Extensional Regimes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Significance of Brittle Deformation in the Footwall
Journal of Structural Geology 64 (2014) 79e98 Contents lists available at SciVerse ScienceDirect Journal of Structural Geology journal homepage: www.elsevier.com/locate/jsg Significance of brittle deformation in the footwall of the Alpine Fault, New Zealand: Smithy Creek Fault zone J.-E. Lund Snee a,*,1, V.G. Toy a, K. Gessner b a Geology Department, University of Otago, PO Box 56, Dunedin 9016, New Zealand b Western Australian Geothermal Centre of Excellence, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia article info abstract Article history: The Smithy Creek Fault represents a rare exposure of a brittle fault zone within Australian Plate rocks that Received 28 January 2013 constitute the footwall of the Alpine Fault zone in Westland, New Zealand. Outcrop mapping and Received in revised form paleostress analysis of the Smithy Creek Fault were conducted to characterize deformation and miner- 22 May 2013 alization in the footwall of the nearby Alpine Fault, and the timing of these processes relative to the Accepted 4 June 2013 modern tectonic regime. While unfavorably oriented, the dextral oblique Smithy Creek thrust has Available online 18 June 2013 kinematics compatible with slip in the current stress regime and offsets a basement unconformity beneath Holocene glaciofluvial sediments. A greater than 100 m wide damage zone and more than 8 m Keywords: Fault zone wide, extensively fractured fault core are consistent with total displacement on the kilometer scale. e Fluid flow Based on our observations we propose that an asymmetric damage zone containing quartz carbonate Hydrofracture echloriteeepidote veins is focused in the footwall. -
GEO 2008 Conference Abstracts, Bahrain GEO 2008 Conference Abstracts
GEO 2008 conference abstracts, Bahrain GEO 2008 Conference Abstracts he abstracts of the GEO 2008 Conference presentations (3-5 March 2008, Bahrain) are published in Talphabetical order based on the last name of the first author. Only those abstracts that were accepted by the GEO 2008 Program Committee are published here, and were subsequently edited by GeoArabia Editors and proof-read by the corresponding author. Several names of companies and institutions to which presenters are affiliated have been abbreviated (see page 262). For convenience, all subsidiary companies are listed as the parent company. (#117804) Sandstone-body geometry, facies existing data sets and improve exploration decision architecture and depositional model of making. The results of a recent 3-D seismic reprocessing Ordovician Barik Sandstone, Oman effort over approximately 1,800 square km of data from the Mediterranean Sea has brought renewed interest in Iftikhar A. Abbasi (Sultan Qaboos University, Oman) deep, pre-Messinian structures. Historically, the reservoir and Abdulrahman Al-Harthy (Sultan Qaboos targets in the southern Mediterranean Sea have been the University, Oman <[email protected]>) Pliocene-Pleistocene and Messinian/Pre-Messinian gas sands. These are readily identifiable as anomalousbright The Lower Paleozoic siliciclastics sediments of the amplitudes on the seismic data. The key to enhancing the Haima Supergroup in the Al-Haushi-Huqf area of cen- deeper structure is multiple and noise attenuation. The tral Oman are subdivided into a number of formations Miocene and older targets are overlain by a Messinian- and members based on lithological characteristics of aged, structurally complex anhydrite layer, the Rosetta various rock sequences. -
Lesson 3 Forces That Build the Land Main Idea
Lesson 3 Forces That Build the Land Main Idea Many landforms result from changes and movements in Earth’s crust. Objectives Identify types of landforms and the processes that form them. Describe what happens when an earthquake occurs. Vocabulary fault focus aftershock seismic wave epicenter seismograph magnitude vent What forces change Earth’s crust? At transform boundaries, the pieces of rock rub together in a force called shearing, like the blades of a pair of scissors, causing the rock to break. At convergent boundaries, plates collide and this force is called compression, squeezing the rock together. At divergent boundaries, plates separate causing tension, making the crust longer and thinner eventually