Clinical and Molecular Insights in Erythropoiesis Regulation of Signal Transduction Pathways in Myelodysplastic Syndromes and Β-Thalassemia

Total Page:16

File Type:pdf, Size:1020Kb

Clinical and Molecular Insights in Erythropoiesis Regulation of Signal Transduction Pathways in Myelodysplastic Syndromes and Β-Thalassemia International Journal of Molecular Sciences Review Clinical and Molecular Insights in Erythropoiesis Regulation of Signal Transduction Pathways in Myelodysplastic Syndromes and β-Thalassemia Sarah Parisi 1,2,†, Carlo Finelli 1,2,†, Antonietta Fazio 3, Alessia De Stefano 3, Sara Mongiorgi 3, Stefano Ratti 3 , Alessandra Cappellini 3, Anna Maria Billi 3 , Lucio Cocco 3 , Matilde Y. Follo 3,* and Lucia Manzoli 3 1 Department of Oncology and Hematology, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; [email protected] (S.P.); carlo.fi[email protected] (C.F.) 2 Department of Experimental, Diagnostic and Specialty Medicine DIMES, Institute of Hematology “L. and A. Seràgnoli”, University of Bologna, 40138 Bologna, Italy 3 Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; [email protected] (A.F.); [email protected] (A.D.S.); [email protected] (S.M.); [email protected] (S.R.); [email protected] (A.C.); [email protected] (A.M.B.); [email protected] (L.C.); [email protected] (L.M.) * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Erythropoiesis regulation is essential in normal physiology and pathology, particularly in myelodysplastic syndromes (MDS) and β-thalassemia. Several signaling transduction processes, including those regulated by inositides, are implicated in erythropoiesis, and the latest MDS or β-thalassemia preclinical and clinical studies are now based on their regulation. Among others, the main pathways involved are those regulated by transforming growth factor (TGF)-β, which Citation: Parisi, S.; Finelli, C.; Fazio, negatively regulates erythrocyte differentiation and maturation, and erythropoietin (EPO), which A.; De Stefano, A.; Mongiorgi, S.; acts on the early-stage erythropoiesis. Also small mother against decapentaplegic (SMAD) signaling Ratti, S.; Cappellini, A.; Billi, A.M.; Cocco, L.; Follo, M.Y.; et al. Clinical molecules play a role in pathology, and activin receptor ligand traps are being investigated for future and Molecular Insights in clinical applications. Even inositide-dependent signaling, which is important in the regulation of cell Erythropoiesis Regulation of Signal proliferation and differentiation, is specifically associated with erythropoiesis, with phospholipase Transduction Pathways in C (PLC) and phosphatidylinositol 3-kinase (PI3K) as key players that are becoming increasingly Myelodysplastic Syndromes and important as new promising therapeutic targets. Additionally, Roxadustat, a new erythropoiesis β-Thalassemia. Int. J. Mol. Sci. 2021, stimulating agent targeting hypoxia inducible factor (HIF), is under clinical development. Here, we 22, 827. https://doi.org/10.3390/ review the role and function of the above-mentioned signaling pathways, and we describe the state ijms22020827 of the art and new perspectives of erythropoiesis regulation in MDS and β-thalassemia. Received: 21 December 2020 Keywords: erythropoiesis; signal transduction; myelodysplastic syndromes; β-thalassemia; inosi- Accepted: 13 January 2021 tides Published: 15 January 2021 Publisher’s Note: MDPI stays neu- tral with regard to jurisdictional clai- 1. Introduction ms in published maps and institutio- nal affiliations. Erythropoiesis is an essential process that is finely regulated. All stages are controlled by several molecules and several signal transduction pathways are implicated. For instance, the transforming growth factor (TGF)-β family negatively regulates the erythrocyte differ- entiation and maturation, whilst erythropoietin (EPO) is the main regulator of early-stage Copyright: © 2021 by the authors. Li- erythropoiesis. Ineffective erythropoiesis may cause anemia and is particularly relevant in censee MDPI, Basel, Switzerland. myelodysplastic syndromes (MDS) and in homozygous β-thalassemia, where small mother This article is an open access article against decapentaplegic (SMAD) signaling is altered and activin receptor ligand traps have distributed under the terms and con- been shown to correct the hyperactivation of SMAD2/3. New clinical approaches to coun- ditions of the Creative Commons At- teract anemia and support erythropoiesis are based on Roxadustat, a new erythropoiesis tribution (CC BY) license (https:// stimulating agent targeting hypoxia inducible factor (HIF). Finally, some data also hint at a