A Survey on Spark Ecosystem for Big Data Processing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Is 'Distributed' Worth It? Benchmarking Apache Spark with Mesos
Is `Distributed' worth it? Benchmarking Apache Spark with Mesos N. Satra (ns532) January 13, 2015 Abstract A lot of research focus lately has been on building bigger dis- tributed systems to handle `Big Data' problems. This paper exam- ines whether typical problems for web-scale companies really benefits from the parallelism offered by these systems, or can be handled by a single machine without synchronisation overheads. Repeated runs of a movie review sentiment analysis task in Apache Spark were carried out using Apache Mesos and Mesosphere, on Google Compute Engine clusters of various sizes. Only a marginal improvement in run-time was observed on a distributed system as opposed to a single node. 1 Introduction Research in high performance computing and `big data' has recently focussed on distributed computing. The reason is three-pronged: • The rapidly decreasing cost of commodity machines, compared to the slower decline in prices of high performance or supercomputers. • The availability of cloud environments like Amazon EC2 or Google Compute Engine that let users access large numbers of computers on- demand, without upfront investment. • The development of frameworks and tools that provide easy-to-use id- ioms for distributed computing and managing such large clusters of machines. Large corporations like Google or Yahoo are working on petabyte-scale problems which simply can't be handled by single computers [9]. However, 1 smaller companies and research teams with much more manageable sizes of data have jumped on the bandwagon, using the tools built by the larger com- panies, without always analysing the performance tradeoffs. It has reached the stage where researchers are suggesting using the same MapReduce idiom hammer on all problems, whether they are nails or not [7]. -
Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks
Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. 2014. Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks. In Proceedings of the ACM Symposium on Cloud Computing (SOCC '14). ACM, New York, NY, USA, Article 6 , 15 pages. As Published http://dx.doi.org/10.1145/2670979.2670985 Publisher Association for Computing Machinery (ACM) Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/101090 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks Haoyuan Li Ali Ghodsi Matei Zaharia Scott Shenker Ion Stoica University of California, Berkeley MIT, Databricks University of California, Berkeley fhaoyuan,[email protected] [email protected] fshenker,[email protected] Abstract Even replicating the data in memory can lead to a signifi- cant drop in the write performance, as both the latency and Tachyon is a distributed file system enabling reliable data throughput of the network are typically much worse than sharing at memory speed across cluster computing frame- that of local memory. works. While caching today improves read workloads, Slow writes can significantly hurt the performance of job writes are either network or disk bound, as replication is pipelines, where one job consumes the output of another. used for fault-tolerance. Tachyon eliminates this bottleneck These pipelines are regularly produced by workflow man- by pushing lineage, a well-known technique, into the storage agers such as Oozie [4] and Luigi [7], e.g., to perform data layer. -
Discretized Streams: Fault-Tolerant Streaming Computation at Scale
Discretized Streams: Fault-Tolerant Streaming Computation at Scale" Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, Ion Stoica University of California, Berkeley Published in SOSP ‘13 Slide 1/30 Motivation" • Faults and stragglers inevitable in large clusters running “big data” applications. • Streaming applications must recover from these quickly. • Current distributed streaming systems, including Storm, TimeStream, MapReduce Online provide fault recovery in an expensive manner. – Involves hot replication which requires 2x hardware or upstream backup which has long recovery time. Slide 2/30 Previous Methods" • Hot replication – two copies of each node, 2x hardware. – straggler will slow down both replicas. • Upstream backup – nodes buffer sent messages and replay them to new node. – stragglers are treated as failures resulting in long recovery step. • Conclusion : need for a system which overcomes these challenges Slide 3/30 • Voila ! D-Streams Slide 4/30 Computation Model" • Streaming computations treated as a series of deterministic batch computations on small time intervals. • Data received in each interval is stored reliably across the cluster to form input datatsets • At the end of each interval dataset is subjected to deterministic parallel operations and two things can happen – new dataset representing program output which is pushed out to stable storage – intermediate state stored as resilient distributed datasets (RDDs) Slide 5/30 D-Stream processing model" Slide 6/30 What are D-Streams ?" • sequence of immutable, partitioned datasets (RDDs) that can be acted on by deterministic transformations • transformations yield new D-Streams, and may create intermediate state in the form of RDDs • Example :- – pageViews = readStream("http://...", "1s") – ones = pageViews.map(event => (event.url, 1)) – counts = ones.runningReduce((a, b) => a + b) Slide 7/30 High-level overview of Spark Streaming system" Slide 8/30 Recovery" • D-Streams & RDDs track their lineage, that is, the graph of deterministic operations used to build them. -
