Optimization Coaching ∗ Optimizers Learn to Communicate with Programmers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Program Analysis and Optimization for Embedded Systems
Program Analysis and Optimization for Embedded Systems Mike Jochen and Amie Souter jochen, souter ¡ @cis.udel.edu Computer and Information Sciences University of Delaware Newark, DE 19716 (302) 831-6339 1 Introduction ¢ have low cost A proliferation in use of embedded systems is giving cause ¢ have low power consumption for a rethinking of traditional methods and effects of pro- ¢ require as little physical space as possible gram optimization and how these methods and optimizations can be adapted for these highly specialized systems. This pa- ¢ meet rigid time constraints for computation completion per attempts to raise some of the issues unique to program These requirements place constraints on the underlying analysis and optimization for embedded system design and architecture’s design, which together affect compiler design to address some of the solutions that have been proposed to and program optimization techniques. Each of these crite- address these specialized issues. ria must be balanced against the other, as each will have an This paper is organized as follows: section 2 provides effect on the other (e.g. making a system smaller and faster pertinent background information on embedded systems, de- will typically increase its cost and power consumption). A lineating the special needs and problems inherent with em- typical embedded system, as illustrated in figure 1, consists bedded system design; section 3 addresses one such inherent of a processor core, a program ROM (Read Only Memory), problem, namely limited space for program code; section 4 RAM (Random Access Memory), and an ASIC (Applica- discusses current approaches and open issues for code min- tion Specific Integrated Circuit). -
A Deep Dive Into the Interprocedural Optimization Infrastructure
Stes Bais [email protected] Kut el [email protected] Shi Oku [email protected] A Deep Dive into the Luf Cen Interprocedural [email protected] Hid Ue Optimization Infrastructure [email protected] Johs Dor [email protected] Outline ● What is IPO? Why is it? ● Introduction of IPO passes in LLVM ● Inlining ● Attributor What is IPO? What is IPO? ● Pass Kind in LLVM ○ Immutable pass Intraprocedural ○ Loop pass ○ Function pass ○ Call graph SCC pass ○ Module pass Interprocedural IPO considers more than one function at a time Call Graph ● Node : functions ● Edge : from caller to callee A void A() { B(); C(); } void B() { C(); } void C() { ... B C } Call Graph SCC ● SCC stands for “Strongly Connected Component” A D G H I B C E F Call Graph SCC ● SCC stands for “Strongly Connected Component” A D G H I B C E F Passes In LLVM IPO passes in LLVM ● Where ○ Almost all IPO passes are under llvm/lib/Transforms/IPO Categorization of IPO passes ● Inliner ○ AlwaysInliner, Inliner, InlineAdvisor, ... ● Propagation between caller and callee ○ Attributor, IP-SCCP, InferFunctionAttrs, ArgumentPromotion, DeadArgumentElimination, ... ● Linkage and Globals ○ GlobalDCE, GlobalOpt, GlobalSplit, ConstantMerge, ... ● Others ○ MergeFunction, OpenMPOpt, HotColdSplitting, Devirtualization... 13 Why is IPO? ● Inliner ○ Specialize the function with call site arguments ○ Expose local optimization opportunities ○ Save jumps, register stores/loads (calling convention) ○ Improve instruction locality ● Propagation between caller and callee ○ Other passes would benefit from the propagated information ● Linkage -
Handout – Dataflow Optimizations Assignment
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.035, Spring 2013 Handout – Dataflow Optimizations Assignment Tuesday, Mar 19 DUE: Thursday, Apr 4, 9:00 pm For this part of the project, you will add dataflow optimizations to your compiler. At the very least, you must implement global common subexpression elimination. The other optimizations listed below are optional. You may also wait until the next project to implement them if you are going to; there is no requirement to implement other dataflow optimizations in this project. We list them here as suggestions since past winners of the compiler derby typically implement each of these optimizations in some form. You are free to implement any other optimizations you wish. Note that you will be implementing register allocation for the next project, so you don’t need to concern yourself with it now. Global CSE (Common Subexpression Elimination): Identification and elimination of redun- dant expressions using the algorithm described in lecture (based on available-expression anal- ysis). See §8.3 and §13.1 of the Whale book, §10.6 and §10.7 in the Dragon book, and §17.2 in the Tiger book. Global Constant Propagation and Folding: Compile-time interpretation of expressions whose operands are compile time constants. See the algorithm described in §12.1 of the Whale book. Global Copy Propagation: Given a “copy” assignment like x = y , replace uses of x by y when legal (the use must be reached by only this def, and there must be no modification of y on any path from the def to the use). -
