Category Theory in TQFT

Total Page:16

File Type:pdf, Size:1020Kb

Category Theory in TQFT Category theory in TQFT Ethan Lake October 30, 2016 These notes are a summary of some of the aspects of category theory that play an important role in topological field theory, topological quantum computation, and so on. They follow a series of talks I gave during the spring of 2016 as part of a study group on category theory. At present, they're about 30% typed up | I may or may not come back to finish them up in the future. 1 Prerequisites from category theory 1.1 Monoidal categories and functors The program of \categorization" essentially consists of replacing equals signs by isomor- phisms. A category is a categorization of a set, an abelian category is a categorization of an abelian group, and so on. The most fundamental class of categories for us are monoidal categories, which are categorizations of monoids (recall that a monoid is a set with an associative binary operation). More precisely: Definition 1. A monoidal category is a tuple (C; ⊗; a; 1; ι) where C is an Abelian category, ⊗ : C × C ! C is a bifunctor which provides the binary operation on C, a :(− ⊗ −) ⊗ − ! − ⊗ (− ⊗ −) is a natural isomorphism called the associator, 1 is the unit object in C, and ι is an isomorphism ι : 1 ⊗ 1 ! 1. We require this data to satisfy two axioms: a) The maps R : X ⊗ 1 ! X and L : 1 ⊗ X ! X are tensor autoequivalences of C. b) The pentagon identity is satisfied. Of these, the pentagon axiom is far more important (and we won't really worry about either 1 or ι at all). A monoidal functor is a functor that preserves the monoidal structure of the categories it maps between. More precisely, a monoidal functor is a pair (F; α) with F : C!D a functor between monoidal categories C and D, and α a natural transformation (morphism of functors) that gives the tensor structure of F : αXY : F (X) ⊗D F (Y ) ! F (X ⊗C Y ): (1) 1.2 Deligne's tensor product Deligne's tensor product is a way to \put two topological phases on top of each other" which will be very useful for us later on, and which we might as well define as part of this prerequisites section. Throughout, we let C and D be two finite abelian category, as usual over some field k. 1 Definition 2. Deligne's tensor product is a bifunctor : C × D ! C D :(X; Y ) 7! X Y (2) which is universal for functors assigning to every k-linear abelian category E the category of right exact in both variables bilinear bifunctors C × D ! E. This might seem a little cryptic at first, but it's actually pretty simple. The universal- ity condition for means what it always does { is the \simplest" right exact bilinear bifunctor, meaning that all other right exact bifunctors factor through it. That is, if B is some other right exact bilinear bifunctor B : C × D ! E, then there exists a unique right exact bifunctor B : C D!E satisfying B ◦ = B. A silly analogy: If the set of all right exact bilinear bifunctors from C × D to E is the set of all ways to get from the countryside into a castle with a big moat, then is path the castle's drawbridge. Every path from the countryside into the castle must factor through the drawbridge, and so the drawbridge is `universal' for the category of paths leading into the castle. Example 1. Physically, we can interpret C D as a topological phase described by C \stacked on top of" one described by D. In particular, if we stack C on top of Cop, we in op some way \average" over the difference between X ⊗ Y and Y ⊗ X, and so C C = Z(C), where Z(C) is the center of C (which also corresponds to the quasiparticle excitations of C). This will be made more precise later on. 2 Tensor categories 2.1 Rigidity Before we define tensor categories, we need to define the notion of dual objects. This is done in pretty mucht the way we'd expect. Let C be a monoidal category, and X 2 C. We say ∗ ∗ that X is a left dual of X if there exist morphisms dX : X ⊗ X ! 