And Praseodymium(III) Biosorption on Sargassum Sp.: Batch Study

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Process Biochemistry 46 (2011) 736–744 View metadata, citation and similar papers at core.ac.uk brought to you by CORE Contents lists available at ScienceDirect provided by Elsevier - Publisher Connector Process Biochemistry journal homepage: www.elsevier.com/locate/procbio Samarium(III) and praseodymium(III) biosorption on Sargassum sp.: Batch study Robson C. Oliveira a,∗, Claire Jouannin b, Eric Guibal b, Oswaldo Garcia Jr. a a Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP – Univ Estadual Paulista, Rua Prof. Francisco Degni, s/n, C. P. 14800-900, Araraquara, SP, Brazil b Laboratoire Génie de l’Environnement Industriel, Ecole des Mines d’Alès (EMA), 6, avenue de Clavières, F-30319 Alès Cedex, France article info abstract Article history: This work evaluates the potential of a Sargassum biomass for the biosorption of Sm(III) and Pr(III) using Received 24 September 2010 synthetic solutions. Under selected experimental conditions (excess of sorbent), the biosorption kinetics Received in revised form 9 November 2010 were fast: 30–40 min were sufficient for the complete recovery of the metals. The kinetic profiles were Accepted 25 November 2010 modeled using the pseudo-second order rate equation. The second objective of this study was to evaluate the possibility to separate these metals. Biosorption isotherms and uptake kinetics for the two metals (in Keywords: binary component solutions) were almost overlapped. The biomass did not show significant selectivity Sargassum sp. for any of these two metals, in batch reactor. Biosorption Physicochemical modeling © 2010 Elsevier Ltd. Open access under the Elsevier OA license. Samarium Praseodymium Selectivity 1. Introduction boxyl, amino, sulfate, etc.) present on the cell wall [12]. Dead biomass is generally preferred since it limits the toxicity effects The recovery of heavy metals removal from dilute aqueous of heavy metals (which may accumulate at the surface of cell walls systems has required the development of new technologies for and/or in the cytoplasm) and the necessity to provide nutrients their concentration and separation [1,2]. Biosorption is a promis- [2,13,14]. Alternatively, other biomaterials can be used for these ing biotechnological alternative to conventional physicochemical purposes as biopolymers, activated sludge, agriculture wastes, etc. processes such as: chemical precipitation, electrochemical sepa- [15]. ration, membrane separation, reverse osmosis, ion-exchange or The mechanisms involved in metal accumulation on biosorp- adsorption resins [3–6]. Conventional methods involve either cap- tion sites are numerous and their interpretation is made difficult ital or high operational costs. They can also be associated to the complexity of the biologic systems (presence of various reac- production of secondary residues that may cause environmental tive groups, interactions between the compounds, etc.). However, hazards or complexity in treatment or valorization [6,7]. The ini- in most cases, metal binding proceeds through electrostatic interac- tial incentives for biosorption development in industrial process tion, surface complexation, ion-exchange, and precipitation, which are the low cost of biosorbents, their high efficiency for metal can occur individually or combined [5,16]. removal (especially in low-concentration solutions), the biosor- Sargassum sp. biomass used in this work belongs to Phaeophyta bent regeneration (and the potential metal recovery), the fast group (brown seaweed). This alga is very abundant on the coasts kinetics of adsorption and desorption, and the non-generation of of Brazil, Cuba, Australia, USA, and Asian Southeast [17]. Generally secondary residues (or at least their limited environmental impact) the cellular walls of Phaeophyta are constituted of a fibrillar skeleton [8]. and an amorphous matrix. The outer layer is an amorphous matrix Biosorption is a term that describes metal removal by passive that is linked to the fibrillar skeleton (mainly cellulose) via hydro- binding in living and dead biomass from aqueous solutions in a gen bonding. The amorphous matrix is predominately formed by mechanism that is not controlled by metabolic steps. The metal alginate, besides little amounts of fucoidan have been identified linkage is based on the chemical properties of the cellular enve- [18]. The alginate contributes to cellular wall resistance and flexibil- lope without requiring biologic activity [9–11]. The process occurs ity [18,19]. Alginate carboxyl groups are the most abundant acidic through interactions between metal species and actives sites (car- groups (involved in metal binding): they represent approximately 70% of the titrated sites. The biosorption uptake is directly asso- ciated to the