Comparative Studies of Programming Languages; Course Lecture Notes
Comparative Studies of Programming Languages, COMP6411 Lecture Notes, Revision 1.9 Joey Paquet Serguei A. Mokhov (Eds.) August 5, 2010 arXiv:1007.2123v6 [cs.PL] 4 Aug 2010 2 Preface Lecture notes for the Comparative Studies of Programming Languages course, COMP6411, taught at the Department of Computer Science and Software Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal, QC, Canada. These notes include a compiled book of primarily related articles from the Wikipedia, the Free Encyclopedia [24], as well as Comparative Programming Languages book [7] and other resources, including our own. The original notes were compiled by Dr. Paquet [14] 3 4 Contents 1 Brief History and Genealogy of Programming Languages 7 1.1 Introduction . 7 1.1.1 Subreferences . 7 1.2 History . 7 1.2.1 Pre-computer era . 7 1.2.2 Subreferences . 8 1.2.3 Early computer era . 8 1.2.4 Subreferences . 8 1.2.5 Modern/Structured programming languages . 9 1.3 References . 19 2 Programming Paradigms 21 2.1 Introduction . 21 2.2 History . 21 2.2.1 Low-level: binary, assembly . 21 2.2.2 Procedural programming . 22 2.2.3 Object-oriented programming . 23 2.2.4 Declarative programming . 27 3 Program Evaluation 33 3.1 Program analysis and translation phases . 33 3.1.1 Front end . 33 3.1.2 Back end . 34 3.2 Compilation vs. interpretation . 34 3.2.1 Compilation . 34 3.2.2 Interpretation . 36 3.2.3 Subreferences . 37 3.3 Type System . 38 3.3.1 Type checking . 38 3.4 Memory management . -
Introduction Inline Expansion
CSc 553 Principles of Compilation Introduction 29 : Optimization IV Department of Computer Science University of Arizona [email protected] Copyright c 2011 Christian Collberg Inline Expansion I The most important and popular inter-procedural optimization is inline expansion, that is replacing the call of a procedure Inline Expansion with the procedure’s body. Why would you want to perform inlining? There are several reasons: 1 There are a number of things that happen when a procedure call is made: 1 evaluate the arguments of the call, 2 push the arguments onto the stack or move them to argument transfer registers, 3 save registers that contain live values and that might be trashed by the called routine, 4 make the jump to the called routine, Inline Expansion II Inline Expansion III 1 continued.. 3 5 make the jump to the called routine, ... This is the result of programming with abstract data types. 6 set up an activation record, Hence, there is often very little opportunity for optimization. 7 execute the body of the called routine, However, when inlining is performed on a sequence of 8 return back to the callee, possibly returning a result, procedure calls, the code from the bodies of several procedures 9 deallocate the activation record. is combined, opening up a larger scope for optimization. 2 Many of these actions don’t have to be performed if we inline There are problems, of course. Obviously, in most cases the the callee in the caller, and hence much of the overhead size of the procedure call code will be less than the size of the associated with procedure calls is optimized away. -
PGI Compilers
USER'S GUIDE FOR X86-64 CPUS Version 2019 TABLE OF CONTENTS Preface............................................................................................................ xii Audience Description......................................................................................... xii Compatibility and Conformance to Standards............................................................xii Organization................................................................................................... xiii Hardware and Software Constraints.......................................................................xiv Conventions.................................................................................................... xiv Terms............................................................................................................ xv Related Publications.........................................................................................xvii Chapter 1. Getting Started.....................................................................................1 1.1. Overview................................................................................................... 1 1.2. Creating an Example..................................................................................... 2 1.3. Invoking the Command-level PGI Compilers......................................................... 2 1.3.1. Command-line Syntax...............................................................................2 1.3.2. Command-line Options............................................................................ -