1 (the death morphism) ∗ and bX : 1 ! X ⊗ X (the birth morphism) such that the maps X ! (X ⊗ X∗) ⊗ X ! X ⊗ (X∗ ⊗ X) ! X; (3) X∗ ! X∗ ⊗ (X ⊗ X∗) ! (X∗ ⊗ X) ⊗ X∗ ! X∗ are identity morphisms. This is equivalent to saying that if X has a left dual, we can remove vertical s-shaped wiggles of an X line in any diagram. The notion of a right dual ∗X is defined in the same way, but with the roles of the birth and death morphisms interchanged. The category C is called rigid if each of its objects have both left and right duals. A technical but important point: we may not always have X∗∗ = X. This is the case ∗∗ in Veck and Repk(G), but not in general. The isomorphism between X and X is called ∗∗ a pivotal structure on C, and we write it as pX : X ! X , which is natural in X and satisfies pX⊗Y = pX ⊗ pY . We need to incorporate the pivotal structure into our definition of quantum traces as the factors picked up by killing off closed bubbles in the graph. We are then led to define the pivotal trace of a morphism (not just of an object) by 1 ptrp(f : X ! X) = bX∗ (pxf ⊗ idX∗ )dX 2 EndC( ) (4) In particular, the quantum dimensions familiar from string-net diagrammatics are defined through the pivotal trance of the identity morphism: dX = ptrp(idX ) where the piv- otal structure is chosen in a canonical way so that the pivotal dimension agrees with the Frobenius-Perron dimension (to be discussed later). 2 2.2 Tensor categories, fusion categories, and tensor functors We start with some definitions. Definition 3. A multitensor category is a k-linear abelian rigid monoidal category C, where the tensor product bifunctor is bilinear on morphisms. If the unit object is simple (i.e., if EndC(1) ' k), then C is just a tensor category. If C is finite semisimple (multi)tensor category, we call C a (multi)fusion category. If we drop the assumption of rigidity, then C is called a multiring category. We will essentially always specialize to fusion categories. Some easy examples are k−Vec (fusion), Repk(G) (fusion if char k = 0 or gcd(char k; jGj) = 1), VecG, etc. One very general example of multitensor categories comes from the notion of a groupoid: Definition 4. A groupoid G is a category where all morhpisms are isomorphisms { that is, G consists of a set S of objects of G and a set G of morphisms of G, the image and preimage maps, the composition map, the unit morphism map, and the inversion map. In particular, any group can be made into a groupoid: this groupoid only has one object, and the endomorphisms of that object are given by the group G. Groupoids also provide the most general examples of multi-tensor categories. Example 2. Let G be a groupoid with a set of objects S (with S finite), and let C(G) be the category of finite dimensional vector spaces graded by the morphisms of G, which we will take to be a finite group. The objects in C(G) can thus be decomposed as S 3 X = ⊕g2GXg. The tensor product is defined naturally by M (X ⊗ Y )g = Xh ⊗ Yk (5) fh;kjhk=gg The unit object in C(G) also decomposes in a semisimple way as 1 = ⊕s2S1s. We thus see that C(G) is a multi-tensor (rather than just tensor) category. In particular, if we take S = Zn, then C(G) is a category based on \matrices of vector spaces", and is denoted by Matn(Vec). Note that this is not the same as Matn(VecG)! To get Matn(VecG), we need to consider a slightly more general scenario. Let fG^ig be the set of isomorphism classes of a groupoid G, and let Gi = Aut(gi) for some representative g of G^ . Then C(G) is (monoidally equivalent to) L Mat (Vec ). i i i jG^ij Gi Just as the definition of monoidal categories led us to define monoidal functors, tensor categories prompt us to define functors between them, which are aptly named tensor func- tors. A tensor functor isn't actually a functor (bad language!) { rather, it's a functor + natural isomorphism pair. The formal definition is as follows: Definition 5. Let F : C!D be a functor, and JX;Y : F (X) ⊗D F (Y ) ! F (X ⊗C Y ) be a natural isomorphism detailing the tensor structure of F . The pair (F; J) is called a quasi-tensor functor if F is exact (i.e., both left exact and right exact), and if F (1C) = 1D. If furthermore (F; J) satisfies the monoidal structure axiom (with the associators in C and D), then (F; J) is just called a tensor functor. There are tons of examples of (quasi)-tensor functors. They include essentially all forgetful functors: indeed, if H ⊂ G is a subgroup, then the canonical forgetful functor Rep(G) ! Rep(H) is tensor. Similarly, if f : H ! G is a group homomorphism, then the 3 pullback functor f ∗ : Rep(G) ! Rep(H) is tensor (the canonical forgetful functor is an example of this when f : H,! G is the inclusion). As we talked about earlier, if F is the !1 !2 identity functor, then there exists no tensor functor F : CG !CG if !1 and !2 are not co- homologous, while if they are cohomologous the tensor functors are classified by H2(G; k×).