presence of carboxyl groups in the alginate polymer. ∗ The second functional group of the brown seaweed is constituted Corresponding author. E-mail addresses: [email protected], [email protected] (R.C. Oliveira), of sulfonic acid, present in the fucoidan: these groups may also con- [email protected] (E. Guibal). tribute to biosorption [18]. Numerous studies have recently focused 1359-5113 © 2010 Elsevier Ltd. Open access under the Elsevier OA license. doi:10.1016/j.procbio.2010.11.021 R.C. Oliveira et al. / Process Biochemistry 46 (2011) 736–744 737 on the use of Sargassum biomass for the binding of several metals 50 ◦C. The slightly acidic washing contributes to stabilize the biomass and prevent including Ni(II) [20], Cu(II) [21,22], and Zn(II) [23]. further leaching of organic compounds. In addition, this stabilization contributes to The group of rare earth metals (REs) comprises scandium, reduce pH variation that may occur during metal sorption. Strong pH variations may cause difficulties in the comparison of experimental results when different amounts yttrium, and lanthanide series. The RE application fields are exten- of sorbent (which may interact with the solution through proton binding or proton sive, as a consequence of their peculiar spectroscopic and magnetic release) are used. The conditions for acidic pre-treatment are soft enough to prevent properties [23]. REs are of major interest for the development of a degradation of the biosorbent. several disciplines: coordination chemistry, organometallic com- pounds, luminescent compounds, catalysis, solid state chemistry, 2.2. Rare earth solutions analytical and environmental chemistry, industrial applications, RE stock solutions were prepared from Sm(III) and Pr(III,IV) oxides (both Aldrich biology, and medicine. These metals are essential for man- Chemical Company 99.9%). The metal oxides were burned off at 900 ◦C for 3 h. ufacturing products such as lasers, superconductors, cracking They were subsequently dissolved in small amounts of concentrated HCl under catalysts for petroleum, miniaturized equipments, fluorescents heating before being diluted with demineralized water until final concentration of ∼5.0gL−1. For these solutions, the RE concentrations were standardized by tripli- lamps, satellites, phosphorus, ultraviolet radiation absorbers, per- cate analysis using the complexometric titration with a standard solution of EDTA. manent magnets, and electronic information storages [24,25]. The titration was carried out in buffer solution of acetate/acetic acid at pH 6.0 ± 0.2 Although REs are very abundant in the Nature, they present high using xylenol orange as the titration indicator (prepared in ethanol/water solution). market values due to expensive and complex processes for their For metal biosorption experiments, the solutions used were prepared from dilu- ± separation and purification from mixtures because of their chem- tions of stock solutions and pH adjustment to 5.0 0.1 with diluted HCl or NaOH solutions. The metal concentrations in both initial and withdrawn samples were ical similarities. These processes involve several steps of solvent determined by an Inductively Coupled Plasma Atomic Emission Spectrometer (ICP- extraction and/or ion-exchange resins, both with high costs [12,17]. AES JY 2000, Jobin-Yvon, Longjumeau, France). The ICP calibration was done utilizing The RE chemical similarities result from their electronic configura- RE standard solutions with three different concentrations and emission lines at tions: the trivalent state is the more stable thermodynamically in 359.260 and 414.311 nm for Sm(III) and Pr(III), respectively. aqueous solution. Each lanthanide element has in its electronic con- 2.3. Batch experiments figuration an inner shell with electrons in the 4fn orbital shielded 2 6 1–10 by an outer shell composed of electrons in orbitals 5s ,5p ,5d , The biosorption experiments in batch systems were carried out in flasks contain- and 6s2. The differences among lanthanides elements are caused by ing 0.100 ± 0.020 g of biomass and 50 mL of RE solution for kinetics and isotherm, electrostatic effect associated with the increase of shielded nuclear and 0.220 ± 0.040 g of biomass and 100 mL of RE solution for acid–base characteri- zation. The flasks were maintained under agitation at 150 rpm and temperature of charge through electrons partial supply of 4f orbital (which results ◦ ◦ 20 C (kinetics and isotherms) or 30 C (acid–base characterization). All batch exper- on lanthanide contraction of atomic and ionic radius along lan- iments were performed at least in triplicates. The calculation of the biosorption thanide series). This contraction is responsible for low differences uptake (q) is given by the mass balance equation, Eq.
Recommended publications
  • The Development of the Periodic Table and Its Consequences Citation: J