The Design and Implementation of Declarative Networks
The Design and Implementation of Declarative Networks by Boon Thau Loo B.S. (University of California, Berkeley) 1999 M.S. (Stanford University) 2000 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, BERKELEY Committee in charge: Professor Joseph M. Hellerstein, Chair Professor Ion Stoica Professor John Chuang Fall 2006 The dissertation of Boon Thau Loo is approved: Professor Joseph M. Hellerstein, Chair Date Professor Ion Stoica Date Professor John Chuang Date University of California, Berkeley Fall 2006 The Design and Implementation of Declarative Networks Copyright c 2006 by Boon Thau Loo Abstract The Design and Implementation of Declarative Networks by Boon Thau Loo Doctor of Philosophy in Computer Science University of California, Berkeley Professor Joseph M. Hellerstein, Chair In this dissertation, we present the design and implementation of declarative networks. Declarative networking proposes the use of a declarative query language for specifying and implementing network protocols, and employs a dataflow framework at runtime for com- munication and maintenance of network state. The primary goal of declarative networking is to greatly simplify the process of specifying, implementing, deploying and evolving a network design. In addition, declarative networking serves as an important step towards an extensible, evolvable network architecture that can support flexible, secure and efficient deployment of new network protocols. Our main contributions are as follows. First, we formally define the Network Data- log (NDlog) language based on extensions to the Datalog recursive query language, and propose NDlog as a Domain Specific Language for programming network protocols. -
Apache Spark: a Unified Engine for Big Data Processing
contributed articles DOI:10.1145/2934664 for interactive SQL queries and Pregel11 This open source computing framework for iterative graph algorithms. In the open source Apache Hadoop stack, unifies streaming, batch, and interactive big systems like Storm1 and Impala9 are data workloads to unlock new applications. also specialized. Even in the relational database world, the trend has been to BY MATEI ZAHARIA, REYNOLD S. XIN, PATRICK WENDELL, move away from “one-size-fits-all” sys- TATHAGATA DAS, MICHAEL ARMBRUST, ANKUR DAVE, tems.18 Unfortunately, most big data XIANGRUI MENG, JOSH ROSEN, SHIVARAM VENKATARAMAN, applications need to combine many MICHAEL J. FRANKLIN, ALI GHODSI, JOSEPH GONZALEZ, different processing types. The very SCOTT SHENKER, AND ION STOICA nature of “big data” is that it is diverse and messy; a typical pipeline will need MapReduce-like code for data load- ing, SQL-like queries, and iterative machine learning. Specialized engines Apache Spark: can thus create both complexity and inefficiency; users must stitch together disparate systems, and some applica- tions simply cannot be expressed effi- ciently in any engine. A Unified In 2009, our group at the Univer- sity of California, Berkeley, started the Apache Spark project to design a unified engine for distributed data Engine for processing. Spark has a programming model similar to MapReduce but ex- tends it with a data-sharing abstrac- tion called “Resilient Distributed Da- Big Data tasets,” or RDDs.25 Using this simple extension, Spark can capture a wide range of processing workloads that previously needed separate engines, Processing including SQL, streaming, machine learning, and graph processing2,26,6 (see Figure 1). -
A Ditya a Kella
A D I T Y A A K E L L A [email protected] Computer Science Department http://www.cs.cmu.edu/∼aditya Carnegie Mellon University Phone: 412-818-3779 5000 Forbes Avenue Fax: 412-268-5576 (Attn: Aditya Akella) Pittsburgh, PA 15232 Education PhD in Computer Science May 2005 Carnegie Mellon University, Pittsburgh, PA (expected) Dissertation: “An Integrated Approach to Optimizing Internet Performance” Advisor: Prof. Srinivasan Seshan Bachelor of Technology in Computer Science and Engineering May 2000 Indian Institute of Technology (IIT), Madras, India Honors and Awards IBM PhD Fellowship 2003-04 & 2004-05 Graduated third among all IIT Madras undergraduates 2000 Institute Merit Prize, IIT Madras 1996-97 19th rank, All India Joint Entrance Examination for the IITs 1996 Gold medals, Regional Mathematics Olympiad, India 1993-94 & 1994-95 National Talent Search Examination (NTSE) Scholarship, India 1993-94 Research Interests Computer Systems and Internetworking PhD Dissertation An Integrated Approach to Optimizing Internet Performance In my thesis research, I adopted a systematic approach to understand how to optimize the perfor- mance of well-connected Internet end-points, such as universities, large enterprises and data centers. I showed that constrained bottlenecks inside and between carrier networks in the Internet could limit the performance of such end-points. I observed that a clever end point-based strategy, called Mul- tihoming Route Control, can help end-points route around these bottlenecks, and thereby improve performance. Furthermore, I showed that the Internet's topology, routing and trends in its growth may essentially worsen the wide-area congestion in the future. To this end, I proposed changes to the Internet's topology in order to guarantee good future performance. -