breaking and creating a fault. Faults are usually located along the boundaries between tectonic plates. Three Kinds of Faults Shearing forms strike-slip faults. Tension forms normal faults. The rock above the fault moves down. Compression forms reverse faults. The rock above the fault moves up. Uplifted Landforms Folded mountains are mostly made up of rock layers folded by being squeezed together. Fault-block mountains are made by huge, tilted blocks of rock separated from the surrounding rock by faults. The Colorado Plateau was formed when rock layers were pushed upward. The Colorado River eventually formed the Grand Canyon. Quick Check Infer Why are faults often produced along plate boundaries? Forces act on the crust most directly at plate boundaries, because these locations are where plates are moving, relative to each other. Critical Thinking Why do some mountains form as folded mountains and others form as fault-block mountains? Compression forces form folded mountains, and tension forms fault- block mountains. -
Pressure-Temperature Evolution of Metapelites Within the Anaconda Metamorphic Core Complex, Southwestern Montana
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2008 PRESSURE-TEMPERATURE EVOLUTION OF METAPELITES WITHIN THE ANACONDA METAMORPHIC CORE COMPLEX, SOUTHWESTERN MONTANA Erin Haney The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Haney, Erin, "PRESSURE-TEMPERATURE EVOLUTION OF METAPELITES WITHIN THE ANACONDA METAMORPHIC CORE COMPLEX, SOUTHWESTERN MONTANA" (2008). Graduate Student Theses, Dissertations, & Professional Papers. 1262. https://scholarworks.umt.edu/etd/1262 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. PRESSURE-TEMPERATURE EVOLUTION OF METAPELITES WITHIN THE ANACONDA METAMORPHIC CORE COMPLEX, SOUTHWESTERN MONTANA By Erin Marie Haney B.S. Geology, Sonoma State University, Rohnert Park, CA, 2005 Thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Geosciences The University of Montana Missoula, MT Spring 2008 Approved by: Dr. David A. Strobel, Dean Graduate School Dr. Julie Baldwin, Chair Department of Geosciences Dr. James Sears Department of Geosciences Dr. Paul Wilson Department of Geography Haney, Erin, M.S., May 2008 Geosciences Pressure-temperature evolution of metapelites within the Anaconda metamorphic core complex, southwestern Montana Chairperson: Dr. Julie Baldwin This study shows the complete metamorphic evolution of metapelitic footwall rocks in the Anaconda metamorphic core complex, located in southwestern Montana. -
Part 3: Normal Faults and Extensional Tectonics
12.113 Structural Geology Part 3: Normal faults and extensional tectonics Fall 2005 Contents 1 Reading assignment 1 2 Growth strata 1 3 Models of extensional faults 2 3.1 Listric faults . 2 3.2 Planar, rotating fault arrays . 2 3.3 Stratigraphic signature of normal faults and extension . 2 3.4 Core complexes . 6 4 Slides 7 1 Reading assignment Read Chapter 5. 2 Growth strata Although not particular to normal faults, relative uplift and subsidence on either side of a surface breaking fault leads to predictable patterns of erosion and sedi mentation. Sediments will fill the available space created by slip on a fault. Not only do the characteristic patterns of stratal thickening or thinning tell you about the 1 Figure 1: Model for a simple, planar fault style of faulting, but by dating the sediments, you can tell the age of the fault (since sediments were deposited during faulting) as well as the slip rates on the fault. 3 Models of extensional faults The simplest model of a normal fault is a planar fault that does not change its dip with depth. Such a fault does not accommodate much extension. (Figure 1) 3.1 Listric faults A listric fault is a fault which shallows with depth. Compared to a simple planar model, such a fault accommodates a considerably greater amount of extension for the same amount of slip. Characteristics of listric faults are that, in order to maintain geometric compatibility, beds in the hanging wall have to rotate and dip towards the fault. Commonly, listric faults involve a number of en echelon faults that sole into a lowangle master detachment. -
Kinematics of the Northern Walker Lane: an Incipient Transform Fault Along the Pacific–North American Plate Boundary
