Road Pricing Nerys Davies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The London Congestion Charge
Journal of Economic Perspectives—Volume 20, Number 4—Fall 2006—Pages 157–176 The London Congestion Charge Jonathan Leape y the 1990s, the average speed of trips across London was below that at the beginning of the twentieth century—before the car was introduced (New- B bery, 1990, p. 35). Traffic speeds in central London had fallen more than 20 percent since the 1960s, from an average 12.7 mph for the morning peak period in 1968 (and a high of 14.2 mph in 1975) to 10 mph in 1998. Even in the larger area of inner London, drivers in 1998 spent almost 30 percent of their time stationary during peak periods and more than half their time traveling at speeds of less than 10 mph (Department of the Environment, Transport and the Regions, 1998). By 2002, the all-day average travel speed in central London was just 8.6 mph (14.3 km/hour), compared to an uncongested (night-time or “free flow”) average speed of around 20 mph (32 km/hour). Congestion, measured in terms of minutes of delay per mile compared to uncongested conditions, averaged 3.7 minutes/mile (2.3 min/km) (Transport for London, 2003a, p. 11). With more than one million people entering central London between 7:00 and 10:00 a.m. on an average workday, and more than one-quarter of those by road, the cost of congestion was clearly considerable. Public concern over levels of traffic congestion was high. An independent survey in 1999 identified public transport and congestion as the two most “impor- tant problems requiring action”—selected by 46 and 33 percent of London resi- dents, respectively, compared to 20 percent for crime or law and order. -
Chapter 5 Conclusions and General Recommendations
Conclusions and general recommendations Chapter 5 Chapter 5 Conclusions and general recommendations Economic Instruments have a long history – both in developed and developing countries. Transport has always been used to generate state revenues. Many instruments that have been discussed in this book, in fact, can be found in various forms of horse ownership charges, and road and bridge tolls in many countries’ economic histories. Many of these roots, however, have been neglected and forgotten in the recent debate about sustainable transport policy. By 1776, Adam Smith, in “The Wealth of Nations,” had already outlined the basic principles of a sound transport policy. These included most of the aforementioned principles and recommendations for taxation and financing schemes.1 Economic Instruments thus are not new transport policy “tools.” But these tools have too long been idle. It is time to relearn their use, and to use them wisely in order to meet the economic, social and ecological challenges that occur today. 1 An excellent modern outline of the principles formulated by Adam Smith can be found in Metschies 2001. 117 Chapter 5 Conclusions and general recommendations Eight basic insights In the face of diminishing public budgets but increasing internal and toward a wise use of external costs of infrastructure and environmental damage a rethinking Economic of transport policy is needed. In this rethinking, Economic Instruments Instruments. should play an important role. The existing experience with the use of Economic Instruments, as presented in this book, lead to a number of conclusions. These can be summarised as follows: 1. There is a diverse toolbox of Economic Instruments that can be used to address economic, ecological and social goals with tailor-made measures based on economic incentives. -
The Marginal Cost of Traffic Congestion and Road Pricing: Evidence from a Natural Experiment in Beijing
The Marginal Cost of Traffic Congestion and Road Pricing: Evidence from a Natural Experiment in Beijing Shanjun Li Avralt-Od Purevjav Jun Yang1 Preliminary and Comments Welcome December 2016 ABSTRACT Leveraging a natural experiment and big data, this study examines road pricing, the first-best policy to address traffic congestion in Beijing. Based on fine-scale traffic data from over 1500 monitoring stations throughout the city, this paper provides the first empirical estimate of the marginal external cost of traffic congestion (MECC) and optimal congestion charges based on the causal effect of traffic density on speed, a key input for measuring the MECC. The identification of the causal effect relies on the plausibly exogenous variation in traffic density induced by the driving restriction policy. Our analysis shows that the MECC during rush hours is about 92 cents (or $0.15) per km on average, nearly three times as much as what OLS regressions would imply and larger than estimates from transportation engineering models. The optimal congestion charges range from 5 to 38 cents per km depending on time and location. Road pricing would increase traffic speed by 10 percent within the city center and lead to a welfare gain of 1.4 billion and revenue of 40 billion Yuan per year. Keywords: Traffic Congestion, Road Pricing, Natural Experiment JEL Classification: H23, R41, R48 1 Shanjun Li is an Associate Professor in the Dyson School of Applied Economics and Management, Cornell University, [email protected]; Avralt-Od Purevjav is a doctoral student in the Dyson School of Applied Economics and Management, Cornell University, [email protected]; Jun Yang is a research fellow in Beijing Transportation Research Center, [email protected]. -