Recommended publications
  • Groups and Categories
    \chap04" 2009/2/27 i i page 65 i i 4 GROUPS AND CATEGORIES This chapter is devoted to some of the various connections between groups and categories. If you already know the basic group theory covered here, then this will give you some insight into the categorical constructions we have learned so far; and if you do not know it yet, then you will learn it now as an application of category theory. We will focus on three different aspects of the relationship between categories and groups: 1. groups in a category, 2. the category of groups, 3. groups as categories. 4.1 Groups in a category As we have already seen, the notion of a group arises as an abstraction of the automorphisms of an object. In a specific, concrete case, a group G may thus consist of certain arrows g : X ! X for some object X in a category C, G ⊆ HomC(X; X) But the abstract group concept can also be described directly as an object in a category, equipped with a certain structure. This more subtle notion of a \group in a category" also proves to be quite useful. Let C be a category with finite products. The notion of a group in C essentially generalizes the usual notion of a group in Sets. Definition 4.1. A group in C consists of objects and arrows as so: m i G × G - G G 6 u 1 i i i i \chap04" 2009/2/27 i i page 66 66 GROUPSANDCATEGORIES i i satisfying the following conditions: 1.
    [Show full text]
  • Monoidal Functors, Equivalence of Monoidal Categories
    14 1.4. Monoidal functors, equivalence of monoidal categories. As we have explained, monoidal categories are a categorification of monoids. Now we pass to categorification of morphisms between monoids, namely monoidal functors. 0 0 0 0 0 Definition 1.4.1. Let (C; ⊗; 1; a; ι) and (C ; ⊗ ; 1 ; a ; ι ) be two monoidal 0 categories. A monoidal functor from C to C is a pair (F; J) where 0 0 ∼ F : C ! C is a functor, and J = fJX;Y : F (X) ⊗ F (Y ) −! F (X ⊗ Y )jX; Y 2 Cg is a natural isomorphism, such that F (1) is isomorphic 0 to 1 . and the diagram (1.4.1) a0 (F (X) ⊗0 F (Y )) ⊗0 F (Z) −−F− (X−)−;F− (Y− )−;F− (Z!) F (X) ⊗0 (F (Y ) ⊗0 F (Z)) ? ? J ⊗0Id ? Id ⊗0J ? X;Y F (Z) y F (X) Y;Z y F (X ⊗ Y ) ⊗0 F (Z) F (X) ⊗0 F (Y ⊗ Z) ? ? J ? J ? X⊗Y;Z y X;Y ⊗Z y F (aX;Y;Z ) F ((X ⊗ Y ) ⊗ Z) −−−−−−! F (X ⊗ (Y ⊗ Z)) is commutative for all X; Y; Z 2 C (“the monoidal structure axiom”). A monoidal functor F is said to be an equivalence of monoidal cate­ gories if it is an equivalence of ordinary categories. Remark 1.4.2. It is important to stress that, as seen from this defini­ tion, a monoidal functor is not just a functor between monoidal cate­ gories, but a functor with an additional structure (the isomorphism J) satisfying a certain equation (the monoidal structure axiom).