creativecommons.org/licenses/by/ relevant role for phospholipase C and PI3K in erythropoiesis regulation. This review will 4.0/). Int. J. Mol. Sci. 2021, 22, 827. https://doi.org/10.3390/ijms22020827 https://www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 2 of 15 Int. J. Mol. Sci. 2021, 22, 827 2 of 15 (HIF). Finally, some data also hint at a relevant role for phospholipase C and PI3K in focuserythropoiesis on these pathwaysregulation. and This describe review their will importancefocus on these in preclinical pathways studies and describe and clinical their applications,importance in because preclinical they studies are the and target clinical of new applications, therapeutic because agents which they are have the proved target toof benew highly therapeutic effective agents in improving which have anemia proved associated to be highly with effective MDS, β-thalassemia in improving and anemia chronic as- kidneysociated disease. with MDS, β-thalassemia and chronic kidney disease. 2. Targeting Transforming GrowthGrowth FactorFactor (TGF)-(TGF)-ββ SignalingSignaling toto ImproveImprove Erythropoie- Erythropoiesissis 2.1. Effective and Ineffective Erythropoiesis 2.1. Effective and Ineffective Erythropoiesis The process of erythropoiesis in humans is divided in two parts: the first is EPO- The process of erythropoiesis in humans is divided in two parts: the first is EPO- dependent and the second is iron-dependent (Figure1). Erythropoiesis occurs in ery- dependent and the second is iron-dependent (Figure 1). Erythropoiesis occurs in erythro- throblastic islands, anatomic niches composed of a central macrophage surrounded by blastic islands, anatomic niches composed of a central macrophage surrounded by erythroid cells at various stages of maturation: erythroid burst-forming units (BFU-E), erythroid cells at various stages of maturation: erythroid burst-forming units (BFU-E), erythroid colony-forming units (CFU-E), erythroid progenitors (proerythroblasts and ery- erythroid colony-forming units (CFU-E), erythroid progenitors (proerythroblasts and throblasts) [1]. erythroblasts) [1]. Figure 1.1. SchematicSchematic representation of erythroiderythroid developmentdevelopment and time-dependenttime-dependent expression of a complexcomplex networknetwork ofof transcriptiontranscription factorsfactors involvedinvolved in thethe process.process. EPO-dependent and iron-dependent stages of erythropoiesis are indicated. Differentiation, maturation, and proliferation of erythroid progenitorsprogenitors are regulatedregulated byby severalseveral moleculesmolecules accordingaccording toto different stages.stages. Stem cell factorfactor (SCF),(SCF), interleukin-3interleukin-3 (IL-3) and theirtheir receptorsreceptors progressivelyprogressively disappeardisappear duringduring erythroiderythroid maturation, after the Pro-E stage. GATA1 promotes erythropoiesis and increases the EPO receptor (EPO-R) expression, maturation, after the Pro-E stage. GATA1 promotes erythropoiesis and increases the EPO receptor (EPO-R) expression, which which is maintained until the Ortho-E stage. In turn, EPO is the main regulator of early-stage erythropoiesis, after the is maintained until the Ortho-E stage. In turn, EPO is the main regulator of early-stage erythropoiesis, after the BFU-E stage. BFU-E stage. Other molecules are regulators of iron metabolism, such as transferrin (Tf) and its cell receptor (Tfr), Othergrowth/differentiating molecules are regulators factor 11 of (GDF11) iron metabolism, and memb suchers as of transferrin the transforming (Tf) and itsgrowth cell receptor factor (TGF)- (Tfr), growth/differentiatingβ family, which nega- factortively 11regulate (GDF11) erythrocyte and members differentiation of the transforming and maturation growth from factor the (TGF)- earlyβ stagesfamily, (Tf/ whichTfr-1) negatively to the late regulate stages (Poly-E). erythrocyte Fi- differentiationnally, the binding and between maturation FAS from and theFAS early ligand stages (FASL) (Tf/Tfr-1) triggers to th thee apoptosis late stages of (Poly-E). immature Finally, erythroid the binding cells, acting between from FAS the andCFU-E FAS to ligand the Ortho-E (FASL) stages. triggers the apoptosis of immature erythroid cells, acting from the CFU-E to the Ortho-E stages. As depicted in Figure1 1,, proliferation, proliferation, differentiation,differentiation, andand maturation maturation ofof erythroid erythroid progenitors isis controlledcontrolled by by several several molecules molecules which which act act at at different different stages stages of erythropoiesis.of erythropoi- Stemesis. Stem cell factor cell factor (SCF) (SCF) and interleukinand interleukin 3 (IL-3) 3 (I targetL-3) target hematopoietic hematopoietic stem stem cells cells (HSC), (HSC), and theirand their receptors receptors gradually gradually disappear disappear during duri erythroidng erythroid maturation. maturation. GATA1 GATA1 promotes promotes ery- thropoiesiserythropoiesis during during several several stages, stages, because because it enhances it enhances