Kinematics of the northern Walker Lane: An incipient transform fault along the Paci®c±North American plate boundary James E. Faulds Christopher D. Henry Nevada Bureau of Mines and Geology, MS 178, University of Nevada, Reno, Nevada 89557, USA Nicholas H. Hinz ABSTRACT GEOLOGIC SETTING In the western Great Basin of North America, a system of dextral faults accommodates As western North America has evolved 15%±25% of the Paci®c±North American plate motion. The northern Walker Lane in from a convergent to a transform margin in northwest Nevada and northeast California occupies the northern terminus of this system. the past 30 m.y., the northern Walker Lane has This young evolving part of the plate boundary offers insight into how strike-slip fault undergone widespread volcanism and tecto- systems develop and may re¯ect the birth of a transform fault. A belt of overlapping, left- nism. Tertiary volcanic strata include 31±23 stepping dextral faults dominates the northern Walker Lane. Offset segments of a W- Ma ash-¯ow tuffs associated with the south- trending Oligocene paleovalley suggest ;20±30 km of cumulative dextral slip beginning ward-migrating ``ignimbrite ¯are up,'' 22±5 ca. 9±3 Ma. The inferred long-term slip rate of ;2±10 mm/yr is compatible with global Ma calc-alkaline intermediate-composition positioning system observations of the current strain ®eld. We interpret the left-stepping rocks related to the ancestral Cascade arc, and faults as macroscopic Riedel shears developing above a nascent lithospheric-scale trans- 13 Ma to present bimodal rocks linked to Ba- form fault. -
Lithology and Internal Structure of the San Andreas Fault at Depth Based
1 1 Lithology and Internal Structure of the San Andreas Fault at depth based on 2 characterization of Phase 3 whole-rock core in the San Andreas Fault Observatory at 3 Depth (SAFOD) Borehole 4 By Kelly K. Bradbury1, James P. Evans1, Judith S. Chester2, Frederick M. Chester2, and David L. Kirschner3 5 1Geology Department, Utah State University, Logan, UT 84321-4505 6 2Center for Tectonophysics and Department of Geology and Geophysics, Texas A&M University, College Station, 7 Texas 77843 8 3Department of Earth and Atmospheric Sciences, St. Louis University, St. Louis, Missouri 63108 9 10 Abstract 11 We characterize the lithology and structure of the spot core obtained in 2007 during 12 Phase 3 drilling of the San Andreas Fault Observatory at Depth (SAFOD) in order to determine 13 the composition, structure, and deformation processes of the fault zone at 3 km depth where 14 creep and microseismicity occur. A total of approximately 41 m of spot core was taken from 15 three separate sections of the borehole; the core samples consist of fractured arkosic sandstones 16 and shale west of the SAF zone (Pacific Plate) and sheared fine-grained sedimentary rocks, 17 ultrafine black fault-related rocks, and phyllosilicate-rich fault gouge within the fault zone 18 (North American Plate). The fault zone at SAFOD consists of a broad zone of variably damaged 19 rock containing localized zones of highly concentrated shear that often juxtapose distinct 20 protoliths. Two zones of serpentinite-bearing clay gouge, each meters-thick, occur at the two 21 locations of aseismic creep identified in the borehole on the basis of casing deformation. -
The Origin and Evolution of the Southern Snake Range Decollement, East Central Nevada Allen J
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Dayton University of Dayton eCommons Geology Faculty Publications Department of Geology 2-1993 The Origin and Evolution of the Southern Snake Range Decollement, East Central Nevada Allen J. McGrew University of Dayton, [email protected] Follow this and additional works at: https://ecommons.udayton.edu/geo_fac_pub Part of the Geology Commons, Geomorphology Commons, Geophysics and Seismology Commons, Glaciology Commons, Hydrology Commons, Other Environmental Sciences Commons, Paleontology Commons, Sedimentology Commons, Soil Science Commons, Stratigraphy Commons, and the Tectonics and Structure Commons eCommons Citation McGrew, Allen J., "The Origin and Evolution of the Southern Snake Range Decollement, East Central Nevada" (1993). Geology Faculty Publications. 