of the auxin exported from plants grew essentially normally but exhibited sub- the cytoplasm at the basal end of one cell could enter stantially reduced gravitropic curvature in roots and the next cell, where it would be trapped in the cyto- hypocotyls, with the latter also exhibiting a 50% plasm only to be exported at the basal end of that cell, reduction in phototropism. Unfortunately, the effect of the mutation on gravitropism and phototropism in the Department of Plant Sciences, University of Oxford, South stem was not reported. Parks Road, Oxford OX1 3RB, UK. Intriguingly, when the PIN3 protein was localised E-mail: [email protected] within the plasma membrane of endodermal cells of Current Biology R453 Figure 1. A model for auxin transport and redistribution during tropic stimuli, based ABC on PIN protein localisation. (A) Schematic diagram of an Arabidopsis plant. (B) Direction of polar auxin trans- port (black arrows), and the sites of action of PIN1–PIN4 (numbers), in the stem (top), 1 1 hypocotyl (middle) and root (bottom). Stem vascular bundles and root meristem are indicated by orange and grey shading, D respectively. The horizontal grey arrow heads indicate the predicted direction of auxin transport mediated by PIN3 in the 1 endodermis (blue) and the root pericycle (yellow). (C) Cross-section of the stem showing the epidermis (white), cortical cells (green), endodermis (blue) and xylem parenchyma (orange) of the vascular 1 bundles. The polarised distribution of PIN3 at the inner face of the epidermal cell layer is represented by the red ring. Grey arrows indicate the predicted direc- 2 2 E tion of auxin efflux mediated by PIN3. (D) Schematic diagram of polarised PIN 4 protein distribution (red) in individual root tissues: stele (white), pericycle (yellow) 3 endodermis (blue), cortex (violet) and epi- dermis (orange). Arrows indicate the direction of auxin efflux from each cell. (E) Representation of PIN3 distribution (red) in a section through the root cap 5 minutes after reorientation with respect to gravity. Columella initals (pink), columella Current Biology cells (green) with amyloplasts (black ovals), quiescent centre cells (black). the stem and hypocotyl, it was found to be asymmet- in roots that were turned 90° to the gravity vector, rically distributed — not at the basal end of the cells, PIN3 relocalised within 2–10 minutes to the lower side as PIN1 and PIN2 are, but rather at their inner longitu- of the cell. In this position, PIN3 would be able to dinal wall. Thus, the endodermis is radially polarised effect an increase in auxin distribution to the lower for PIN3 distribution. As Friml et al. [9] note, in this side of the root cap. This localisation was maintained position PIN3 is ideally situated to control the lateral for up to 20 minutes and then substantially lost after transfer of auxin between the central vascular cells an hour. These time scales are similar to the transient and the surrounding cortical and epidermal cells that period of asymmetric growth in gravistimulated maize accumulate differential auxin concentrations during roots [11], which is detectable at 5 minutes and tropic responses. Furthermore, in a gravistimulated reaches its zenith after 50–60 minutes. Again, it has stem, amyloplasts would sediment towards the mem- not been demonstrated that pin3 roots fail to establish brane containing PIN3 at the upper side and away asymmetric auxin gradients in the cap or elongation from this membrane at the lower side. zone, but the circumstantial evidence suggests that It is possible that this difference can be transduced PIN3 redistribution may represent the first visual- into differential effects on PIN3 distribution or activity isation of the lateral polarisation envisaged by the on each side of the stem. Friml et al. [9] used an Cholodny–Went hypothesis. auxin-responsive reporter gene to infer that auxin gra- But how is PIN3 redistribution achieved? It has been dients are established in Arabidopsis hypocotyls shown previously that PIN1 cycles to an internal com- during phototropism — as demonstrated previously partment from which it is redelivered to the basal for gravistimulated roots [4] — but unfortunately it is plasma membrane (reviewed in [12]). Friml et al. [9] not clear whether the pin3 mutant is compromised in found that PIN3 in the root cap appears to be a the establishment of such gradients. Nevertheless, it particularly itinerant member of the PIN family. At may be that the PIN3 protein and pin3 mutant provide steady state, PIN3 is found in 70 nm vesicles as well as the tools to finally test the Cholodny–Went prediction the plasma membrane, and it redistributes from the that tropic curvatures of the stem result from lateral plasma membrane to punctate structures in the cyto- polarisation of cells and lateral auxin transport.