Recommended publications
  • Mechanisms of Erythrocyte Development and Regeneration: Implications for Regenerative Medicine and Beyond Emery H
    © 2018. Published by The Company of Biologists Ltd | Development (2018) 145, dev151423. http://dx.doi.org/10.1242/dev.151423 REVIEW Mechanisms of erythrocyte development and regeneration: implications for regenerative medicine and beyond Emery H. Bresnick1,*, Kyle J. Hewitt1, Charu Mehta1, Sunduz Keles2, Robert F. Paulson3 and Kirby D. Johnson1 ABSTRACT better understanding of how stress can influence erythropoiesis, Hemoglobin-expressing erythrocytes (red blood cells) act as both during development and in a regenerative context. In this fundamental metabolic regulators by providing oxygen to cells and Review, we focus on cell-autonomous and non-cell-autonomous tissues throughout the body. Whereas the vital requirement for mechanisms governing erythrocyte development, the applicability oxygen to support metabolically active cells and tissues is well of these mechanisms to stress-instigated erythropoiesis (erythrocyte established, almost nothing is known regarding how erythrocyte regeneration) and their implications for other regenerative development and function impact regeneration. Furthermore, many processes. We begin by considering the principles that govern the questions remain unanswered relating to how insults to hematopoietic cell fate transitions that produce the diverse complement of blood stem/progenitor cells and erythrocytes can trigger a massive cells, including erythrocytes. It is not our intent, however, to regenerative process termed ‘stress erythropoiesis’ to produce comprehensively address this topic, as it has been heavily reviewed billions of erythrocytes. Here, we review the cellular and molecular elsewhere (Crisan and Dzierzak, 2016; Dzierzak and de Pater, 2016; mechanisms governing erythrocyte development and regeneration, Orkin and Zon, 2008; Tober et al., 2016). and discuss the potential links between these events and other regenerative processes.
    [Show full text]
  • Fetal-Like Erythropoiesis During Recovery from Transient Erythroblastopenia of Childhood (TEC)
    Pediatr. Res. 15: 1036-1039 (198 1) erythrocyte, aplasia transient erythroblastopenia of childhood fetal-like erythropoiesis Fetal-Like Erythropoiesis during Recovery from Transient Erythroblastopenia of Childhood (TEC) Division of Hematolog). and Oncology, Children's Hospital Medical Center and the Sidney Farber Cancer It~stitule, and the Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA Summary bone marrow failure (7.%. 16)' or in states of ra~idbone marrow recovery from aplasia after bone marrow transplantation (1, 3, Fetal-like erythropoiesis frequently accompanies marrow stress 17). The term "fetal-like" is used because the erythrocytes may conditions such as Diamond-Blackfan syndrome and aplastic ane- express only one and not all of the characteristics of fetal red mia. In contrast, patients with transient erythroblastopenia of blood cells. childhood have erythrocytes which lack fetal characteristics at the To if fetal-like erythropoiesis accompanies bone mar- time of diagnosis. This report describes nine children with transient row recovery from other hypoplastic states, we studied children erythroblastopenia of childhood in whom transient, fetal-like eryth- with transient erythroblastopenia of childhood (TEC) from the was observed during the period These pa- tirne of presentation to full recovery, TEC is an unusual disease of tients initially presented with anemia, reticulocytopenia, erythro- infants and young children, characterized by the insidious onset cytes of normal size for age, low levels of fetal hemoglobin, and of hypoproliferative anemia without decreases in leukocyte and i-antigen. During the recovery period, however, erythrocytes man- platelet production. Although the anemia may be quite severe at ifested one or more fetal characteristics. These included an in- presentation, rapid and complete recovery is the rule with per- creased fetal hemoglobin (in three of five patients), the presence manent restoration of normal hematopoiesis (2, 11, 19, 23, 25, 26).