Glossary of Regional Transportation Systems Management and Operations Terms
TRANSPORTATION RESEARCH Number E-C166 August 2012 Glossary of Regional Transportation Systems Management and Operations Terms Second Edition TRANSPORTATION RESEARCH BOARD 2012 EXECUTIVE COMMITTEE OFFICERS Chair: Sandra Rosenbloom, Professor of Planning, University of Arizona, Tucson Division Chair for NRC Oversight: C. Michael Walton, Ernest H. Cockrell Centennial Chair in Engineering, University of Texas, Austin Executive Director: Robert E. Skinner, Jr., Transportation Research Board Vice Chair: Deborah H. Butler, Executive Vice President, Planning, and CIO, Norfolk Southern Corporation, Norfolk, Virginia TRANSPORTATION RESEARCH BOARD 2012–2013 TECHNICAL ACTIVITIES COUNCIL Chair: Katherine F. Turnbull, Executive Associate Director, Texas Transportation Institute, Texas A&M University, College Station Technical Activities Director: Mark R. Norman, Transportation Research Board Paul Carlson, Research Engineer, Texas Transportation Institute, Texas A&M University, College Station, Operations and Maintenance Group Chair Thomas J. Kazmierowski, Manager, Materials Engineering and Research Office, Ontario Ministry of Transportation, Toronto, Canada, Design and Construction Group Chair Ronald R. Knipling, Principal, safetyforthelonghaul.com, Arlington, Virginia, System Users Group Chair Mark S. Kross, Consultant, Jefferson City, Missouri, Planning and Environment Group Chair Peter B. Mandle, Director, LeighFisher, Inc., Burlingame, California, Aviation Group Chair Harold R. (Skip) Paul, Director, Louisiana Transportation Research Center, Louisiana -
Congestion Pricing and the Economics of Managing Traffic Robert Krol
Tolling the Freeway: Congestion Pricing and the Economics of Managing Traffic Robert Krol MERCATUS RESEARCH Robert Krol. “Tolling the Freeway: Congestion Pricing and the Economics of Managing Traffic.” Mercatus Research, Mercatus Center at George Mason University, Arlington, VA, May 2016. ABSTRACT Highway congestion increases the cost of travel in most urban areas in the United States. This paper examines the economics of highway congestion pric- ing. Toll-free highways can be congested at certain times of the day. When addi- tional drivers entering the freeway slow traffic, they impose an externality, or cost, on other highway users. A congestion toll that varies with the level of traf- fic can correct that congestion externality. The evidence indicates that conges- tion tolls reduce congestion and increase driving speeds. Some policymakers are concerned that congestion taxes are regressive. Many factors, such as the proximity of residential communities to jobs, can influence this outcome. Also, the way toll revenues are used determines the degree to which the tax is regres- sive or progressive. Research suggests that congestion tolls are no more regres- sive than the fuel tax that is currently used to finance highways. To encourage and facilitate the adoption of congestion pricing in the United States, Congress should pass legislation making congestion tolls legal on all interstate highways. Experience with congestion tolling improves the public’s perception of tolling and increases drivers’ willingness to accept highway tolls. One tactic that has been successful is following a congestion-pricing experiment with a referen- dum on whether the system should be made permanent. JEL codes: H21, H22, L91, 018, R41, R48 Keywords: congestion externalities, peak-load pricing, tax incidence, tax regressivity Copyright © 2016 by Robert Krol and the Mercatus Center at George Mason University Release: May 2016 The opinions expressed in Mercatus Research are the authors’ and do not represent official positions of the Mercatus Center or George Mason University. -
Dynamic, Stochastic Models for Congestion Pricing and Congestion Securities
Dynamic, Stochastic Models for Congestion Pricing and Congestion Securities FINAL REPORT December 31, 2010 By Terry L. Friesz and Tao Yao Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. PSU-2009-01 4. Title and Subtitle 5. Report Date December 31, 2010 Dynamic, Stochastic Models for Congestion Pricing and Congestion Securities 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report LTI 2011-17 Terry L. Friesz, Tao Yao 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) The Thomas D. Larson Pennsylvania Transportation Institute 11. Contract or Grant No. The Pennsylvania State University DTRT07-G-0003 201 Transportation Research Building University Park, PA, 16802-4710 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered US Department of Transportation Final Report 1/1/2010-12/31/2010 Research & Innovative Technology Administration 14. Sponsoring Agency Code UTC Program, RDT-30 1200 New Jersey Ave., SE Washington, DC 20590 15. Supplementary Notes 16. Abstract This research considers congestion pricing under demand uncertainty. In particular, a robust optimization (RO) approach is applied to optimal congestion pricing problems under user equilibrium. A mathematical model is developed and an analysis performed to consider robust, dynamic user equilibrium, optimal tolls based on the second-best problem known as the dynamic optimal toll problem with equilibrium constraints, or DOTPEC. Finally, numerical experiments and qualitative analyses are conducted to investigate the performance and robustness of the solutions obtained. 17. Key Words 18. Distribution Statement Robust Optimization, Dynamic Congestion Pricing, Dynamic User Equilibrium 19. -