    [Show full text]
  • Arxiv:1911.00818V2 [Math.CT] 12 Jul 2021 Oc Eerhlbrtr,Teus Oenet Rcrei M Carnegie Or Shou Government, Express and U.S
    A PRACTICAL TYPE THEORY FOR SYMMETRIC MONOIDAL CATEGORIES MICHAEL SHULMAN Abstract. We give a natural-deduction-style type theory for symmetric monoidal cat- egories whose judgmental structure directly represents morphisms with tensor products in their codomain as well as their domain. The syntax is inspired by Sweedler notation for coalgebras, with variables associated to types in the domain and terms associated to types in the codomain, allowing types to be treated informally like “sets with elements” subject to global linearity-like restrictions. We illustrate the usefulness of this type the- ory with various applications to duality, traces, Frobenius monoids, and (weak) Hopf monoids. Contents 1 Introduction 1 2 Props 9 3 On the admissibility of structural rules 11 4 The type theory for free props 14 5 Constructing free props from type theory 24 6 Presentations of props 29 7 Examples 31 1. Introduction 1.1. Type theories for monoidal categories. Type theories are a powerful tool for reasoning about categorical structures. This is best-known in the case of the internal language of a topos, which is a higher-order intuitionistic logic. But there are also weaker type theories that correspond to less highly-structured categories, such as regular logic for arXiv:1911.00818v2 [math.CT] 12 Jul 2021 regular categories, simply typed λ-calculus for cartesian closed categories, typed algebraic theories for categories with finite products, and so on (a good overview can be found in [Joh02, Part D]). This material is based on research sponsored by The United States Air Force Research Laboratory under agreement number FA9550-15-1-0053.
    [Show full text]
  • Graded Monoidal Categories Compositio Mathematica, Tome 28, No 3 (1974), P
    COMPOSITIO MATHEMATICA A. FRÖHLICH C. T. C. WALL Graded monoidal categories Compositio Mathematica, tome 28, no 3 (1974), p. 229-285 <http://www.numdam.org/item?id=CM_1974__28_3_229_0> © Foundation Compositio Mathematica, 1974, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions géné- rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 28, Fasc. 3, 1974, pag. 229-285 Noordhoff International Publishing Printed in the Netherlands GRADED MONOIDAL CATEGORIES A. Fröhlich and C. T. C. Wall Introduction This paper grew out of our joint work on the Brauer group. Our idea was to define the Brauer group in an equivariant situation, also a ’twisted’ version incorporating anti-automorphisms, and give exact sequences for computing it. The theory related to representations of groups by auto- morphisms of various algebraic structures [4], [5], on one hand, and to the theory of quadratic and Hermitian forms (see particularly [17]) on the other. In developing these ideas, we observed that many of the arguments could be developed in a purely abstract setting, and that this clarified the nature of the proofs. The purpose of this paper is to present this setting, together with such theorems as need no further structure. To help motivate the reader, and fix ideas somewhat in tracing paths through the abstractions which follow, we list some of the examples to which the theory will be applied.
    [Show full text]
  • Note on Monoidal Localisation
    BULL. AUSTRAL. MATH. SOC. '8D05« I8DI0' I8DI5 VOL. 8 (1973), 1-16. Note on monoidal localisation Brian Day If a class Z of morphisms in a monoidal category A is closed under tensoring with the objects of A then the category- obtained by inverting the morphisms in Z is monoidal. We note the immediate properties of this induced structure. The main application describes monoidal completions in terms of the ordinary category completions introduced by Applegate and Tierney. This application in turn suggests a "change-of- universe" procedure for category theory based on a given monoidal closed category. Several features of this procedure are discussed. 0. Introduction The first step in this article is to apply a reflection theorem ([5], Theorem 2.1) for closed categories to the convolution structure of closed functor categories described in [3]. This combination is used to discuss monoidal localisation in the following sense. If a class Z of morphisms in a symmetric monoidal category 8 has the property that e € Z implies 1D ® e € Z for all objects B € B then the category 8, of fractions of 8 with respect to Z (as constructed in [fl]. Chapter l) is a monoidal category. Moreover, the projection functor P : 8 -* 8, then solves the corresponding universal problem in terms of monoidal functors; hence such a class Z is called monoidal. To each class Z of morphisms in a monoidal category 8 there corresponds a monoidal interior Z , namely the largest monoidal class Received 18 July 1972. The research here reported was supported in part by a grant from the National Science Foundation' of the USA.