Face Recognition of Pedestrians from Live Video Stream Using Apache Spark Streaming and Kafka
International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-7 Issue-5, February 2018 Face Recognition of Pedestrians from Live Video Stream using Apache Spark Streaming and Kafka Abhinav Pandey, Harendra Singh Abstract: Face recognition of pedestrians by analyzing live video It also can augment data warehouse solutions by serving as a streaming, aims to identify movements and faces by performing buffer to process new data for inclusion in the data image matching with existing images using Apache Spark warehouse or to remove infrequently accessed or aged data. Streaming, Kafka and OpenCV, on distributed platform and derive decisions. Since video processing and analysis from BigData can lead to improvements in overall operations by multiple resources become slow when using Cloud or even any giving organizations greater visibility into operational issue. single highly configured machine, hence for making quick Operational insights might depends on machine data, which decisions and actions, Apache Spark Streaming and Kafka have can include anything from computers to sensors or meters to been used as real time analysis frameworks, which deliver event GPS devices, BigData provides unprecedented insight on based decisions making on Hadoop distributed environment. If customers’ decision-making processes by allowing continuous live events analysis is possible then the decision can make there-after or at the same time. And large amount videos in companies to track and analyze shopping patterns, parallel processing are also not a bottleneck after getting the recommendations, purchasing behaviours and other drivers involvement of Hadoop because base of all real time analysis that knows to influence the sales. -
Comparison of Spark Resource Managers and Distributed File Systems
2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom) Comparison of Spark Resource Managers and Distributed File Systems Solmaz Salehian Yonghong Yan Department of Computer Science & Engineering, Department of Computer Science & Engineering, Oakland University, Oakland University, Rochester, MI 48309-4401, United States Rochester, MI 48309-4401, United States [email protected] [email protected] Abstract— The rapid growth in volume, velocity, and variety Section 4 provides information of different resource of data produced by applications of scientific computing, management subsystems of Spark. In Section 5, Four commercial workloads and cloud has led to Big Data. Traditional Distributed File Systems (DFSs) are reviewed. Then, solutions of data storage, management and processing cannot conclusion is included in Section 6. meet demands of this distributed data, so new execution models, data models and software systems have been developed to address II. CHALLENGES IN BIG DATA the challenges of storing data in heterogeneous form, e.g. HDFS, NoSQL database, and for processing data in parallel and Although Big Data provides users with lot of opportunities, distributed fashion, e.g. MapReduce, Hadoop and Spark creating an efficient software framework for Big Data has frameworks. This work comparatively studies Apache Spark many challenges in terms of networking, storage, management, distributed data processing framework. Our study first discusses analytics, and ethics [5, 6]. the resource management subsystems of Spark, and then reviews Previous studies [6-11] have been carried out to review open several of the distributed data storage options available to Spark. Keywords—Big Data, Distributed File System, Resource challenges in Big Data. -
Alluxio: a Virtual Distributed File System by Haoyuan Li A
Alluxio: A Virtual Distributed File System by Haoyuan Li A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Ion Stoica, Co-chair Professor Scott Shenker, Co-chair Professor John Chuang Spring 2018 Alluxio: A Virtual Distributed File System Copyright 2018 by Haoyuan Li 1 Abstract Alluxio: A Virtual Distributed File System by Haoyuan Li Doctor of Philosophy in Computer Science University of California, Berkeley Professor Ion Stoica, Co-chair Professor Scott Shenker, Co-chair The world is entering the data revolution era. Along with the latest advancements of the Inter- net, Artificial Intelligence (AI), mobile devices, autonomous driving, and Internet of Things (IoT), the amount of data we are generating, collecting, storing, managing, and analyzing is growing ex- ponentially. To store and process these data has exposed tremendous challenges and opportunities. Over the past two decades, we have seen significant innovation in the data stack. For exam- ple, in the computation layer, the ecosystem started from the MapReduce framework, and grew to many different general and specialized systems such as Apache Spark for general data processing, Apache Storm, Apache Samza for stream processing, Apache Mahout for machine learning, Ten- sorflow, Caffe for deep learning, Presto, Apache Drill for SQL workloads. There are more than a hundred popular frameworks for various workloads and the number is growing. Similarly, the storage layer of the ecosystem grew from the Apache Hadoop Distributed File System (HDFS) to a variety of choices as well, such as file systems, object stores, blob stores, key-value systems, and NoSQL databases to realize different tradeoffs in cost, speed and semantics. -