Independent Review of Road User Charging in Wales
1 An Independent Review into Road User Charging in Wales November 2020 An Independent Review of Road User Charging in Wales Derek Turner CBE FREng November 2020 2 An Independent Review into Road User Charging in Wales November 2020 Contents Section Page number List of Figures and list of Tables 3 About the Author 4 1. Executive Summary 5 2. Background to, and nature of, the Review 6 3. An introduction to Road User Charging 9 4. Principles and Theories 14 5. General Matters and Issues (Perceived & Real) associated with RUC 22 6. Range of Global RUC experiences and Key Lessons 33 7. What are the constraints and challenges for Wales? 49 8. Attitudes and Implications 54 9. ‘The Case For & The Case Against’ RUC in Wales 57 10. The range of RUC concepts and technologies relevant to Wales 60 11. Summary and ‘SWOT’ of current “RUC in Wales” related studies 70 12. Conclusions of the review 75 Glossary of Abbreviations and Definitions 79 References and Bibliography 82 Appendix A: UK Connected and Automated Mobility Roadmap to 2030 85 Appendix B: Pigou’s ‘Classical’ economic principle of Road Pricing 87 Appendix C: Some further details on the content of the suggested Welsh Government’s “National Policy Framework for RUC in Wales” 88 Appendix D: Some suggested details on the preparation and content of the Welsh Government’s ‘Interim Guidance’ concerning RUC in Wales. 90 Appendix E: Wales Traffic Statistics provided by Welsh Government 91 Appendix F: Extract from Gergely Raccuja - winner of Wolfsen Economic Prize in 2018 94 Acknowledgements: The author wishes to acknowledge the assistance provided to him by the officials of the Welsh Government (especially Matt Jones), those who provided data and all those involved in preparation of this document for printing. -
Congestion Pricing Sep Ash 6 Pst.NW 328- T Em in G 500 T B on E R 2006 0 Www , DC 200 .R
September 2006 RFF DP 06-37 Congestion Pricing Long-Term Economic and Land-Use Effects Elena Safirova, Sébastien Houde, D. Abram Lipman, Winston Harrington, and Andrew Baglino 1616 P St. NW Washington, DC 20036 202-328-5000 www.rff.org DISCUSSION PAPER Congestion Pricing: Long-Term Economic and Land-Use Effects Elena Safirova, Sébastien Houde, D. Abram Lipman, Winston Harrington, and Andrew Baglino Abstract We employ a spatially disaggregated general equilibrium model of a regional economy that incorporates decisions of residents, firms, and developers integrated with a spatially disaggregated strategic transportation planning (START) model that features mode, time period, and route choice to evaluate economic effects of congestion pricing. First, we evaluate the long-run effects of a road-pricing policy based on the integrated model of land use, strategic transport, and regional economy (LUSTRE) and compare them with the short-term effects obtained from the START model alone. We then look at distributional effects of the policy in question and point out differences and similarities in the short run versus the long run. Finally, we analyze the mechanisms at the source of the economic and land-use effects induced by the road-pricing policy. Key Words: traffic congestion, welfare analysis, CGE modeling, cordon tolls, distributional effects JEL Classification Numbers: C68, D63, R13, R14, R41 © 2006 Resources for the Future. All rights reserved. No portion of this paper may be reproduced without permission of the authors. Discussion papers are research materials circulated by their authors for purposes of information and discussion. They have not necessarily undergone formal peer review. Contents Introduction............................................................................................................................ -
The Smeed Report at Fifty
Smeed Memorial Lecture 7 October 2014 The Smeed Report at Fifty: will road pricing always be ten years way? 1 2 Stephen Glaister Introduction Ten years ago the legacy of Reuben Smeed gave me a salutary lesson. I was a member of an advisory panel for the Road Pricing Feasibility Study (2004) set up by Secretary of State for Transport, Alastair Darling. It had been a big exercise—and a good one—using the considerable analytical fire-power then available to the Department. It was nearing the final draft. I vaguely remembered that forty years earlier I had been assigned the newly-published Smeed Report to read as an economics undergraduate. (That as well as Beeching, 1963 and Buchanan,1963—those were the days when government took analysis of transport policy seriously!) I am ashamed to say that I had not looked at Smeed since my undergraduate days. I thought I ought to check whether the draft Road Pricing Feasibility Study was missing anything. I was amazed: there was nothing of substance in the draft 2004 document that had not been dealt with in the Smeed Report. The latter included quantitative appendices based on the definitive exposition of the theory by Alan Walters, a member of the Panel (it was a “Report of a Panel”) which is summarised in his famous Econometrica paper (Walters, 1961). The social and political considerations were all there. There is a wonderfully clear and concise exposition of the economic fundamentals. Of course the data had improved by 2004 and the technology available had moved on. -