    [Show full text]
  • A Survey of Graphical Languages for Monoidal Categories
    5 Traced categories 32 5.1 Righttracedcategories . 33 5.2 Planartracedcategories. 34 5.3 Sphericaltracedcategories . 35 A survey of graphical languages for monoidal 5.4 Spacialtracedcategories . 36 categories 5.5 Braidedtracedcategories . 36 5.6 Balancedtracedcategories . 39 5.7 Symmetrictracedcategories . 40 Peter Selinger 6 Products, coproducts, and biproducts 41 Dalhousie University 6.1 Products................................. 41 6.2 Coproducts ............................... 43 6.3 Biproducts................................ 44 Abstract 6.4 Traced product, coproduct, and biproduct categories . ........ 45 This article is intended as a reference guide to various notions of monoidal cat- 6.5 Uniformityandregulartrees . 47 egories and their associated string diagrams. It is hoped that this will be useful not 6.6 Cartesiancenter............................. 48 just to mathematicians, but also to physicists, computer scientists, and others who use diagrammatic reasoning. We have opted for a somewhat informal treatment of 7 Dagger categories 48 topological notions, and have omitted most proofs. Nevertheless, the exposition 7.1 Daggermonoidalcategories . 50 is sufficiently detailed to make it clear what is presently known, and to serve as 7.2 Otherprogressivedaggermonoidalnotions . ... 50 a starting place for more in-depth study. Where possible, we provide pointers to 7.3 Daggerpivotalcategories. 51 more rigorous treatments in the literature. Where we include results that have only 7.4 Otherdaggerpivotalnotions . 54 been proved in special cases, we indicate this in the form of caveats. 7.5 Daggertracedcategories . 55 7.6 Daggerbiproducts............................ 56 Contents 8 Bicategories 57 1 Introduction 2 9 Beyond a single tensor product 58 2 Categories 5 10 Summary 59 3 Monoidal categories 8 3.1 (Planar)monoidalcategories . 9 1 Introduction 3.2 Spacialmonoidalcategories .
    [Show full text]
  • Tensor Products of Finitely Presented Functors 3
    TENSOR PRODUCTS OF FINITELY PRESENTED FUNCTORS MARTIN BIES AND SEBASTIAN POSUR Abstract. We study right exact tensor products on the category of finitely presented functors. As our main technical tool, we use a multilinear version of the universal property of so-called Freyd categories. Furthermore, we compare our constructions with the Day convolution of arbitrary functors. Our results are stated in a constructive way and give a unified approach for the implementation of tensor products in various contexts. Contents 1. Introduction 2 2. Freyd categories and their universal property 3 2.1. Preliminaries: Freyd categories 3 2.2. Multilinear functors 4 2.3. The multilinear 2-categorical universal property of Freyd categories 5 3. Right exact monoidal structures on Freyd categories 9 3.1. Monoidal structures on Freyd categories 9 3.2. F. p. promonoidal structures on additive categories 12 3.3. From f. p. promonoidal structures to right exact monoidal structures 14 4. Connection with Day convolution 17 4.1. Introduction to Day convolution 17 4.2. Day convolution of finitely presented functors 18 5. Applications and examples 20 5.1. Examples in the category of finitely presented modules 20 5.2. Monoidal structures of iterated Freyd categories 21 arXiv:1909.00172v1 [math.CT] 31 Aug 2019 5.3. Free abelian categories 21 5.4. Implementations of monoidal structures 22 References 27 2010 Mathematics Subject Classification. 18E10, 18E05, 18A25, Key words and phrases. Freyd category, finitely presented functor, computable abelian category. The work of M. Bies is supported by the Wiener-Anspach foundation. M. Bies thanks the University of Siegen and the GAP Singular Meeting and School for hospitality during this project.