    [Show full text]
  • Roxadustat for the Treatment of Anemia Due to Chronic Kidney
    Roxadustat for the Treatment of Anemia Due to Chronic Kidney Disease in Adult Patients not on Dialysis and on Dialysis FDA Presentation Cardiovascular and Renal Drugs Advisory Committee Meeting July 15, 2021 Clinical: Saleh Ayache, MD Division of Non-Malignant Hematology Office of Cardiology, Hematology, Endocrinology, and Nephrology Statistics: Jae Joon Song, PhD Division of Biometrics VII/Office of Biostatistics www.fda.gov Roxadustat Review Team • Clinical • Quality Assessment • Biopharmaceutics Saleh Ayache Ben Zhang Joan Zhao Ann T. Farrell Dan Berger • Labeling Nancy Waites Ellis Unger Virginia Kwitkowski • Clinical Pharmacology • Project Management • Clinical Outcome Assessment Snehal Samant Alexis Childers Naomi Knoble Jihye Ahn Courtney Hamilton • Division of Hepatology and Nutrition Sudharshan Hariharan Paul H. Hayashi • Pharmacology Toxicology Doanh Tran Mark Avigan Geeta Negi • Statistics • Office of Scientific Investigations Todd Bourcier Lola Luo Anthony Orencia Jae Joon Song Clara Kim Yeh-Fong Chen Thomas Gwise Mat Soukup www.fda.gov 2 Outline of Presentation • Product and proposed indication • Regulatory history and background • Roxadustat development program • Efficacy Safety • Adverse events • Major adverse cardiovascular events • All-cause mortality • Exploratory analyses of the relationships between thromboembolic events, drug dose, hemoglobin, and rate of change of hemoglobin www.fda.gov 3 Product and Proposed Indication • Roxadustat: small-molecule, oral, hypoxia inducible- factor prolyl-hydroxylase inhibitor (HIF-PHI),
    [Show full text]
  • Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
    CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products.
    [Show full text]
  • Final Evidence Report
    Treatments for Anemia in Chronic Kidney Disease: Effectiveness and Value Final Evidence Report March 5, 2021 Prepared for ©Institute for Clinical and Economic Review, 2021 ICER Staff and Consultants University of Washington Modeling Group Reem A. Mustafa, MD, MPH, PhD Lisa Bloudek, PharmD, MS Associate Professor of Medicine Senior Research Scientist Director, Outcomes and Implementation Research University of Washington University of Kansas Medical Center Josh J. Carlson, PhD, MPH Grace Fox, PhD Associate Professor, Department of Pharmacy Research Lead University of Washington Institute for Clinical and Economic Review The role of the University of Washington is limited to Jonathan D. Campbell, PhD, MS the development of the cost-effectiveness model, and Senior Vice President for Health Economics the resulting ICER report does not necessarily Institute for Clinical and Economic Review represent the views of the University of Washington. Foluso Agboola, MBBS, MPH Vice President of Research Institute for Clinical and Economic Review Steven D. Pearson, MD, MSc President Institute for Clinical and Economic Review David M. Rind, MD, MSc Chief Medical Officer Institute for Clinical and Economic Review None of the above authors disclosed any conflicts of interest. DATE OF PUBLICATION: March 5, 2021 How to cite this document: Mustafa RA, Bloudek L, Fox G, Carlson JJ, Campbell JD, Agboola F, Pearson SD, Rind DM. Treatments for Anemia in Chronic Kidney Disease: Effectiveness and Value; Final Evidence Report. Institute for Clinical and Economic Review, March 5, 2021. https://icer.org/assessment/anemia-in-chronic-kidney-disease-2021/#timeline. Reem Mustafa served as the lead author for the report. Grace Fox led the systematic review and authorship of the comparative clinical effectiveness section in collaboration with Foluso Agboola and Noemi Fluetsch.