Recommended publications
  • Auxin Regulation Involved in Gynoecium Morphogenesis of Papaya Flowers
    Zhou et al. Horticulture Research (2019) 6:119 Horticulture Research https://doi.org/10.1038/s41438-019-0205-8 www.nature.com/hortres ARTICLE Open Access Auxin regulation involved in gynoecium morphogenesis of papaya flowers Ping Zhou 1,2,MahparaFatima3,XinyiMa1,JuanLiu1 and Ray Ming 1,4 Abstract The morphogenesis of gynoecium is crucial for propagation and productivity of fruit crops. For trioecious papaya (Carica papaya), highly differentiated morphology of gynoecium in flowers of different sex types is controlled by gene networks and influenced by environmental factors, but the regulatory mechanism in gynoecium morphogenesis is unclear. Gynodioecious and dioecious papaya varieties were used for analysis of differentially expressed genes followed by experiments using auxin and an auxin transporter inhibitor. We first compared differential gene expression in functional and rudimentary gynoecium at early stage of their development and detected significant difference in phytohormone modulating and transduction processes, particularly auxin. Enhanced auxin signal transduction in rudimentary gynoecium was observed. To determine the role auxin plays in the papaya gynoecium, auxin transport inhibitor (N-1-Naphthylphthalamic acid, NPA) and synthetic auxin analogs with different concentrations gradient were sprayed to the trunk apex of male and female plants of dioecious papaya. Weakening of auxin transport by 10 mg/L NPA treatment resulted in female fertility restoration in male flowers, while female flowers did not show changes. NPA treatment with higher concentration (30 and 50 mg/L) caused deformed flowers in both male and female plants. We hypothesize that the occurrence of rudimentary gynoecium patterning might associate with auxin homeostasis alteration. Proper auxin concentration and auxin homeostasis might be crucial for functional gynoecium morphogenesis in papaya flowers.
    [Show full text]
  • Maintenance of Asymmetric Cellular Localization of an Auxin Transport Protein Through Interaction with the Actin Cytoskeleton
    J Plant Growth Regul (2000) 19:385–396 DOI: 10.1007/s003440000041 © 2000 Springer-Verlag Maintenance of Asymmetric Cellular Localization of an Auxin Transport Protein through Interaction with the Actin Cytoskeleton Gloria K. Muday* Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109-7325, USA ABSTRACT In shoots, polar auxin transport is basipetal (that is, addition, the idea that this localization of the efflux from the shoot apex toward the base) and is driven carrier may control both the polarity of auxin move- by the basal localization of the auxin efflux carrier ment and more globally regulate developmental po- complex. The focus of this article is to summarize the larity is explored. Finally, evidence indicating that experiments that have examined how the asymmet- the gravity vector controls auxin transport polarity is ric distribution of this protein complex is controlled summarized and possible mechanisms for the envi- and the significance of this polar distribution. Ex- ronmentally induced changes in auxin transport po- perimental evidence suggests that asymmetries in larity are discussed. the auxin efflux carrier may be established through localized secretion of Golgi vesicles, whereas an at- tachment of a subunit of the efflux carrier to the Key words: Auxin transport; Actin cytoskeleton; actin cytoskeleton may maintain this localization. In Polarity; F-actin; Gravity; Embryo development INTRODUCTION maintaining the localization after initial sorting is complete (Drubin and Nelson 1996; Nelson and The mechanism by which cells and tissues develop Grindstaff 1997). Protein sorting through directed and maintain polarity is a growing area of study. In vesicle targeting is critical for establishment of asym- mammalian systems, a number of proteins have metry (Nelson and Grindstaff 1997), whereas at- been examined to understand how asymmetric cel- tachment to the actin cytoskeleton, either directly or lular localization is established and maintained.