    [Show full text]
  • Presentably Symmetric Monoidal Infinity-Categories Are Represented
    PRESENTABLY SYMMETRIC MONOIDAL 1-CATEGORIES ARE REPRESENTED BY SYMMETRIC MONOIDAL MODEL CATEGORIES THOMAS NIKOLAUS AND STEFFEN SAGAVE Abstract. We prove the theorem stated in the title. More precisely, we show the stronger statement that every symmetric monoidal left adjoint functor be- tween presentably symmetric monoidal 1-categories is represented by a strong symmetric monoidal left Quillen functor between simplicial, combinatorial and left proper symmetric monoidal model categories. 1. Introduction The theory of 1-categories has in recent years become a powerful tool for study- ing questions in homotopy theory and other branches of mathematics. It comple- ments the older theory of Quillen model categories, and in many application the interplay between the two concepts turns out to be crucial. In an important class of examples, the relation between 1-categories and model categories is by now com- pletely understood, thanks to work of Lurie [Lur09, Appendix A.3] and Joyal [Joy08] based on earlier results by Dugger [Dug01a]: On the one hand, every combinatorial simplicial model category M has an underlying 1-category M1. This 1-category M1 is presentable, i.e., it satisfies the set theoretic smallness condition of being accessible and has all 1-categorical colimits and limits. On the other hand, every presentable 1-category is equivalent to the 1-category associated with a combi- natorial simplicial model category [Lur09, Proposition A.3.7.6]. The presentability assumption is essential here since a sub 1-category of a presentable 1-category is in general not presentable, and does not come from a model category. In many applications one studies model categories M equipped with a symmet- ric monoidal product that is compatible with the model structure.
    [Show full text]
  • Category Theory Course
    Category Theory Course John Baez September 3, 2019 1 Contents 1 Category Theory: 4 1.1 Definition of a Category....................... 5 1.1.1 Categories of mathematical objects............. 5 1.1.2 Categories as mathematical objects............ 6 1.2 Doing Mathematics inside a Category............... 10 1.3 Limits and Colimits.......................... 11 1.3.1 Products............................ 11 1.3.2 Coproducts.......................... 14 1.4 General Limits and Colimits..................... 15 2 Equalizers, Coequalizers, Pullbacks, and Pushouts (Week 3) 16 2.1 Equalizers............................... 16 2.2 Coequalizers.............................. 18 2.3 Pullbacks................................ 19 2.4 Pullbacks and Pushouts....................... 20 2.5 Limits for all finite diagrams.................... 21 3 Week 4 22 3.1 Mathematics Between Categories.................. 22 3.2 Natural Transformations....................... 25 4 Maps Between Categories 28 4.1 Natural Transformations....................... 28 4.1.1 Examples of natural transformations........... 28 4.2 Equivalence of Categories...................... 28 4.3 Adjunctions.............................. 29 4.3.1 What are adjunctions?.................... 29 4.3.2 Examples of Adjunctions.................. 30 4.3.3 Diagonal Functor....................... 31 5 Diagrams in a Category as Functors 33 5.1 Units and Counits of Adjunctions................. 39 6 Cartesian Closed Categories 40 6.1 Evaluation and Coevaluation in Cartesian Closed Categories. 41 6.1.1 Internalizing Composition................. 42 6.2 Elements................................ 43 7 Week 9 43 7.1 Subobjects............................... 46 8 Symmetric Monoidal Categories 50 8.1 Guest lecture by Christina Osborne................ 50 8.1.1 What is a Monoidal Category?............... 50 8.1.2 Going back to the definition of a symmetric monoidal category.............................. 53 2 9 Week 10 54 9.1 The subobject classifier in Graph.................
    [Show full text]
  • Monoidal Categories and Monoidal Functors
    Monoidal Categories Equivalences between non-strict and strict monoidal categories Braided monoidal categories Monoidal Categories and Monoidal Functors Ramón González Rodríguez http://www.dma.uvigo.es/˜rgon/ Departamento de Matemática Aplicada II. Universidade de Vigo Red Nc-Alg: Escuela de investigación avanzada en Álgebra no Conmutativa Granada, 9-13 de noviembre de 2015 Ramón González Rodríguez Monoidal Categories and Monoidal Functors Monoidal Categories Equivalences between non-strict and strict monoidal categories Braided monoidal categories Outline 1 Monoidal Categories 2 Equivalences between non-strict and strict monoidal categories 3 Braided monoidal categories Ramón González Rodríguez Monoidal Categories and Monoidal Functors Monoidal Categories Equivalences between non-strict and strict monoidal categories Braided monoidal categories 1 Monoidal Categories 2 Equivalences between non-strict and strict monoidal categories 3 Braided monoidal categories Ramón González Rodríguez Monoidal Categories and Monoidal Functors Monoidal Categories Equivalences between non-strict and strict monoidal categories Braided monoidal categories Definition. A tensor functor on C is a functor ⊗ from C × C ! C. Note that this means that For any pair (V ; W ) 2 (C × C)0 we have an object V ⊗ W 2 C0. For any pair (f ; g) 2 (C × C)1 we have a morphism f ⊗ g 2 C1 such that s(f ⊗ g) = s(f ) ⊗ s(g); t(f ⊗ g) = t(f ) ⊗ t(g): If f 0, g 0 are morphisms in C such that s(f 0) = t(f ) and s(g 0) = t(g) we have (f 0 ⊗ g 0) ◦ (f ⊗ g) = ((f 0 ◦ f ) ⊗ (g 0 ◦ g)): idV ⊗W = idV ⊗ idW . Ramón González Rodríguez Monoidal Categories and Monoidal Functors Also, if f : V ! W is a morphism in C, − ⊗ f : − ⊗ V ) − ⊗ W and f ⊗ − : V ⊗ − ) W ⊗ − are natural transformations.