    [Show full text]
  • Nonclinical Characterization of the HIF-Prolyl Hydroxylase Inhibitor Roxadustat, a Novel Treatment for Anemia of Chronic Kidney
    JPET Fast Forward. Published on June 2, 2020 as DOI: 10.1124/jpet.120.265181 This article has not been copyedited and formatted. The final version may differ from this version. JPET # 265181 Nonclinical Characterization of the HIF-Prolyl Hydroxylase Inhibitor Roxadustat, a Novel Treatment for Anemia of Chronic Kidney Disease Ughetta del Balzo*, Pierre E. Signore*, Gail Walkinshaw, Todd W. Seeley, Mitchell C. Brenner, Qingjian Wang, Guangjie Guo, Michael P. Arend, Lee A. Flippin, F. Aisha Chow, David C. Gervasi, Christian H. Kjaergaard, Ingrid Langsetmo, Volkmar Guenzler, David Y. Liu, Steve J. Klaus, Al Lin, and Thomas B. Neff. Downloaded from Primary laboratory of origin: FibroGen, Inc., 409 Illinois Street, San Francisco, CA jpet.aspetjournals.org 94158 USA Affiliations: FibroGen, Inc., 409 Illinois Street, San Francisco, CA 94158 USA (U.d.B, at ASPET Journals on September 26, 2021 P.E.S., G.W., T.W.D., M.C.B., Q.W., G.G., M.P.A., L.A.F., F.A.C., D.C.G., C.H.K, I.L., V.G., D.Y.L., S.J.K., A.L., T.B.N.) *Contributed equally to the study. 1 JPET Fast Forward. Published on June 2, 2020 as DOI: 10.1124/jpet.120.265181 This article has not been copyedited and formatted. The final version may differ from this version. JPET # 265181 Running title: Nonclinical Profile of Roxadustat for Anemia Corresponding Author: Ughetta del Balzo FibroGen, Inc. 409 Illinois Street San Francisco, CA 94158 USA Downloaded from Telephone: 415 978 1852 Email: [email protected] jpet.aspetjournals.org Number of text pages: 47 Number of tables: 1 Number of figures: 9 at ASPET Journals on September 26, 2021 Number of references: 64 Number of words in abstract: 248 Number of words in introduction: 745 Number of words in discussion: 1557 List of non-standard abbreviations: αKG α-ketoglutarate ACD anemia of chronic disease BPE bovine pituitary extract BUN blood urea nitrogen CKD chronic kidney disease 2 JPET Fast Forward.
    [Show full text]
  • The Role of Macrophages in Erythropoiesis and Erythrophagocytosis
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Frontiers - Publisher Connector REVIEW published: 02 February 2017 doi: 10.3389/fimmu.2017.00073 From the Cradle to the Grave: The Role of Macrophages in Erythropoiesis and Erythrophagocytosis Thomas R. L. Klei†, Sanne M. Meinderts†, Timo K. van den Berg and Robin van Bruggen* Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands Erythropoiesis is a highly regulated process where sequential events ensure the proper differentiation of hematopoietic stem cells into, ultimately, red blood cells (RBCs). Macrophages in the bone marrow play an important role in hematopoiesis by providing signals that induce differentiation and proliferation of the earliest committed erythroid progenitors. Subsequent differentiation toward the erythroblast stage is accompanied by the formation of so-called erythroblastic islands where a central macrophage provides further cues to induce erythroblast differentiation, expansion, and hemoglobinization. Edited by: Robert F. Paulson, Finally, erythroblasts extrude their nuclei that are phagocytosed by macrophages Pennsylvania State University, USA whereas the reticulocytes are released into the circulation. While in circulation, RBCs Reviewed by: slowly accumulate damage that is repaired by macrophages of the spleen. Finally, after Xinjian Chen, 120 days of circulation, senescent RBCs are removed from the circulation by splenic and University of Utah, USA Reinhard Obst, liver macrophages. Macrophages are thus important for RBCs throughout their lifespan. Ludwig Maximilian University of Finally, in a range of diseases, the delicate interplay between macrophages and both Munich, Germany developing and mature RBCs is disturbed. Here, we review the current knowledge on *Correspondence: Robin van Bruggen the contribution of macrophages to erythropoiesis and erythrophagocytosis in health [email protected] and disease.