29. https://ecommons.udayton.edu/geo_fac_pub/29 This Article is brought to you for free and open access by the Department of Geology at eCommons. It has been accepted for inclusion in Geology Faculty Publications by an authorized administrator of eCommons. For more information, please contact [email protected], [email protected]. TECTONICS, VOL. 12, NO. 1, PAGES 21-34, FEBRUARY 1993 THE ORIGIN AND EVOLUTION OF INTRODUCTION THE SOUTHERN SNAKE RANGE The origin,kinematic significance and geometrical evolu- DECOLLEMENT, EAST CENTRAL tion of shallowlyinclined normal fault systemsare NEVADA fundamentalissues in extensionaltectonics. Regionally extensivefaults that juxtapose nonmetamorphic sedimentary Allen J. McGrew1 rocksin theirhanging walls againstplastically deformed Departmentof Geology,Stanford University, Stanford, crystallinerocks in their footwallscommand special California attentionbecause they offer rare opportunitiesto characterize kinematiclinkages between contrasting structural levels. Thesefaults, commonly known as detachmentfaults, are the Abstract.Regional and local stratigraphic, metamorphic, subjectsof muchcontroversy. -
Large-Magnitude Extensional Deformation in the South Mountains Metamorphic Core Complex, Arizona: Evaluation with Paleomagnetism
Large-magnitude extensional deformation in the South Mountains metamorphic core complex, Arizona: Evaluation with paleomagnetism Richard F. Livaccari Department of Earth and Planetary Sciences, University of New Mexico, John W. Geissman } Albuquerque, New Mexico 87131 Stephen J. Reynolds Department of Geology, Arizona State University, Tempe, Arizona 85287 ABSTRACT data from these two sides suggests that the INTRODUCTION back-dipping mylonitic front was synkine- Paleomagnetic data are used to test con- matically tilted about 10 down-to-the- Cordilleran metamorphic core complexes troversial aspects of Cordilleran metamor- southwest. The data support a folded shear (MCCs) and their associated structures (de- phic core complexes, including the original zone hypothesis for origin of the mylonitic tachment faults and mylonites) are the in- dip of extensional structures, origin of the front and the interpretation that footwall ferred products of large-magnitude Cenozo- mylonitic front, and applicability of rolling- rocks possess primary, Miocene-age TRMs ic extension (tens of kilometers of normal hinge models. We obtained paleomagnetic or TCRMs. A second regional fold test in- slip; e.g., Crittenden et al., 1980; Reynolds data (115 sites, 82 accepted for analysis) volved data from sites on both flanks of and Spencer, 1985; Howard and John, 1987; from the weakly deformed interior of a syn- the topographically prominent northeast- Coney, 1987). Aspects of metamorphic core kinematic, footwall intrusive suite and Prot- trending mountain range–scale antiform. complex evolution not fully understood in- erozoic footwall rocks of the South Moun- The negative result from this fold test dem- clude the origin of the mountain range–scale tains metamorphic core complex, central onstrates that this structure formed early in antiforms that strike parallel with the exten- Arizona. -
Systematic Variation of Late Pleistocene Fault Scarp Height in the Teton Range, Wyoming, USA: Variable Fault Slip Rates Or Variable GEOSPHERE; V
Research Paper THEMED ISSUE: Cenozoic Tectonics, Magmatism, and Stratigraphy of the Snake River Plain–Yellowstone Region and Adjacent Areas GEOSPHERE Systematic variation of Late Pleistocene fault scarp height in the Teton Range, Wyoming, USA: Variable fault slip rates or variable GEOSPHERE; v. 13, no. 2 landform ages? doi:10.1130/GES01320.1 Glenn D. Thackray and Amie E. Staley* 8 figures; 1 supplemental file Department of Geosciences, Idaho State University, 921 South 8th Avenue, Pocatello, Idaho 83209, USA CORRESPONDENCE: thacglen@ isu .edu ABSTRACT ously and repeatedly to climate shifts in multiple valleys, they create multi CITATION: Thackray, G.D., and Staley, A.E., 2017, ple isochronous markers for evaluation of spatial and temporal variation of Systematic variation of Late Pleistocene fault scarp height in the Teton Range, Wyoming, USA: Variable Fault scarps of strongly varying height cut glacial and alluvial sequences fault motion (Gillespie and Molnar, 1995; McCalpin, 1996; Howle et al., 2012; fault slip rates or variable landform ages?: Geosphere, mantling the faulted front of the Teton Range (western USA). Scarp heights Thackray et al., 2013). v. 13, no. 2, p. 287–300, doi:10.1130/GES01320.1. vary from 11.2 to 37.6 m and are systematically higher on geomorphically older In some cases, faults of known slip rate can also be used to evaluate ages landforms. Fault scarps cutting a deglacial surface, known from cosmogenic of glacial and alluvial sequences. However, this process is hampered by spatial Received 26 January 2016 Revision received 22 November 2016 radionuclide exposure dating to immediately postdate 14.7 ± 1.1 ka, average and temporal variability of offset along individual faults and fault segments Accepted 13 January 2017 12.0 m in height, and yield an average postglacial offset rate of 0.82 ± 0.13 (e.g., Z. -