    The Development of the Periodic Table and Its Consequences Citation: J

    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
  • Preliminary Estimates of the Quantities of Rare-Earth Elements Contained in Selected Products and in Imports of Semimanufactured Products to the United States, 2010

    Preliminary Estimates of the Quantities of Rare-Earth Elements Contained in Selected Products and in Imports of Semimanufactured Products to the United States, 2010

    Preliminary Estimates of the Quantities of Rare-Earth Elements Contained in Selected Products and in Imports of Semimanufactured Products to the United States, 2010 By Donald I. Bleiwas and Joseph Gambogi Open-File Report 2013–1072 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2013 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order other USGS information products, visit http://store.usgs.gov Suggested citation: Bleiwas, D.I., and Gambogi, Joseph, 2013, Preliminary estimates of the quantities of rare-earth elements contained in selected products and in imports of semimanufactured products to the United States, 2010: U.S. Geological Survey Open–File Report 2013–1072, 14 p., http://pubs.usgs.gov/of/2013/1072/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Cover. Left: Aerial photograph of Molycorp, Inc.’s Mountain Pass rare-earth oxide mining and processing facilities in Mountain Pass, California.
  • To Ytterbium(II)

    To Ytterbium(II)

    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2008 The Use of Lanthanide Triflates as a Method for Reducing Ytterbium(III) to Ytterbium(II) Latasha Michelle Garrett University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Chemistry Commons Recommended Citation Garrett, Latasha Michelle, "The Use of Lanthanide Triflates as a Method for Reducing tterbium(III)Y to Ytterbium(II). " Master's Thesis, University of Tennessee, 2008. https://trace.tennessee.edu/utk_gradthes/378 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Latasha Michelle Garrett entitled "The Use of Lanthanide Triflates as a Method for Reducing tterbium(III)Y to Ytterbium(II)." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Chemistry. George Schweitzer, Major Professor We have read this thesis and recommend its acceptance: Ben Xue, Jamie Adcock Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Latasha Michelle Garrett entitled “The Use of Lanthanide Triflates as a Method for Reducing Ytterbium(III) to Ytterbium(II).” I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in chemistry.
  • Periodic Table 1 Periodic Table

    Periodic Table 1 Periodic Table

    Periodic table 1 Periodic table This article is about the table used in chemistry. For other uses, see Periodic table (disambiguation). The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers (numbers of protons in the nucleus), electron configurations , and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 Standard 18-column form of the periodic table. For the color legend, see section Layout, rows, with a double row of elements under the larger table. below that. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences. Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table.
  • Synthesis and Optical Characterization of Samarium Doped Lanthanum Orthophosphate Nanowires

    Synthesis and Optical Characterization of Samarium Doped Lanthanum Orthophosphate Nanowires

    Materials Transactions, Vol. 56, No. 9 (2015) pp. 1422 to 1424 Special Issue on Nanostructured Functional Materials and Their Applications ©2015 The Japan Institute of Metals and Materials Synthesis and Optical Characterization of Samarium Doped Lanthanum Orthophosphate Nanowires Le Van Vu+1, Duong Thi Mai Huong+2, Vu Thi Hai Yen+2 and Nguyen Ngoc Long Center for Materials Science, Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam 3+ LaPO4 nanowires doped with 0, 1, 2, 3, 4 and 5 mol% Sm were prepared by co-precipitation technique. These nanowires were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL), photoluminescence excitation (PLE) spectra and energy-dispersive X-ray spectra (EDS). The PL spectra exhibited 4 groups of emission peaks, which are assigned to the transitions from the 4 6 3+ 3+ excited state G5/2 to the ground states HJ with J = 5/2; 7/2; 9/2 and 11/2ofSm ions. The intensity of PL related to Sm ion reached to a maximum when the Sm doping content was 2 mol%. The PLE spectra show 8 peaks, which are attributed to the absorption transitions from the 6 4 4 6 4 6 4 4 4 H5/2 ground state to the K15/2, D3/2, P7/2, F7/2, P5/2, G9/2, I13/2 and I11/2 excited states. [doi:10.2320/matertrans.MA201526] (Received January 27, 2015; Accepted June 25, 2015; Published August 7, 2015) Keywords: co-precipitation, samarium doped lanthanum orthophosphate, nanowires, photoluminescence 1. Introduction stirring for 3 h at room temperature.
  • Study of Xenon and Samarium Behaviour in the Leu Parr-1 Cores