Stochastic Program Optimization by Eric Schkufza, Rahul Sharma, and Alex Aiken
research highlights DOI:10.1145/2863701 Stochastic Program Optimization By Eric Schkufza, Rahul Sharma, and Alex Aiken Abstract Although the technique sacrifices completeness it pro- The optimization of short sequences of loop-free, fixed-point duces dramatic increases in the quality of the resulting code. assembly code sequences is an important problem in high- Figure 1 shows two versions of the Montgomery multiplica- performance computing. However, the competing constraints tion kernel used by the OpenSSL RSA encryption library. of transformation correctness and performance improve- Beginning from code compiled by llvm −O0 (116 lines, not ment often force even special purpose compilers to pro- shown), our prototype stochastic optimizer STOKE produces duce sub-optimal code. We show that by encoding these code (right) that is 16 lines shorter and 1.6 times faster than constraints as terms in a cost function, and using a Markov the code produced by gcc −O3 (left), and even slightly faster Chain Monte Carlo sampler to rapidly explore the space of than the expert handwritten assembly included in the all possible code sequences, we are able to generate aggres- OpenSSL repository. sively optimized versions of a given target code sequence. Beginning from binaries compiled by llvm −O0, we are able 2. RELATED WORK to produce provably correct code sequences that either Although techniques that preserve completeness are effec- match or outperform the code produced by gcc −O3, icc tive within certain domains, their general applicability −O3, and in some cases expert handwritten assembly. remains limited. The shortcomings are best highlighted in the context of the code sequence shown in Figure 1. -
Generalizing Loop-Invariant Code Motion in a Real-World Compiler
Imperial College London Department of Computing Generalizing loop-invariant code motion in a real-world compiler Author: Supervisor: Paul Colea Fabio Luporini Co-supervisor: Prof. Paul H. J. Kelly MEng Computing Individual Project June 2015 Abstract Motivated by the perpetual goal of automatically generating efficient code from high-level programming abstractions, compiler optimization has developed into an area of intense research. Apart from general-purpose transformations which are applicable to all or most programs, many highly domain-specific optimizations have also been developed. In this project, we extend such a domain-specific compiler optimization, initially described and implemented in the context of finite element analysis, to one that is suitable for arbitrary applications. Our optimization is a generalization of loop-invariant code motion, a technique which moves invariant statements out of program loops. The novelty of the transformation is due to its ability to avoid more redundant recomputation than normal code motion, at the cost of additional storage space. This project provides a theoretical description of the above technique which is fit for general programs, together with an implementation in LLVM, one of the most successful open-source compiler frameworks. We introduce a simple heuristic-driven profitability model which manages to successfully safeguard against potential performance regressions, at the cost of missing some speedup opportunities. We evaluate the functional correctness of our implementation using the comprehensive LLVM test suite, passing all of its 497 whole program tests. The results of our performance evaluation using the same set of tests reveal that generalized code motion is applicable to many programs, but that consistent performance gains depend on an accurate cost model. -
A Tiling Perspective for Register Optimization Fabrice Rastello, Sadayappan Ponnuswany, Duco Van Amstel
A Tiling Perspective for Register Optimization Fabrice Rastello, Sadayappan Ponnuswany, Duco van Amstel To cite this version: Fabrice Rastello, Sadayappan Ponnuswany, Duco van Amstel. A Tiling Perspective for Register Op- timization. [Research Report] RR-8541, Inria. 2014, pp.24. hal-00998915 HAL Id: hal-00998915 https://hal.inria.fr/hal-00998915 Submitted on 3 Jun 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Tiling Perspective for Register Optimization Łukasz Domagała, Fabrice Rastello, Sadayappan Ponnuswany, Duco van Amstel RESEARCH REPORT N° 8541 May 2014 Project-Teams GCG ISSN 0249-6399 ISRN INRIA/RR--8541--FR+ENG A Tiling Perspective for Register Optimization Lukasz Domaga la∗, Fabrice Rastello†, Sadayappan Ponnuswany‡, Duco van Amstel§ Project-Teams GCG Research Report n° 8541 — May 2014 — 21 pages Abstract: Register allocation is a much studied problem. A particularly important context for optimizing register allocation is within loops, since a significant fraction of the execution time of programs is often inside loop code. A variety of algorithms have been proposed in the past for register allocation, but the complexity of the problem has resulted in a decoupling of several important aspects, including loop unrolling, register promotion, and instruction reordering. -