    [Show full text]
  • Roxadustat for the Treatment of Anemia in Patients with Chronic Kidney Diseases: a Meta-Analysis
    www.aging-us.com AGING 2021, Vol. 13, No. 13 Research Paper Roxadustat for the treatment of anemia in patients with chronic kidney diseases: a meta-analysis Li Zhang1, Jie Hou1, Jia Li1, Sen-Sen Su1, Shuai Xue2 1Department of Nephrology, The First Hospital of Jilin University, Jilin Province, China 2Department of Thyroid Surgery, The First Hospital of Jilin University, Jilin Province, China Correspondence to: Shuai Xue; email: [email protected] Keywords: roxadustat, chronic kidney disease, anemia, meta-analysis Received: January 22, 2021 Accepted: May 17, 2021 Published: June 11, 2021 Copyright: © 2021 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Background: Anemia is a common complication of chronic kidney disease (CKD). Treating renal anemia with erythropoiesis-stimulating agents (ESAs) or erythropoietin analogs is effective but has side effects. Therefore, we performed a meta-analysis to assess the efficacy and safety of roxadustat in treating CKD-induced anemia. Methods: We searched publications online and conducted a meta-analysis and calculated relative risks with 95% confidence intervals (CIs) for dichotomous data and mean differences (MD) with 95% CIs for continuous data. Results: Of 110 articles, nine were included that contained 12 data sets and 11 randomized control trials on roxadustat. In the non-dialysis-dependent (NDD) high-dose/low-dose subgroups, the change in hemoglobin (Hb) levels was significantly higher in the roxadustat group than in the placebo group (P<0.0001, P=0.001, respectively).
    [Show full text]
  • Pretreatment with Roxadustat (FG-4592) Attenuates Folic Acid-Induced Kidney Injury Through Antiferroptosis Via Akt/GSK-3Β/Nrf2 Pathway
    Hindawi Oxidative Medicine and Cellular Longevity Volume 2020, Article ID 6286984, 17 pages https://doi.org/10.1155/2020/6286984 Research Article Pretreatment with Roxadustat (FG-4592) Attenuates Folic Acid-Induced Kidney Injury through Antiferroptosis via Akt/GSK-3β/Nrf2 Pathway Xue Li,1,2 Yu Zou,1 Jia Xing,1 Yuan-Yuan Fu,1 Kai-Yue Wang,1 Peng-Zhi Wan,3 and Xiao-Yue Zhai 1,4 1Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, China 2Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China 3Department of Nephrology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China 4Institute of Nephropathology, China Medical University, Shenyang, China Correspondence should be addressed to Xiao-Yue Zhai; [email protected] Received 23 July 2019; Revised 29 October 2019; Accepted 12 December 2019; Published 20 January 2020 Academic Editor: Gerardo García-Rivas Copyright © 2020 Xue Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Folic acid- (FA-) induced kidney injury is characterized by the tubule damage due to the disturbance of the antioxidant system and subsequent interstitial fibrosis. FG-4592 is an inhibitor of prolyl hydroxylase of hypoxia-inducible factor (HIF), an antioxidant factor. The present study investigated the protective role of FG-4592 pretreatment at the early stage of the kidney injury and long-term impact on the progression of renal fibrosis. FG-4592 was administrated two days before FA injection in mice.
    [Show full text]
  • Lecture 2 Haemopoiesis, Erythropoiesis and Leucopoiesis Haemopoiesis Haemopoiesis Or Haematopoiesis Is the of Process Formation of New Blood Cellular Components
    NPTEL – Biotechnology – Cell Biology Lecture 2 Haemopoiesis, erythropoiesis and leucopoiesis Haemopoiesis Haemopoiesis or haematopoiesis is the of process formation of new blood cellular components. It has been estimated that in an adult human, approximately 1011–1012 new blood cells are produced daily in order to maintain steady state levels in the peripheral circulation. The mother cells from which the progeny daughter blood cells are generated are known as haematopoietic stem cells. In an embryo yolk sac is the main site of haemopoiesis whereas in human the basic sites where haemopoiesis occurs are the bone marrow (femur and tibia in infants; pelvis, cranium, vertebrae, and sternum of adults), liver, spleen and lymph nodes (Table 1). In other vertebrates haemapoiesis occurs in loose stroma of connective tissue of the gut, spleen, kidney or ovaries. Table 1: Sites of Haemopoiesis in humans Stage Sites Fetus 0–2 months (yolk sac) 2–7 months (liver, spleen) 5–9 months (bone marrow) Infants Bone marrow Adults Vertebrae, ribs, sternum, skull, sacrum and pelvis, proximal ends of femur The process of haemopoiesis Pluripotent stem cells with the capability of self renewal, in the bone marrow known as the haemopoiesis mother cell give rise to the separate blood cell lineages. This haemopoietic stem cell is rare, perhaps 1 in every 20 million nucleated cells in bone marrow. Figure 1 illustrates the bone marrow pluripotent stem cell and the cell lines that arise from it. Cell differentiation occurs from a committed progenitor haemopoietic stem cell and one stem cell is capable of producing about 106 mature blood cells after 20 cell divisions.