    Study of Xenon and Samarium Behaviour in the Leu Parr-1 Cores

    PINSTECH-142 PK9600216 STUDY OF XENON AND SAMARIUM BEHAVIOUR IN THE LEU PARR-1 CORES 1 t; » Muhammad Arshad* ! » ( « li { • i Reactor Physics Group Nuclear Engineering Division Pakistan Institute of Nuclear Science & Technology P. O. Nilore, Islamabad. October, 1994 PINSTECH- STUDY OF XENON AND SAMARIUM BEHAVIOUR IN THE LEU PARR-1 GORES Reactor Physics Group Nuclear Engineering Division Pakistan Institute of Nuclear Science and Technology P. 0. Nilore, Islamabad * Present address Institute for Nuclear Power P.O. Box 3140 Islamabad October, 1994 In order to study behaviour of important fission product poisons, i.e. xenon and samarium, in PARR-1 after power upgradation and conversion to low enriched uranium (LEU) fuel, typical PARR-1 cores have been analysed using various models. It is found that negative reactivity due to equilibrium xenon increases when the reactor power is increased from 5 to 9 or 10 MW. However, the build-up of post-shutdown xenon is more pronounced at upgraded power. Thus at 10 MW the reactor will be poisoned out more quickly compared with 5 MW and remain so for a longer duration. As a result the time available for restarting the reactor after an unscheduled shutdown will be reduced and once the reactor is poisoned out the restart will be possible after a much longer time. 1. INTRODUCTION 1 2. THEORY 2 2.1 Build-up and Decay of Xenon 2 2.2 Build-up of Samarium 3 3. RESULTS AND DISCUSSION 5 3.1 Build-up of Xenon After Start-up 5 3.2 Equilibrium. Xenon Reactivity 6 3.3 Xenon Build-up after Reactor Shutdown 7 4.
  • BNL-79513-2007-CP Standard Atomic Weights Tables 2007 Abridged To

    BNL-79513-2007-CP Standard Atomic Weights Tables 2007 Abridged To

    BNL-79513-2007-CP Standard Atomic Weights Tables 2007 Abridged to Four and Five Significant Figures Norman E. Holden Energy Sciences & Technology Department National Nuclear Data Center Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 www.bnl.gov Prepared for the 44th IUPAC General Assembly, in Torino, Italy August 2007 Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author’s permission. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.
  • The Elements.Pdf

    The Elements.Pdf

    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
  • Atomic Weights of the Elements 2011 (IUPAC Technical Report)*

    Atomic Weights of the Elements 2011 (IUPAC Technical Report)*

    Pure Appl. Chem., Vol. 85, No. 5, pp. 1047–1078, 2013. http://dx.doi.org/10.1351/PAC-REP-13-03-02 © 2013 IUPAC, Publication date (Web): 29 April 2013 Atomic weights of the elements 2011 (IUPAC Technical Report)* Michael E. Wieser1,‡, Norman Holden2, Tyler B. Coplen3, John K. Böhlke3, Michael Berglund4, Willi A. Brand5, Paul De Bièvre6, Manfred Gröning7, Robert D. Loss8, Juris Meija9, Takafumi Hirata10, Thomas Prohaska11, Ronny Schoenberg12, Glenda O’Connor13, Thomas Walczyk14, Shige Yoneda15, and Xiang-Kun Zhu16 1Department of Physics and Astronomy, University of Calgary, Calgary, Canada; 2Brookhaven National Laboratory, Upton, NY, USA; 3U.S. Geological Survey, Reston, VA, USA; 4Institute for Reference Materials and Measurements, Geel, Belgium; 5Max Planck Institute for Biogeochemistry, Jena, Germany; 6Independent Consultant on MiC, Belgium; 7International Atomic Energy Agency, Seibersdorf, Austria; 8Department of Applied Physics, Curtin University of Technology, Perth, Australia; 9National Research Council of Canada, Ottawa, Canada; 10Kyoto University, Kyoto, Japan; 11Department of Chemistry, University of Natural Resources and Applied Life Sciences, Vienna, Austria; 12Institute for Geosciences, University of Tübingen, Tübingen, Germany; 13New Brunswick Laboratory, Argonne, IL, USA; 14Department of Chemistry (Science) and Department of Biochemistry (Medicine), National University of Singapore (NUS), Singapore; 15National Museum of Nature and Science, Tokyo, Japan; 16Chinese Academy of Geological Sciences, Beijing, China Abstract: The biennial review of atomic-weight determinations and other cognate data has resulted in changes for the standard atomic weights of five elements. The atomic weight of bromine has changed from 79.904(1) to the interval [79.901, 79.907], germanium from 72.63(1) to 72.630(8), indium from 114.818(3) to 114.818(1), magnesium from 24.3050(6) to the interval [24.304, 24.307], and mercury from 200.59(2) to 200.592(3).
  • Zero Field Magnetic Properties of Gadolinium, Terbium and Samarium" (1960)