Efficient Symbolic Analysis for Optimizing Compilers*
Efficient Symbolic Analysis for Optimizing Compilers? Robert A. van Engelen Dept. of Computer Science, Florida State University, Tallahassee, FL 32306-4530 [email protected] Abstract. Because most of the execution time of a program is typically spend in loops, loop optimization is the main target of optimizing and re- structuring compilers. An accurate determination of induction variables and dependencies in loops is of paramount importance to many loop opti- mization and parallelization techniques, such as generalized loop strength reduction, loop parallelization by induction variable substitution, and loop-invariant expression elimination. In this paper we present a new method for induction variable recognition. Existing methods are either ad-hoc and not powerful enough to recognize some types of induction variables, or existing methods are powerful but not safe. The most pow- erful method known is the symbolic differencing method as demonstrated by the Parafrase-2 compiler on parallelizing the Perfect Benchmarks(R). However, symbolic differencing is inherently unsafe and a compiler that uses this method may produce incorrectly transformed programs without issuing a warning. In contrast, our method is safe, simpler to implement in a compiler, better adaptable for controlling loop transformations, and recognizes a larger class of induction variables. 1 Introduction It is well known that the optimization and parallelization of scientific applica- tions by restructuring compilers requires extensive analysis of induction vari- ables and dependencies -
Using Static Single Assignment SSA Form
Using Static Single Assignment SSA form Last Time B1 if (. ) B1 if (. ) • Basic definition, and why it is useful j j B2 x ← 5 B3 x ← 3 B2 x0 ← 5 B3 x1 ← 3 • How to build it j j B4 y ← x B4 x2 ← !(x0,x1) Today y ← x2 • Loop Optimizations – Induction variables (standard vs. SSA) – Loop Invariant Code Motion (SSA based) CS502 Using SSA 1 CS502 Using SSA 2 Loop Optimization Classical Loop Optimizations Loops are important, they execute often • typically, some regular access pattern • Loop Invariant Code Motion regularity ⇒ opportunity for improvement • Induction Variable Recognition repetition ⇒ savings are multiplied • Strength Reduction • assumption: loop bodies execute 10depth times • Linear Test Replacement • Loop Unrolling CS502 Using SSA 3 CS502 Using SSA 4 Other Loop Optimizations Loop Invariant Code Motion Other Loop Optimizations • Build the SSA graph semi-pruned • Scalar replacement • Need insertion of !-nodes: If two non-null paths x →+ z and y →+ z converge at node z, and nodes x • Loop Interchange and y contain assignments to t (in the original program), then a !-node for t must be inserted at z (in the new program) • Loop Fusion and t must be live across some basic block Simple test: • Loop Distribution If, for a statement s ≡ [x ← y ⊗ z], none of the operands y,z refer to a !-node or definition inside the loop, then • Loop Skewing Transform: assign the invariant computation a new temporary name, t ← y ⊗ z, move • Loop Reversal it to the loop pre-header, and assign x ← t. CS502 Using SSA 5 CS502 Using SSA 6 Loop Invariant Code -
Dataflow Optimizations
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.035, Spring 2010 Handout – Dataflow Optimizations Assignment Tuesday, Mar 16 DUE: Thursday, Apr 1 (11:59pm) For this part of the project, you will add dataflow optimizations to your compiler. At the very least, you must implement global common subexpression elimination. The other optimizations listed below are optional. We list them here as suggestions since past winners of the compiler derby typically implement each of these optimizations in some form. You are free to implement any other optimizations you wish. Note that you will be implementing register allocation for the next project, so you don’t need to concern yourself with it now. Global CSE (Common Subexpression Elimination): Identification and elimination of redun dant expressions using the algorithm described in lecture (based on available-expression anal ysis). See §8.3 and §13.1 of the Whale book, §10.6 and §10.7 in the Dragon book, and §17.2 in the Tiger book. Global Constant Propagation and Folding: Compile-time interpretation of expressions whose operands are compile time constants. See the algorithm described in §12.1 of the Whale book. Global Copy Propagation: Given a “copy” assignment like x = y , replace uses of x by y when legal (the use must be reached by only this def, and there must be no modification of y on any path from the def to the use). See §12.5 of the Whale book and §10.7 of the Dragon book. Loop-invariant Code Motion (code hoisting): Moving invariant code from within a loop to a block prior to that loop.