    [Show full text]
  • An Integrative Model of Plant Gravitropism Linking Statoliths
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.01.425032; this version posted January 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 An integrative model of plant gravitropism linking statoliths position and auxin transport Nicolas Levernier 1;∗, Olivier Pouliquen 1 and Yoël Forterre 1 1Aix Marseille Univ, CNRS, IUSTI, Marseille, France Correspondence*: IUSTI, 5 rue Enrico Fermi, 13453 Marseille cedex 13, France [email protected] 2 ABSTRACT 3 Gravity is a major cue for the proper growth and development of plants. The response of 4 plants to gravity implies starch-filled plastids, the statoliths, which sediments at the bottom of 5 the gravisensing cells, the statocytes. Statoliths are assumed to modify the transport of the 6 growth hormone, auxin, by acting on specific auxin transporters, PIN proteins. However, the 7 complete gravitropic signaling pathway from the intracellular signal associated to statoliths to 8 the plant bending is still not well understood. In this article, we build on recent experimental 9 results showing that statoliths do not act as gravitational force sensor, but as position sensor, to 10 develop a bottom-up theory of plant gravitropism. The main hypothesis of the model is that the 11 presence of statoliths modifies PIN trafficking close to the cell membrane. This basic assumption, 12 coupled with auxin transport and growth in an idealized tissue made of a one-dimensional array 13 of cells, recovers several major features of the gravitropic response of plants.
    [Show full text]
  • Auxin Transport Inhibitors Block PIN1 Cycling and Vesicle Trafficking
    letters to nature Acknowledgements thesis and degradation or continuous cycling between the plasma We thank R. M. Zinkernagel, F. Melchers and J. E. DeVries for critically reviewing the membrane and endosomal compartments, we inhibited protein manuscript, as well as C. H. Heusser and S. Alkan for anti-IL-4 and anti-IFN-g antibodies. synthesis by cycloheximide (CHX). Incubation of roots in 50 mM This work was sponsored by the Swiss National Science Foundation. CHX for 30 min reduced 35S-labelled methionine incorporation Correspondence and requests for materials should be addressed to M.J. into proteins to below 10% of the control value (data not shown). (e-mail: [email protected]) or C.A.A. (e-mail: [email protected]). However, treatment with 50 mM CHX for 4 h had no detectable effect on the amount of labelled PIN1 at the plasma membrane (Fig. 1d), suggesting that PIN1 protein is turned over slowly. CHX did not interfere with the reversible BFA effect as PIN1 still ................................................................. accumulated in endomembrane compartments (Fig. 1e) and, on withdrawal of BFA, reappeared at the plasma membrane (Fig. 1f). Auxin transport inhibitors block Thus, BFA-induced intracellular accumulation of PIN1 resulted from blocking exocytosis of a steady-state pool of PIN1 that rapidly PIN1 cycling and vesicle traf®cking cycles between the plasma membrane and some endosomal com- partment. Niko Geldner*², JirÏõÂ Friml²³§k, York-Dieter Stierhof*, Gerd JuÈrgens* In animal cells, BFA alters structure and function of endomem- & Klaus Palme³ brane compartments, especially the Golgi apparatus, which fuses with other endomembranes20±22.
    [Show full text]
  • Polar Transport of Auxin: Carrier-Mediated flux Across the Plasma Membrane Or Neurotransmitter-Like Secretion?
    282 Update TRENDS in Cell Biology Vol.13 No.6 June 2003 Polar transport of auxin: carrier-mediated flux across the plasma membrane or neurotransmitter-like secretion? Frantisˇek Balusˇkap, Jozef Sˇ amaj and Diedrik Menzel Rheinische Friedrich-Wilhelms University of Bonn, Institute of Botany, Kirschallee 1, Bonn, D-53115, Germany. Auxin (indole-3-acetic acid) has its name derived from activator GNOM [7,9–11] both localize to endosomes the Greek word auxein, meaning ‘to increase’, and it where GNOM mediates sorting of PIN1 from the endosome drives plant growth and development. Auxin is a small to the apical plasma membrane. These studies not only molecule derived from the amino acid tryptophan and shed new light on the polar cell-to-cell transport of auxin has both hormone- and morphogen-like properties. but also raise new crucial questions. Where does PIN1 Although there is much still to be learned, recent perform its auxin-transporting functions? Does PIN1 progress has started to unveil how auxin is transported transport auxin across the plasma membrane, as all from cell-to-cell in a polar manner. Two recent break- through papers from Gerd Ju¨ rgens’ group indicate that Root base auxin transport is mediated by regulated vesicle trafficking, thus encompassing neurotransmitter-like features. Auxin is one of the most important molecules regulating plant growth and morphogenesis. At the same time, auxin represents one of the most enigmatic and controversial molecules in plants. Currently, the most popular view is that auxin is a hormone-like substance. However, there are several auxin features and actions that can be much better explained if one considers auxin to be a morphogen- like agent [1–3].