    [Show full text]
  • Prof. Andrzej Wiecek
    The present and future of anaemia management in CKD patients Prof. Andrzej Wiecek Department of Nephrology, Transplantation and Internal Medicine Medical University of Silesia, Katowice, Poland e-mail: [email protected] Prevalence of anaemia in patients with chronic kidney disease Levin A., Nephrol. Dial. Transplant., 2001, 16, suppl 2: 7-11 Distribution of Hb concentrations in haemodialysis and PD patients in 1984 40 35 30 % Patients 25 20 HD 15 PD 10 5 0 <6g/dl 6-8g /dl 8-10g/dl >10g/dl Hb bands ~ 3 units blood per patient per year Courtesy of dr Ch. Winearls, Oxford, UK Erythropoiesis in chronic kidney disease Erythropoiesie in chronic kidney disease Lankhorst C.E., Wish J.B., Blood Rev., 2010, 24, 39-47 Plasma erythopoietin (EPO) levels in patients with different types of and degrees of anaemia and in those with primary or secondary erythrocytosis Bunn H.F., Cold Spring Harb. Perspect. Med. 2013; 3: a011619 Currently available Erythropoiesis Stimulating Agents (ESAs) Omontys Syntetic and pegylated Syntetic EPO 2012 only for HD (USA) (Peginesatide) EPO- mimetic Macdougall I. C., Am. J. Kidney Dis., 2012, 59, 444 - 451 Currently available Erythropoiesis Stimulating Agents (ESAs) 2009 Omontys Syntetic and pegylated Syntetic EPO 2012 only for HD (USA) (Peginesatide) EPO- mimetic 2013 Macdougall I. C., Am. J. Kidney Dis., 2012, 59, 444 - 451 Current ESA and iv iron use . Use ESA therapy to control anaemia when Hb <10.0 g/dl or < 11.0 g/dl if symptoms) . Aim for target Hb in range 10.0 -12.0 g/dl; individualize . Do not exceed intentionally 13.0 g/dl .
    [Show full text]
  • Regulation of Erythropoiesis in the Fetus and Newborn
    Arch Dis Child: first published as 10.1136/adc.47.255.683 on 1 October 1972. Downloaded from Review Article Archives of Disease in Childhood, 1972, 47, 683. Regulation of Erythropoiesis in the Fetus and Newborn PER HAAVARDSHOLM FINNE and SVERRE HALVORSEN From the Paediatric Research Institute, Barneklinikken, Rikshospitalet, Oslo, Norway The present concept of the regulation of erythro- sis in the human is predominantly myeloid during poiesis is based on the theory that a humoral factor, normal conditions. In other species (mice, rats) erythropoietin, stimulates red cell production it is different, with the shift from hepatic to myeloid through its effects on the erythropoietin sensitive stage occurring after birth (Lucarelli, Howard, stem cell, on DNA synthesis in the erythroblast, and Stohlman, 1964; Stohlman, 1970). and on the release of reticulocytes (Gordon and A progressive increase in erythrocyte content per Zanjani, 1970; Hodgson, 1970). Erythropoietin ml and in Hb concentration has been found in production is regulated by the difference between human blood during the course of intrauterine oxygen supply and demand within the oxygen development, leading to the normal high values at sensitive cells in the kidney. As a response to birth (Thomas and Yoffey, 1962; Walker and hypoxia, a factor called erythrogenin is produced in Tumbull, 1953). Marks, Gairdner, and Roscoe the kidney. This factor acts on a serum substrate (1955), however, found no increase in Hb values copyright. to generate an active humoral factor, the erythro- with gestational age after 31 weeks gestation. poietic stimulating factor (ESF) or erythropoietin The alteration in Hb structure during intrauterine (Gordon, 1971), increased amount of which leads and early neonatal life changes its physical proper- to increased red cell production.
    [Show full text]