Crystal: a Unified Cache Storage System for Analytical Databases
Crystal: A Unified Cache Storage System for Analytical Databases Dominik Durner∗ Badrish Chandramouli Yinan Li Technische Universität München Microsoft Research Microsoft Research [email protected] [email protected] [email protected] ABSTRACT 1.1 Challenges Cloud analytical databases employ a disaggregated storage model, These caching solutions usually operate as a black-box at the file or where the elastic compute layer accesses data persisted on remote block level for simplicity, employing standard cache replacement cloud storage in block-oriented columnar formats. Given the high policies such as LRU to manage the cache. In spite of their sim- latency and low bandwidth to remote storage and the limited size of plicity, these solutions have not solved several architectural and fast local storage, caching data at the compute node is important and performance challenges for cloud databases: has resulted in a renewed interest in caching for analytics. Today, • Every DBMS today implements its own caching layer tailored to each DBMS builds its own caching solution, usually based on file- its specific requirements, resulting in a lot of work duplication or block-level LRU. In this paper, we advocate a new architecture of across systems, reinventing choices such as what to cache, where a smart cache storage system called Crystal, that is co-located with to cache, when to cache, and how to cache. compute. Crystal’s clients are DBMS-specific “data sources” with • Databases increasingly support analytics over raw data formats push-down predicates. Similar in spirit to a DBMS, Crystal incorpo- such as CSV and JSON, and row-oriented binary formats such as rates query processing and optimization components focusing on Apache Avro [6] – all very popular in the data lake [16]. -
Tachyon-Further-Improve-Sparks
Tachyon: A Reliable Memory Centric Storage for Big Data Analytics Haoyuan (HY) Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, Ion Stoica UC Berkeley Outline • Overview • Research • Open Source • Future Outline • Overview • Research • Open Source • Future Memory is King • RAM throughput increasing exponen9ally • Disk throughput increasing slowly Memory-locality key to interac9ve response 9me Realized by many… • Frameworks already leverage memory 5 Problem solved? 6 An Example: - • Fast in-memory data processing framework – Keep one in-memory copy inside JVM – Track lineage of operaons used to derive data – Upon failure, use lineage to recompute data Lineage Tracking map join reduce filter map Issue 1 Different jobs share data: Slow writes to disk storage engine & Spark Task Spark Task execution engine same process Spark block 1 mem Spark block 3 mem (slow writes) block manager block 3 block manager block 1 block 1 block 2 HDFS block 3 block 4 disk 8 Issue 1 Different frameworks share data: Slow writes to disk storage engine & Spark Task Hadoop MR execution engine same process Spark block 1 mem YARN (slow writes) block manager block 3 block 1 block 2 HDFS block 3 Block 4 disk 9 Issue 2 execution engine & Spark Task storage engine same process block 1 Spark memory block 3 block manager block 1 block 2 HDFS block 3 block 4 disk 10 Issue 2 execution engine & crash storage engine same process block 1 Spark memory block 3 block manager block 1 block 2 HDFS block 3 block 4 disk 11 Issue 2 Process crash: lose all cache execution engine & storage engine -
Scalable Collaborative Caching and Storage Platform for Data Analytics
Scalable Collaborative Caching and Storage Platform for Data Analytics by Timur Malgazhdarov A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto c Copyright 2018 by Timur Malgazhdarov Abstract Scalable Collaborative Caching and Storage Platform for Data Analytics Timur Malgazhdarov Master of Applied Science Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto 2018 The emerging Big Data ecosystem has brought about dramatic proliferation of paradigms for analytics. In the race for the best performance, each new engine enforces tight cou- pling of analytics execution with caching and storage functionalities. This one-for-all ap- proach has led to either oversimplifications where traditional functionality was dropped or more configuration options that created more confusion about optimal settings. We avoid user confusion by following an integrated multi-service approach where we assign responsibilities to decoupled services. In our solution, called Gluon, we build a collab- orative cache tier that connects state-of-art analytics engines with a variety of storage systems. We use both open-source and proprietary technologies to implement our archi- tecture. We show that Gluon caching can achieve 2.5x-3x speedup when compared to uncustomized Spark caching while displaying higher resource utilization efficiency. Fi- nally, we show how Gluon can integrate traditional storage back-ends without significant performance loss when compared to vanilla analytics setups. ii Acknowledgements I would like to thank my supervisor, Professor Cristiana Amza, for her knowledge, guidance and support. It was my privilege and honor to work under Professor Amza's supervision.