    [Show full text]
  • Regulation of the Gravitropic Response and Ethylene Biosynthesis in Gravistimulated Snapdragon Spikes by Calcium Chelators and Ethylene Lnhibitors’
    Plant Physiol. (1996) 110: 301-310 Regulation of the Gravitropic Response and Ethylene Biosynthesis in Gravistimulated Snapdragon Spikes by Calcium Chelators and Ethylene lnhibitors’ Sonia Philosoph-Hadas*, Shimon Meir, Ida Rosenberger, and Abraham H. Halevy Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel (S.P.-H., S.M., I.R.); and Department of Horticulture, The Hebrew University of Jerusalem, Faculty of Agriculture, Rehovot 761 00, Israel (A.H.H.) vireacting organ; this causes the growth asymmetry that The possible involvement of Ca2+ as a second messenger in leads to coleoptile reorientation. Originally devised for snapdragon (Antirrhinum majus L.) shoot gravitropism, as well as grass coleoptiles, this theory was soon generalized to ex- the role of ethylene in this bending response, were analyzed in plain the manifold gravitropic reactions of stems and roots terms of stem curvature and gravity-induced asymmetric ethylene as well. Evidence in favor of the Cholodny-Went hypoth- production rates, ethylene-related metabolites, and invertase esis has emerged from various studies showing an asym- activity across the stem. Application of CaZ+ chelators (ethylenedia- metric distribution of auxin, specifically IAA, in gravi- minetetraacetic acid, trans-1,2-cyclohexane dinitro-N,N,N’,N’- stimulated grass coleoptiles (McClure and Guilfoyle, 1989; tetraacetic acid, 1,2-bis(2-aminophenoxy)ethane-N,N,N’,Nf,-tet- Li et al., 1991). However, it appears that changes in sensi- raacetic acid) or a CaZ+ antagonist (LaCI,) to the spikes caused a significant loss of their gravitropic response following horizontal tivity of the gravity receptor and time-dependent gravity- placement.
    [Show full text]
  • Plant Hormones: Ins and Outs of Auxin Transport Ottoline Leyser
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE R8 Dispatch provided by Elsevier - Publisher Connector Plant hormones: Ins and outs of auxin transport Ottoline Leyser Regulated transport has long been known to play a key Treatment of plants with auxin transport inhibitors has a part in action of the plant hormone auxin. Now, at last, wide range of effects [5]. Auxin transport inhibitors disrupt a family of auxin efflux carriers has been identified, and axis formation, vascular differentiation, apical dominance, the characterisation of one family member has provided organogenesis and tropic growth. The role of auxin transport strong evidence in support of models that have been in tropic growth is particularly noteworthy, as it has been proposed to explain gravitropic curvature in roots. suggested that tropisms — growth in a direction defined by some environmental cue, such as the direction of sunlight — Address: Department of Biology, Box 373, University of York, York YO1 5YW, UK. are mediated by changes in auxin transport activity, although E-mail: [email protected] it is likely that changes in auxin sensitivity also play a role. Current Biology 1999, 9:R8–R10 A good example of this is the direction of root growth, http://biomednet.com/elecref/09609822009R0008 defined by the vector representing the force of gravity, © Elsevier Science Ltd ISSN 0960-9822 Figure 1 The mechanism by which the hormone auxin regulates plant growth and development is a particularly exciting (a) area of research at present, with rapid progress being made on several fronts. The latest advance is in the field Cortex of auxin transport, with the recent identification of a fam- Elongation Vascular zone ily of auxin efflux carriers [1–4].