    Zero Field Magnetic Properties of Gadolinium, Terbium and Samarium" (1960)

    Ames Laboratory Technical Reports Ames Laboratory 11-1960 Zero field am gnetic properties of gadolinium, terbium and samarium Emma Daniels Hill Iowa State University F. H. Spedding Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_isreports Part of the Metallurgy Commons Recommended Citation Hill, Emma Daniels and Spedding, F. H., "Zero field magnetic properties of gadolinium, terbium and samarium" (1960). Ames Laboratory Technical Reports. 37. http://lib.dr.iastate.edu/ameslab_isreports/37 This Report is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Zero field am gnetic properties of gadolinium, terbium and samarium Abstract The utualm inductance due to the presence of the sample in a coaxial, cylindrically wound inductance coil, has been observed for gadolinium, terbium and samarium in fields of a few oersteds over the temperature ranges 78 - 310°K, 78 - 235°K and 4.2 - l50°K. This mutual inductance might be referred to as an apparent susceptibility although a direct relationship between this apparent susceptibility and a static susceptibility is neither obvious nor presently calculable. Disciplines Metallurgy This report is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/ameslab_isreports/37 : . : : .: . ·: : ,: . .: .• ·. .: : . : ·. : / I S-333 ZERO FIELD MAGNETIC PROPERTIES OF GADOLINIUM, TERBIUM AND SAMARIUM By Emma Daniels Hill F. H. Spedding November 1960 Ames Laboratory Iowa State University Ames, Iowa I : ., .
  • John's Corner

    John's Corner

    www.natureswayresources.com JOHN’S CORNER: MINERALS - The Elements and What They Do (Part 35) by John Ferguson 57) Lanthanum (La) Lanthanum is the first element of a group that we call the "Rare Earth" elements or "Lanthanides". If one looks at the Periodic table below, notice the two rows at the bottom where they are grouped together as they have almost identical chemical properties. However, they have very different magnetic properties. 1 www.natureswayresources.com Lanthanum is found in igneous rocks at 30 ppm, shale at 20 ppm, and very little in sandstone or limestone. Soils average around 30 ppm, and very little are found in fresh or seawater. However, marine plants can have 10 ppm. Most of the rare earth elements are not rare in nature but often occur together in various minerals and were hard to separate (hence the name "rare"). Lighter flints are alloys of iron (Fe), lanthanum (La), cerium (Ce), and small amounts of praseodymium (Pr) and neodymium (Nd). Rare earth elements when oxidized are very heat-resistant and glow brightly when hot; thus, they are used in lantern mantles heated by burning gas. Lanthanum's most common electrical or oxidation state is +3 (as are most of the other rare earths). Lanthanum is often found in igneous rocks and in phosphorites used to produce fertilizers. It is used to produce colored glass and electronic components. Sandy soils have the least of this element with loamy soils the most. Organic matter has a high capacity to bind this element to levels 10X that of surrounding soil.
  • Preparation of Rare Earth Metals F

    Preparation of Rare Earth Metals F

    Ames Laboratory ISC Technical Reports Ames Laboratory 6-1951 Preparation of rare earth metals F. H. Spedding Iowa State College William J. McGinnis Iowa State College Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_iscreports Part of the Chemistry Commons Recommended Citation Spedding, F. H. and McGinnis, William J., "Preparation of rare earth metals" (1951). Ames Laboratory ISC Technical Reports. 22. http://lib.dr.iastate.edu/ameslab_iscreports/22 This Report is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory ISC Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Preparation of rare earth metals Abstract The production of over 400 grams of pure gadolinium metal by reduction of the anhydrous chloride by calcium in tantalum vessels is described; yields were over 97%. The use of the same techniques in an attempt to prepare yttrium metal were partially successful. Keywords Ames Laboratory Disciplines Chemistry This report is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/ameslab_iscreports/22 Iowo... 5C ltL zsc- llf'( UNITED STATES ATOMIC ENERGY COMMISSION I ISC-149 PREPARATION OF RARE EARTH METALS By F. H. Spedding William J. McGinnis - ( .. ) ~).:. June 1951 ABSTRACT The production of over 400 grams of pure gadolinium metal by reduction of the anhydrous chloride by calcium in tantalum vessels is described; yields were over 97%. The use of the same techniques in an attempt to prepare yttrium metal were partially successful.