Reducing Urban Road Transportation Externalities: Road Pricing in Theory and in Practice Downloaded from Alex Anas* and Robin Lindseyy
66 Symposium: Transportation and the Environment Reducing Urban Road Transportation Externalities: Road Pricing in Theory and in Practice Downloaded from Alex Anas* and Robin Lindseyy Introduction http://reep.oxfordjournals.org/ Urban road transportation causes several major negative externalities. First, the costs of green- house gas emissions from motorized private and public vehicles are borne globally. Second, other air pollutants and noise from urban road transportation affect road users and others locally. Third, while the costs of congestion (time delays and extra fuel consumption), accidents, and infrastructure damage are largely borne by motorists collectively, there is still an externality because individual motorists increase these costs for other motorists. Because of these exter- nalities, motorists do not bear the full social marginal costs of driving and they drive too much. Urban road transportation causes several other externalities as well, including water pollu- at Technical Services - Serials on October 6, 2016 tion, vibrations, and visual intrusion. Roads also create a barrier to bicyclists and pedestrians. Moreover, when parking is underpriced, the time spent searching for parking, excessive use of land for parking, the contribution to the urban heat island effect, and problems of drainage can besignificantinurbanareas(Shoup2005).Inaddition,fuelconsumptioncanimposecostsatthe national level due to monopsony power in the world oil market and energy insecurity, although by most estimates the average costs are small (Bickel et al. 2006; Delucchi and McCubbin 2009). Many policy instruments can be used to control road transportation externalities, but all have their limitations. In the United States, vehicle emissions standards and ceilings on regional air quality have helped reduce emissions per vehicle kilometer. -
Finance, Taxation, Pricing, Economic Analysis, Socioeconomics
122 TRANSPORTATION RESEARCH RECORD 1395 Understanding the Competing Short-Run Objectives of Peak Period Road Pricing DAVID BERNSTEIN AND JEROME MULLER The interest in peak period road pricing has grown considerably 1993 or 1994 and a full-scale program by 1997 (14); and Oslo in recent years both in the United States and abroad. This increase and Trondheim, Norway, and Stockholm and Gothenberg, in interest is usually attributed to worsening congestion and im Sweden, are all considering programs of one kind or another. proved electronic toll collection technologies. However, there may be a third reason as well: peak period pricing can be used Several reasons are usually given for this renewed interest. to generate revenues. This use of peak period road pricing is First, congestion is now much worse than it has ever been in explored and compared with programs that are designed to min the past. As two-income families have become more prevalent imize social cost. Using some simple examples, it is shown that and suburban rings have grown in both absolute population it is possible to increase toll revenues but at a significant cost to and area, the number of commuters using private automobiles society. In addition, it is shown that most of the revenues and in the United States has increased dramatically. In fact, from costs can be attributed to the length and end of the toll period. 1960 to 1980 the number of people driving to work nearly doubled (at a time when the number of people in the work Peak period pricing has been an accepted part of life in the force increased by only 50 percent). -
The Efficacy of Congestion Pricing
University of Tennessee at Chattanooga UTC Scholar Student Research, Creative Works, and Honors Theses Publications 5-2016 The efficacy of congestion pricing Zachary J. Ridder University of Tennessee at Chattanooga, [email protected] Follow this and additional works at: https://scholar.utc.edu/honors-theses Part of the Economics Commons Recommended Citation Ridder, Zachary J., "The efficacy of congestion pricing" (2016). Honors Theses. This Theses is brought to you for free and open access by the Student Research, Creative Works, and Publications at UTC Scholar. It has been accepted for inclusion in Honors Theses by an authorized administrator of UTC Scholar. For more information, please contact [email protected]. The Efficacy of Congestion Pricing By Zack Ridder Departmental Honors Thesis The University of Tennessee at Chattanooga Economics Department Project Direction: Dr. Leila Pratt Examination Date: 3/30/16 Examination Committee: Dr. Leila Pratt Dr. Bruce Hutchinson Dr. James Guilfoyle Dr. David Giles The Efficacy of Congestion Pricing By Zack Ridder 1 I. Introduction As the number of vehicles continues to climb road congestion will become a more prominent feature of urban centers and will likely worsen over time. This thesis will show that the most simple and effective way to combat congestion is the implementation of road pricing schemes in and around major metropolitan areas. For the most part the benefits of such a system outweigh the potential costs. These tolling systems force commuters to internalize the marginal social cost of driving, as opposed to only paying the average social cost and incurring a deadweight loss. This paper will first provide a review of the literature, tracing the theoretical development of congestion pricing from its early roots to modern studies.