    [Show full text]
  • Introduction to Gravitropism
    CHATTARAJ, PARNA. Gravitropism in Physcomitrella patens : A Microtubule Dependent Process (Under the direction of Dr. Nina Strömgren Allen) The plant cytoskeleton plays an important role in the early stages of gravisignaling (Kiss, 2000). Although in vascular plants, actin filaments are used predominantly to sense changes in the gravity vector, microtubules have been shown to play an important role in moss gravitropism (Schwuchow et al., 1990). The moss Physcomitrella patens is a model organism and was used here to investigate the role of microtubules with respect to the gravitropic response. Dark grown caulonemal filaments of P. patens are negatively gravitropic and the readily imaged tip growing apical cell is a “single-cell system” which both senses and responds to changes in the gravity vector. MTs were imaged before and after gravistimulation with and without MT depolymerizing agents. Six-day-old filaments were embedded in low melting agarose under dim green light, allowed to recover overnight in darkness and gravistimulated for 15, 30, 60 and 120 min. Using indirect immunofluorecence and high resolution imaging, MTs were seen to accumulate in the lower flank of the gravistimulated tip cell starting 30 min post turning and peaking 60 min after gravistimulation of the cells. The microtubule depolymerizing drug, oryzalin (0.1 µM for 5 min), caused MTs to disintegrate and delayed MT redistribution by 3hrs 30min. Growth of the oryzalin treated filaments was analyzed and a delay in growth was observed for both gravi and non-gravistimulated filaments. Tip cells bulged and sometimes branched after 75 min. This study demonstrates that microtubules are important for growth in P.
    [Show full text]
  • The TOR–Auxin Connection Upstream of Root Hair Growth
    plants Review The TOR–Auxin Connection Upstream of Root Hair Growth Katarzyna Retzer 1,* and Wolfram Weckwerth 2,3 1 Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic 2 Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, 1010 Vienna, Austria; [email protected] 3 Vienna Metabolomics Center (VIME), University of Vienna, 1010 Vienna, Austria * Correspondence: [email protected] Abstract: Plant growth and productivity are orchestrated by a network of signaling cascades involved in balancing responses to perceived environmental changes with resource availability. Vascular plants are divided into the shoot, an aboveground organ where sugar is synthesized, and the underground located root. Continuous growth requires the generation of energy in the form of carbohydrates in the leaves upon photosynthesis and uptake of nutrients and water through root hairs. Root hair outgrowth depends on the overall condition of the plant and its energy level must be high enough to maintain root growth. TARGET OF RAPAMYCIN (TOR)-mediated signaling cascades serve as a hub to evaluate which resources are needed to respond to external stimuli and which are available to maintain proper plant adaptation. Root hair growth further requires appropriate distribution of the phytohormone auxin, which primes root hair cell fate and triggers root hair elongation. Auxin is transported in an active, directed manner by a plasma membrane located carrier. The auxin efflux carrier PIN-FORMED 2 is necessary to transport auxin to root hair cells, followed by subcellular rearrangements involved in root hair outgrowth.
    [Show full text]
  • AUXIN: TRANSPORT Subject: Botany M.Sc
    Saumya Srivastava_ Botany_ MBOTCC-7_Patna University Topic: AUXIN: TRANSPORT Subject: Botany M.Sc. (Semester II), Department of Botany Course: MBOTCC- 7: Physiology and Biochemistry; Unit – III Dr. Saumya Srivastava Assistant Professor, P.G. Department of Botany, Patna University, Patna- 800005 Email id: [email protected] Saumya Srivastava_ Botany_ MBOTCC-7_Patna University Auxin transport The main axes of shoots and roots, along with their branches, exhibit apex–base structural polarity, and this structural polarity has its origin in the polarity of auxin transport. Soon after Went developed the coleoptile curvature test for auxin, it was discovered that IAA moves mainly from the apical to the basal end (basipetally) in excised oat coleoptile sections. This type of unidirectional transport is termed polar transport. Auxin is the only plant growth hormone known to be transported polarly. A significant amount of auxin transport also occurs in the phloem, and this is the principal route by which auxin is transported acropetally (i.e., toward the tip) in the root. Thus, more than one pathway is responsible for the distribution of auxin in the plant. Polar transport is not affected by the orientation of the tissue (at least over short periods of time), so it is independent of gravity. Tissues differ in degree of polarity of IAA transport. In coleoptiles, vegetative stems, and leaf petioles, basipetal transport predominates. Polar transport of auxin in shoots tends to be predominantly basipetal. Acropetal transport here is minimal. In roots, on the other hand, there appear to be two transport streams. An acropetal stream, arriving from the shoot, flows through xylem parenchyma cells in the central cylinder of the root and directs auxin toward the root tip.