Download Preprint
This is a preprint that has no-yet undergone peer-review. Please note that subsequent versions of this manuscript may have different content. We share this preprint to openly share our ongoing work and to generate community discussion; we warmly welcome comments or feedback via email ([email protected]). Rift Flank Erosion & Sediment Routing Paper_____________________________________________________Elliott et al 1 Tectono-stratigraphic development of a salt-influenced rift margin; Halten 2 Terrace, offshore Mid-Norway 3 Gavin M. Elliott*1, Christopher A-L. Jackson1, Robert L. Gawthorpe2, Paul Wilson3,6, 4 5 4 Ian R. Sharp & Lisa Michelsen 5 1 Basin Research Group (BRG), Department of Earth Science & Engineering, Imperial College 6 London, London, UK 7 2 Department of Earth Sciences, University of Bergen, Norway 8 3 Basin Studies & Petroleum Geoscience, SEAES, University of Manchester, Manchester UK 9 4 Equinor Research Centre, Sandsliveien 90, Bergen, Norway 10 5 Equinor ASA, Mølnholtet 42, Harstad, Norway 11 6 Now at: Schlumberger Oilfield UK PLC, Schlumberger House, Gatwick, UK 12 *Corresponding Author Email: [email protected] 13 1. Abstract 14 In salt-influenced rift basins the presence of a pre-rift salt layer will control the 15 tectono-stratigraphic evolution of the rift due to the decoupling of the sub- and supra- 16 salt faults leading to temporal and spatial variations in structural style. Lateral 17 variations in rift flank structure will control the dispersal and volumes of sediment 18 deposited in rifts and along rifted margins, which in turn impacts facies distributions 19 within syn-rift stratigraphic successions. We here use 3D seismic reflection and 20 borehole data to study the tectono-stratigraphic development of the Halten Terrace, 21 offshore Mid-Norway, a salt-influenced rifted margin formed during Middle to Late 22 Jurassic extension. -
Tectonic Features of the Precambrian Belt Basin and Their Influence on Post-Belt Structures
... Tectonic Features of the .., Precambrian Belt Basin and Their Influence on Post-Belt Structures GEOLOGICAL SURVEY PROFESSIONAL PAPER 866 · Tectonic Features of the · Precambrian Belt Basin and Their Influence on Post-Belt Structures By JACK E. HARRISON, ALLAN B. GRIGGS, and JOHN D. WELLS GEOLOGICAL SURVEY PROFESSIONAL PAPER X66 U N IT ED STATES G 0 V ERN M EN T P R I NT I N G 0 F F I C E, \VAS H I N G T 0 N 19 7 4 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 74-600111 ) For sale by the Superintendent of Documents, U.S. GO\·ernment Printing Office 'Vashington, D.C. 20402 - Price 65 cents (paper cO\·er) Stock Number 2401-02554 CONTENTS Page Page Abstract................................................. 1 Phanerozoic events-Continued Introduction . 1 Late Mesozoic through early Tertiary-Continued Genesis and filling of the Belt basin . 1 Idaho batholith ................................. 7 Is the Belt basin an aulacogen? . 5 Boulder batholith ............................... 8 Precambrian Z events . 5 Northern Montana disturbed belt ................. 8 Phanerozoic events . 5 Tectonics along the Lewis and Clark line .............. 9 Paleozoic through early Mesozoic . 6 Late Cenozoic block faults ........................... 13 Late Mesozoic through early Tertiary . 6 Conclusions ............................................. 13 Kootenay arc and mobile belt . 6 References cited ......................................... 14 ILLUSTRATIONS Page FIGURES 1-4. Maps: 1. Principal basins of sedimentation along the U.S.-Canadian Cordillera during Precambrian Y time (1,600-800 m.y. ago) ............................................................................................... 2 2. Principal tectonic elements of the Belt basin reentrant as inferred from the sedimentation record ............