    [Show full text]
  • Basics of Monoidal Categories
    4 1. Monoidal categories 1.1. The definition of a monoidal category. A good way of think­ ing about category theory (which will be especially useful throughout these notes) is that category theory is a refinement (or “categorifica­ tion”) of ordinary algebra. In other words, there exists a dictionary between these two subjects, such that usual algebraic structures are recovered from the corresponding categorical structures by passing to the set of isomorphism classes of objects. For example, the notion of a (small) category is a categorification of the notion of a set. Similarly, abelian categories are a categorification 1 of abelian groups (which justifies the terminology). This dictionary goes surprisingly far, and many important construc­ tions below will come from an attempt to enter into it a categorical “translation” of an algebraic notion. In particular, the notion of a monoidal category is the categorification of the notion of a monoid. Recall that a monoid may be defined as a set C with an associative multiplication operation (x; y) ! x · y (i.e., a semigroup), with an 2 element 1 such that 1 = 1 and the maps 1·; ·1 : C ! C are bijections. It is easy to show that in a semigroup, the last condition is equivalent to the usual unit axiom 1 · x = x · 1 = x. As usual in category theory, to categorify the definition of a monoid, we should replace the equalities in the definition of a monoid (namely, 2 the associativity equation (xy)z = x(yz) and the equation 1 = 1) by isomorphisms satisfying some consistency properties, and the word “bijection” by the word “equivalence” (of categories).
    [Show full text]
  • Notes on Restricted Inverse Limits of Categories
    NOTES ON RESTRICTED INVERSE LIMITS OF CATEGORIES INNA ENTOVA AIZENBUD Abstract. We describe the framework for the notion of a restricted inverse limit of categories, with the main motivating example being the category of polynomial repre- GL GL sentations of the group ∞ = n≥0 n. This category is also known as the category of strict polynomial functors of finite degree, and it is the restricted inverse limit of the S categories of polynomial representations of GLn, n ≥ 0. This note is meant to serve as a reference for future work. 1. Introduction In this note, we discuss the notion of an inverse limit of an inverse sequence of categories and functors. Given a system of categories Ci (with i running through the set Z+) and functors Fi−1,i : Ci → Ci−1 for each i ≥ 1, we define the inverse limit category lim Ci to be the ←−i∈Z+ following category: Z • The objects are pairs ({Ci}i∈Z+ , {φi−1,i}i≥1) where Ci ∈ Ci for each i ∈ + and ∼ φi−1,i : Fi−1,i(Ci) → Ci−1 for any i ≥ 1. • A morphism f between two objects ({Ci}i∈Z+ , {φi−1,i}i≥1), ({Di}i∈Z+ , {ψi−1,i}i≥1) is a set of arrows {fi : Ci → Di}i∈Z+ satisfying some compatability conditions. This category is an inverse limit of the system ((Ci)i∈Z+ , (Fi−1,i)i≥1) in the (2, 1)-category of categories with functors and natural isomorphisms. It is easily seen (see Section 3) that if the original categories Ci were pre-additive (resp.
    [Show full text]