    [Show full text]
  • Auxin and Root Gravitropism: Addressing Basic Cellular Processes by Exploiting a Defined Growth Response
    International Journal of Molecular Sciences Review Auxin and Root Gravitropism: Addressing Basic Cellular Processes by Exploiting a Defined Growth Response Nataliia Konstantinova, Barbara Korbei and Christian Luschnig * Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria; [email protected] (N.K.); [email protected] (B.K.) * Correspondence: [email protected] Abstract: Root architecture and growth are decisive for crop performance and yield, and thus a highly topical research field in plant sciences. The root system of the model plant Arabidopsis thaliana is the ideal system to obtain insights into fundamental key parameters and molecular players involved in underlying regulatory circuits of root growth, particularly in responses to environmental stimuli. Root gravitropism, directional growth along the gravity, in particular represents a highly sensitive readout, suitable to study adjustments in polar auxin transport and to identify molecular determinants involved. This review strives to summarize and give an overview into the function of PIN-FORMED auxin transport proteins, emphasizing on their sorting and polarity control. As there already is an abundance of information, the focus lies in integrating this wealth of information on mechanisms and pathways. This overview of a highly dynamic and complex field highlights recent developments in understanding the role of auxin in higher plants. Specifically, it exemplifies, how analysis of a single, defined growth response contributes to our understanding of basic cellular processes in general. Citation: Konstantinova, N.; Korbei, B.; Luschnig, C. Auxin and Root Keywords: auxin; polar auxin transport; root gravitropism; PIN-FORMED Gravitropism: Addressing Basic Cellular Processes by Exploiting a Defined Growth Response.
    [Show full text]
  • Plant Hormones and Tropic Responses
    Chapter 3: Plant Hormones and Tropic Responses Plant Hormones and Tropic Responses Brief Description: • Potting soil here are many hormones in plants and they all play diferent • Polystyrene cups roles. In this lesson students will learn about hormones such as • Scissors ethylene, gibberellins, cytokinin, absiscic acid and the applica- • Aluminum tray tion of hormones in commercial horticulture. • Fertilizer • Water Tropic responses in plants are those responses to light, gravity and touch. In this lesson students will learn about the difer- Vocabulary: ent tropic responses and set up experiments to demonstrate apical bud, branch, cell, cell wall, cell membrane, chloroplast, hormone efects and plant responses to stimulus. Data will be lower, fruit, internode, lateral bud, leaf blade, nucleus node, collected and summarized in tables and graphs. organelle petiole, root, root cap, stem, tissue, vacuole, abscisic acid, auxin, cytokinin, ethylene, geotropic, gibberellin, Objective: hormone, phototropic, tropism and thigmotropic Students will be able to: 1. Grow a plant from a seed. Background: 2. Identify parts of a plant and plant cells. Plant Tissues and Structure: Plants are composed of cells 3. Understand the role plant hormones play in plant which together with other similar cells make tissues. Groups of growth. tissues form plant organs such as roots, stems, leaves and low- 4. Understand what plant tropisms are. ers (if present). 5. Work in groups to design and conduct an experiment to demonstrate a plant hormone or tropic response. Hormones and Tropisms: he distribution and concentra- tion of plant hormones occur on a cellular level. he presence, Time: absence, or balance of hormone in a tissue afects a tropism in Part I.
    [Show full text]